L L]

Fexd Srmordl

Visual Hasic b

SAMS TEACH YOURSELF VISUAL BASIC 6 IN

2] DAYS
By Greg Perry

RIPPED BY: LILIMEANIMAN.

Digitally signed by Lilmeanman
DN: CN = Lilmeanman, C = US, O = Lilmeanman UNItd, OU =

Lilmeanman
Reason: | am approving this document

Date: 2004.09.30 17:22:31 -06'00'

About the Author

Greg Perry is a speaker and writer on both the programming and the application sides of computing. He is known for
his skills at bringing advanced computer topics down to the novice's level. Perry has been a programmer and trainer
since the early 1980s. He received his first degree in computer science and a master's degree in corporate finance. Perry
is the author or co-author of more than 50 books, including Sams Teach Yourself Windows 95 in 24 Hours, Absolute
Beginner's Guide to Programming, Sams Teach Yourself Office 97 in 24 Hours, Absolute Beginner's Guide to C, and
Moving from C to C++. He also writes about rental-property management and loves to travel.

Acknowledgments

My thanks go to Sharon Cox, Tony Amico, and the entire staff of Joe Wikert's group who continue to produce only the
best programming books on the market. Joe was with me on my first programming book years ago and | appreciate this
one just as much as the first. Sharon Cox goes to bat for me more than an Acquisitions Editor should and I want Sharon
to know how grateful that | am. In addition, if this book is good, it's more due to Tony's eagle-eye guidance than
anything I've done as an author.

Among the Sams editors and staff who produced this book, | want to send special thanks to the following people who
made this book a success: Jodi Jensen, Maureen McDaniel, Bart Reed, Charlotte Clapp. Special thanks go to the
technical editor, Bob Wasserman.

I just couldn't write a book for Sams Publishing without mentioning Dean Miller and Richard Swadley. In every book
I've written for Sams, they have had a direct influence, some way, in my motivation and gratefulness for being part of
the most outstanding programming book publisher in the business.

My lovely and gracious bride stands by my side day and night. Thank you once again. You, precious Jayne, are
everything that matters to me on earth. The best parents in the world, Glen and Bettye Perry, continue to encourage and
support me in every way. | am who | am because of both of them and I thank them for all that they've done for me.

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to
know what we're doing right, what we could do better, what areas you'd like to see us publish in, and any other words
of wisdom you're willing to pass our way.

As the Executive Editor for the Visual Basic Programming team, | welcome your comments. You can fax, e-mail, or

write me directly to let me know what you did or didn't like about this book—as well as what we can do to make our
books stronger.

Please note that | cannot help you with technical problems related to the topic of this book, and that due to the high
volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name and phone or fax number. |
will carefully review your comments and share them with the author and editors who worked on the book.

Fax: 317-817-7070
E-mail: vb@mcp.com
Mail: Executive Editor

Visual Basic Programming
Macmillan Computer Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

Introduction

For the next 21 days, you will learn how to write Windows programs using Visual Basic. You will also have fun along
the way! Visual Basic is an enjoyable language due to its visual environment. Much of building a Windows program in
Visual Basic requires dragging and dropping graphic objects onto the screen from a toolbox which houses those
objects. Your Windows program appears before your eyes as you add the objects. Visual Basic is one of the first
programming languages to incorporate a true WYSIWYG (What You See Is What You Get) environment. The program
that you build looks like the program your users see when they run the program from Windows.

If you've never written a program before, you will successfully learn to program with Visual Basic after you are
through with the next 21-day sessions. Each one-hour lesson covers Visual Basic, from start to finish, in a tutorial style
that includes questions and answers, exercises, and bonus projects that show specific Visual Basic commands and
features in use.

This 21-day tutorial teaches both theory and applies that theory in an easy-to-understand hands-on format. You begin
creating your very first Visual Basic program in the first day's lesson! The goal of teaching Visual Basic to a newcomer
at times is challenging due to today's broad range of computing skills. Some move to Visual Basic after programming
in more advanced (and more tedious) programming languages such as C++. Others come to Visual Basic with only a
QBasic background. QBasic is a language supplied with PCs for years, but QBasic offers only a slow, text-based MS-
DOS programming environment. Despite its archaic text-based mode, the QBasic language provides a wonderful
introduction to Visual Basic because Visual Basic's programming language is an extension of QBasic. Some people
want to program but have never programmed in any other language before, so not only is Visual Basic brand new but
S0 is the nature of programming.

Visual Basic is much more than just a programming language. The programming language forms the background of all
that takes place in a running Visual Basic program. Nevertheless, the language is a secondary consideration to the user
interface. A Windows program offers a high degree of user interaction using the graphical elements that form the
objects on the window the user sees. If the user interface is not correct, users will not like the program. The
programmer will get more support phone calls. The users will be hesitant to upgrade to future program enhancements.

Therefore, the user interface is stressed throughout these 21 days so that you know exactly how to define the best
interface for your users. Only after you build a usable interface should you then go to work on the program's mechanics
that make the program do the job you designed it to do.

In today's fast-changing world, program maintenance is more critical than ever before. Companies change, industries
consolidate, spin-offs happen. The computer programs of today must be fluid and maintainable so that programmers
can quickly change the program to meet the needs of a changing environment in which the programs are used. This
tutorial stresses the importance of proper program design, coding, testing, and maintenance every step of the way. A
program is written once but updates many times, and you can ease the burden of program maintenance by following a
few general guidelines when you write your program.

This 21-day tutorial strikes a balance between usability and theory, always showing you what you need and not wasting
your time with the tiny fragments of Visual Basic that the typical programmer may never have to know. Importance is
placed on building good programmers who can build good programs that are clear, concise, documented, and simple to
maintain.

In addition, these 21 days provide ample time to study Visual Basic in depth without getting bogged down in the minor
issues that don't concern the typical Visual Basic programmer. At the same time, you will learn about many aspects of
Visual Basic. The following is only a partial collection of the topics that this 21-day tutorial covers:

e Building a useful user interface

e Using the Application Wizard to generate a program shell instantly

e Writing Visual Basic code in clear constructs to make the code run smoothly

e Understanding the most common tools used in the Visual Basic environment

o Mastering the art of getting the errors out of a Visual Basic program

e Incorporated database technology into your Visual Basic programs

o Embedding Internet access in the heart of your programs to put your users online to the Web

« Providing external ActiveX controls so that Visual Basic can use tools from other languages and Windows
applications

e Using Visual Basic's ability to create brand new ActiveX controls so that you can increase Visual Basic's
programmability and the tools that your users interact with by making your own interface objects

o Accessing the online help engine in Visual Basic so that the programs that you write are accessible to your users
and offer the help services that your users require

« Creating graphics to add pizzazz to the screens that you design

e Using common dialog boxes so that your users can access the typical features they expect in a Windows
application

o Putting toolbars and coolbars in your programs so that your users have one-button access to the common
commands and tasks they require

e Mastering the art of programming the Windows API routines so that you can implement Windows features not
normally found inside Visual Basic

e Improving the enjoyment of the programs that you write by adding multimedia sound and graphics to your
Windows programs

Are you ready to make the move to Visual Basic? If you are, you will be pleased to have this copy of Sams Teach
Yourself Visual Basic 6 in 21 Days. From the first day to the last, you will improve your Visual Basic skill set so that
you can write virtually any Visual Basic program that you require.

Part 1: At A Glance

This week begins a rewarding experience for you. You will learn how to use Visual Basic to create your own computer
programs! This first week introduces you to the preliminaries of Visual Basic by showing you how to maneuver within
the Visual Basic environment, how to create the visual elements of a Windows program, and how to master the
fundamentals of the Visual Basic programming language.

Where You're Going

Despite this first week'’s introductory nature, you will be working with Visual Basic in a hands-on mode starting in Day
1, "Welcome to Visual Basic." In the opening lesson you create a working Visual Basic application that looks and acts
like other Windows programs you've used. Each succeeding lesson builds from there showing you how to add new
elements to your programs and how to make them more powerful. At the end of each day, you'll find a series of
questions and exercises that help focus your attention on the most important parts of the day's lesson so that you can
review trouble areas and practice additional hands-on program development.

Programming requires more than just a knowledge of a language. As you progress through this week and the two weeks
that follow, you will understand the importance of writing clear, well-documented programs. The environments in
which people use computer programs change and so must the programs. By following a few good programming
practices from the beginning, you create programs that will be easier to adapt for future updates.

Visual Basic creates Windows programs. In this first week, you learn a little about virtually every element of Visual
Basic programming. You'll learn how to place objects on a Windows screen, create and respond to pull-down menus,
and manage the interaction between your program and its user. You'll begin to master the heart of Visual Basic: the
programming language that ties everything together.

Visual Basic programming is one of the most enjoyable ways to program. Much of creating a Visual Basic program
requires placing graphic objects on the screen and setting attributes for those objects that determine how the objects are
to look and behave. Visual Basic is truly the only programming language today that beginning programmers can learn
easily. In addition, Visual Basic allows advanced programmers to create powerful Windows applications.

Set your sights high! If you've never programmed before, or if you've never programmed in Visual Basic, you'll enjoy
what Visual Basic can do for you and you'll be surprised what you can do with Visual Basic.

Day 1. Welcome to Visual Basic

Visual Basic 6 is Microsoft's latest and greatest version of the Visual Basic programming language. Although writing
programs can be a tedious chore at times, Visual Basic reduces the effort required on your part and makes
programming enjoyable. Visual Basic makes many aspects of programming as simple as dragging graphic objects onto
the screen with your mouse.

Today begins your 21-day Visual Basic tutorial. Before today ends, you will have created your very first Visual Basic
application. In the next three weeks, you will master Visual Basic 6, and you will be able to develop applications that
do work you need done.

Today, you learn the following:

Visual Basic's history

The programming design and authoring process

How Visual Basic's visual interface makes programming easy and fun

The Application wizard

Why event-driven programming is so important to a Windows environment

Visual Basic's Background

By understanding the background of Visual Basic, you'll gain insight into Visual Basic 6 and you'll be better equipped
to use Visual Basic. Microsoft based Visual Basic on a programming language written for beginners called BASIC.
BASIC has been around for more than 35 years in one form or another. The original language designers wanted to
develop a programming language that beginners could use. With BASIC, new programmers could become proficient
right away. Other programming languages of the day, such as COBOL, FORTRAN, and Assembler, required much
more study than BASIC before one could use them effectively.

BASIC stands for Beginner's All-purpose Symbolic Instruction Code. That's some abbreviation!

A programming language is a set of commands and command options, called arguments, that you use to give
instructions to the computer. Computers cannot (yet) understand human languages because people deal well with
ambiguous commands, and a computer cannot understand such ambiguity. A programming language must be more
precise than a spoken language.

Note

Programming languages are easier to learn than foreign languages. Computer languages often have fewer than 300
commands, and many of those commands are words you already understand, such as Open and Next.

Although the BASIC language was designed for beginners, a BASIC program was still rather cryptic and required
study. Listing 1.1 shows a program written in BASIC. The program'’s goal is to print the mathematical squares for the
numbers 1 through 10. Although you can probably guess at many of the program's logic and commands, the program is
certainly not the clearest piece of literature in the world and requires that you understand BASIC before you can fully
comprehend the reason for all of its elements.

Programs are often comprised of several files that interact with one another, so you'll often see the term application
used as a synonym for all of a program's files. The program, or application written in a programming language, is a set
of instructions that directs the computer.

Listing 1.1 Early BASIC programs had line numbers and were somewhat cryptic.

10 REM This program computes and prints the Ffirst ten squares
20 CLS

30 PRINT "'Squares from 1 to 10"

40 PRINT "value'", 'Squared"

50 FOR N =1 TO 10

60 PRINT N, (N*N)

70 NEXT N

80 PRINT

90 END

Do Don't

DON'T fret over all this talk about squaring numbers from 1 to 10. Don't like math? No problem! Visual Basic

Do Don't

will do all the math you need done.

If you were to run the BASIC program, here is the output you would see:

Squares from 1 to 10
Value Squared
1
4
9
16
25
36
49
64
81
0 100

POO~NOUIWNE

Notice that BASIC is strictly a text-based language. Both its program and output are textual and do not produce the
graphical, windowed output that today's programs produce.

Microsoft did not create Visual Basic directly from the original BASIC language. Although the BASIC language
evolved through several stages over its 35-plus year history, it kept its original structure in most of its incarnations.
When Microsoft decided to use BASIC as its primary programming language supplied with the original MS-DOS
operating system, however, it honed the BASIC language and added functionality to BASIC by creating several
incarnations of BASIC with names such as MBASIC (for Microsoft BASIC), GWBASIC (for, some say, Gee-Whiz
BASIC), BASICA (for BASIC Advanced), QuickBASIC, and QBasic (which is still supplied on Windows operating
system CD-ROMs).

Throughout BASIC's evolution, the BASIC language kept its simple nature while gaining powerful new commands
along the way. The text-based nature of languages such as QBasic helps new programmers get up to speed more
quickly than many nontext languages such as Visual C++ do. To maintain this ease of use, Microsoft wanted to keep all
its BASIC language versions interpreted in nature as opposed to compiled. A programmer can execute a program based
on an interpreted language immediately and see results and errors instantly. Such feedback is critical for beginners who
need a quick response when learning how to program. Compiled languages, although they run faster and are better
suited for commercial program development environments, require much more effort to work with.

An interpreted language, such as BASIC, lets you run programs as you write them. Interpreted languages make good
learning platforms because of their quick feedback. A compiled language requires extra steps, called compilation and
linking, before the programmer can run the program. The compiled program resides in the computer's own native
language and not in the programming language that the programmer originally used.

As Windows became more popular, Microsoft realized that the text-based QBasic would not work as a windowed
programming language. Microsoft developed Visual Basic, a language based on BASIC but one much more suited to
today's windowed environments. Whereas QBasic and all other BASIC incarnations were text-based, Visual Basic is

graphical. Although a Visual Basic program might contain code that looks somewhat like the program in Listing 1.1,
the majority of a Visual Basic program consists of graphical elements that have little resemblance to the text-based
code in Listing 1.1. Figure 1.1 shows a Visual Basic screen that contains many pieces from a Visual Basic program.

Figure 1.1. The Visual Basic programming screen can look busy, but it is simple to use.

#. Geolacts - Mcorelt Visual Basic [demngn]
B-a-BEE - TRA 2 o HIPAE RN 1 ouenan fsmoxes

Fropoitios - imGEooFacts
[lrmGeaFacts Fum =]
Alghabets: | Categericed |

Code is another name for a program'’s set of instructions.

Note

Well before you finish the book, you'll understand every item inside Figure 1.1. Although the screen looks busy and
overwhelming, Visual Basic is simple to understand.

In addition to being graphical and simple to use, Visual Basic has become one of today's most popular languages
because it is both interpreted and compiled! You can test a Visual Basic program that you write by running the program
interpretively until you get all the bugs out. Once you eliminate the bugs and thoroughly test your program, you then
can compile the program into a fast and secure (nobody can easily modify the program) executable program that you
can distribute to others to use. By making the compilation process a simple menu option, Visual Basic handles the more
difficult compilation steps (including something cryptic called link editing) that other languages used to require you to
go through.

A bug is a program error. If a program that you write does not work properly, you will need to debug the program by
removing all the bugs.

About the time Microsoft released the first version of Visual Basic, many people were predicting the demise of the
BASIC language (and its offshoots such as QBasic). These naysayers thought any language based on BASIC could not
be used for serious programs because they never thought of BASIC as a serious language. Languages such as C, C++,
and Pascal were all the rage because of their compilation abilities and also because their programming structures lent
themselves more to a Windows environment. With Visual Basic, Microsoft taught the programming community these
and other lessons:

o A BASIC-like language can be both simple to understand and powerful.

o With the right interface, a BASIC-like language works well for a Windows environment.

« Visual Basic can be both an interpreted and a compiled language depending on the programmer's requirements.

e Instead of being obsolete, a language based on BASIC can become one of the most widely used languages in
the world.

Visual Basic's Visual Nature

As you saw in Figure 1.1, Visual Basic 6 is more than just a programming language. The secret to Visual Basic is in its
name: visual. With today's Windows operating systems, a program must be able to interact with the screen, keyboard,
mouse, and printer graphically. Older programming languages, such as BASIC, worked well in a text-only computing
environment, but such languages do not support the graphical interface needed for today's computers.

You won't even learn much of the Visual Basic programming language in the first week of this tutorial because much
of the Visual Basic programming process requires interacting with the Visual Basic visual environment and requires
very little of the programming language details to make working programs. Only when you need to write more
advanced programs will you need to learn more of the Visual Basic language than just the handful of commands you
learn in your first few days.

Note

It's not just the underlying BASIC language that makes Visual Basic simple to learn and use. Much of a program's
development consists of dragging and dropping (with your mouse) elements onto the Visual Basic screen when you
create a program. Instead of writing a series of complicated input and output statements to interact with users, you will
drag controls, such as text boxes and command buttons, onto the screen; Visual Basic takes care of making the controls
operate properly when the user runs the program.

A user is a person who uses a program. You, the programmer who writes programs, are also a user because you use
programs that you and others write. The Visual Basic programming system is nothing more than a program that you use
to create other programs.

Visual Basic comes in several varieties including the following:

Note

Visual Basic Enterprise Edition: Created for team programming environments and client/server computing
where applications distribute processing and data among several computers.

Visual Basic Professional Edition: Geared toward professional programmers who want to get the most from
the Visual Basic programming environment. This edition includes a full set of tools and wizards that help you
package and distribute applications. This 21-day tutorial assumes that you use the Professional Edition as most
Visual Basic programmers do. Nevertheless, if you use one of the other editions, the majority of this book also
applies to you because this tutorial does not focus on the Professional Edition-only tools as much as it presents a
well-rounded introduction to the Visual Basic programming environment and language.

Visual Basic Learning Edition: The essentials with the standard complement of programming tools and
everything one needs to get started programming. A multimedia CD-ROM called Learn VB Now comes with
the package as well as a full set of Microsoft Developer Network documentation so that you will have the help
that you require to learn and use Visual Basic.

A special edition of Visual Basic comes with a package called Visual Studio. Visual Studio is a programming
environment that supports several Microsoft languages including Visual Basic, Visual C++, and Visual J++. When you
use Visual Basic, you use the same environment that users of these other languages also use. Therefore, if you move to
another programming language, you will not have to master a new set of menus and dialog boxes.

Why Write Programs?

Many computer users will never need to learn computer programming. Some people buy all their programs from the
store or from mail-order outlets and never need more specialized programs. Rarely, however, will you be able to find
exactly the program you need for a particular task, especially if you use a computer to help you in your business or
scientific research. In addition, you might think of a new game concept that you want to turn into a hot-selling
computer game so that you can retire early in the Cayman Islands. If you want a specific application but cannot find
what you need on the store shelves, or if you want to write new programs for a living, you'll need to design and write
those programs using a programming language such as Visual Basic.

Note

Remember that you cannot just tell a computer what to do and expect it to work for you. A computer must have a
detailed list of instructions because the computer is a dumb machine that does nothing on its own. You give your
computer those instructions in the form of a program. A Visual Basic program consists of program code (similar to that
in Listing 1.1) and visual elements that define the screen and the Windows controls that the program's user interacts
with when the user runs the program.

Tip

When you learn Visual Basic, you also learn how to automate common application programs such as those you find in
Microsoft Office. Microsoft Office is comprised of several programs that work together, such as a word processor,
worksheet, and database program. Microsoft Office also contains the complete Visual Basic 6 programming language
with which you can automate Microsoft Office applications. (Microsoft Office 95, the edition that preceded Microsoft
Office 97, contain Visual Basic for Applications (VBA), which is similar but not fully compatible to Visual Basic
version 6.) For example, you can automate your accounting month-end procedures by writing a program that
consolidates your month-end Excel worksheets. The Visual Basic that comes with applications is not the full Visual
Basic development system you get with Visual Basic 6,but it does contain the complete language so that you can fully
control the applications.

The Programming Process

Over time you'll find your own way of writing programs that works best for you. Nevertheless, you'll generally follow
these standard set of steps when creating your Visual Basic programs:

1. Decide what your application is to do by creating an overall design.
2. Create the visual portion of your application (the screens and menus that your users will interact with).
3. Add Visual Basic programming language code to tie the visual elements together and to automate the program.

4. Test your application to locate and remove any bugs you find.

5. Compile your tested application and distribute the compiled application to your users.

Do Don't
DO test your application to rid it of bugs and then distribute DON'T be surprised if a user locates another bug (or
your application program to others. Despite the virtual several of them). The most thorough testing never

impossibility of eliminating all bugs, do “test, test, and test again guarantees that all bugs are gone. The more that your
trying all possibilities in the program to help ensure that you've program does, the more likely a bug will raise its
found as many bugs as you can before you compile and ugly head some day when you and your users least
distribute your program. expect it.

By waiting until you've thoroughly tested your Visual Basic application program before you compile the program, you
help speed up the testing process. When you test your program interactively, you can locate and correct bugs that you
find more easily and quickly. Visual Basic includes a special helper system called a debugger that you can use to help
you locate bugs that appear during testing. You'll learn in Day 21, "Distributing Your Applications,” how to use the
debugger.

A debugger is an interactive monitoring system that you can turn on and off inside Visual Basic that helps you locate
statements that contain bugs. For example, if you run a program you've written and the program computes an amount
incorrectly, the debugger can help you quickly find the statement in the program that contains the bug.

Before Visual Basic, writing a program was more tedious for several reasons. In a text-based environment, you would
have to design on paper all the screens that the user would see. You would then take that paper to the users to see if you
were designing exactly what they wanted. If you were designing a program for mass distribution, such as a game or a
general-purpose business application, you would still write down all the screens, create complicated data flows to and
from the various screens, design the disk files needed by the program, and basically plan every detail before you ever
went to the keyboard.

Visual Basic's visual nature encourages you to go to the keyboard much earlier in the programming process. Instead of
using paper, you'll design screens with Visual Basic's tools. Figure 1.2 contains one such screen. No code is required to
produce a screen such as this one; all you need to do is drag the various controls onto the Form window.

Figure 1.2. Visual Basic enables you to design and create screens as you create your program.

#y Contvols - Miciosclt Visual Basic [design] - [frmT et [Foam] [Read Onlel]

[fie [Vew Poect Fomst [ebug Bun Cuery Cisgram Tock Adbine Window Ml =12 x|

B-ro-WEHE Bdh| 0| s M SWR A D 1 oemms 3 msxen
= - = F Project - Contieds]
P I . Teat Box Progeries Oom &
t H n Freviair (i nl.'r'il;l
The MauliLine popedyis oot o Faze in thin e The MustiLine prc s vet lo B reetpions {opkions
A [l | i N ‘ T nm:lari::w B FrenTecet (e frmn)
El=l e e e 3 B Freordvac {wer
SR ; —~
F &
tiil 0 Defaul Seling:
ES En [0 s heverbon Pont o End N
B8 23 [15 peasion Pt BhChmscie | 111 oo peer 0 e s fec
.U = ™ Sebect A1 Tast
B € tow T i
&~
1| HIE Beset Lleae
E - L]

Erturs the name used in oode to
dertify an object.

The Form window, also called a form, comprises the background of a Visual Basic program's screen and contains
elements such as command buttons and scrollbars. Programs may require one or more form windows depending on the
nature and complexity of the program.

Even before you add code, you can test your program screens (each form is the basis for a screen) because Visual Basic
enables you to run your program interactively after you create at least one form. You can make sure that your screens
look good, and you can show your prototype to users who have requested the program to ensure that they like what you
are creating. Making changes in this prototype pre-coding stage is much easier than making changes after you add the
code. Visual Basic's prototyping capability is one way Visual Basic helps you create programs quickly and accurately.

A prototype is a test program that contains virtually no functionality but does contain some or all of the screens that the
final program is to contain. You and your program's ultimate users can test the prototype to see whether you are
including all of the needed screen elements.

Tip

Once you create your program, test your program, compile your program, and distribute your program to your users,
you still can make changes to the program. Doing so, however, is tedious and requires that you re-distribute all the
application’s files once again to the user. Nevertheless, the earlier you locate problems, the simpler those problems are
to repair.

Understanding Program Maintenance

Bugs are not the only reason that you will work on a program after you think you're completely done with it. Program
maintenance is necessary because requirements change, companies change, and laws change. You must also change the
programs you write so that they remain viable programs; you will need to update your program periodically to reflect
changes that impact the program. In addition, users will think of new things that they want the program to do.

Program maintenance is the term used for the updating of a program after the program is put into use. This update may
be a result of a user's request or a change in the way the program needs to operate.

It is said that a program is written once and modified many times. The more program maintenance you perform, the
more likely that your program will be up-to-date and in use. You may want to release new versions of your program so
that users can, with a different version number on the opening screen that you place there, keep track of the latest
version installed on their system.

Tip

Document your programs so that other programmers will understand your code if they must make changes to it later.

As you learn more about the Visual Basic programming language, you'll learn how to write code that is clear, and you'll
learn how to create documentation for your program. The more remarks you put in your program and the clearer you
write program code instead of using tedious, complicated, tricky program statements, the easier it will be for you and
others to track errors and maintain the program later.

Documentation is comprised of descriptions of the program. You can place documentation inside the program itself so
that when you (or someone else) later make a change to the program, you'll read what sections of the program are for
without having to figure out what the code's purpose is. Internal Visual Basic program descriptions are called remarks.

Add program remarks as you write your program because it is at that time that you understand the program the best. If
you wait until after you complete an application, as many programmers do, your application might never be properly
documented because other projects can take over your time, and the documentation is often pushed aside once a project
is completed.

In addition, you may want to write external documentation with screen shots of the program'’s different screens and
descriptions of what the user must do to start, use, and terminate the program. The better your user's documentation is,
the more likely your user will master your program and want to use more programs that you write.

Creating Your First Program

If you are familiar with several other Windows products, such as Microsoft Publisher, you've see wizards that work
with you, helping you create the documents you require. Visual Basic also supports wizard technology to help you
create programs. When you write a Visual Basic program, you have a choice to create an application from scratch or

use a wizard to create an application’s shell or general structure. After the wizard creates the application's shell, you can
fill in the details.

A wizard presents step-by-step questions and prompts that you respond to. As you respond, the wizard generates an
application that matches the criteria you specify. Visual Basic offers several wizards, but the one you'll use most
frequently is called the Application wizard.

It's sometimes difficult to tell whether you should create an application shell with the Application wizard and then fill
in details for your particular situation or create an application from scratch. Some people, if they've created another
application already that is similar to the one they need, make a copy of the first one and make changes to the copy to
create the new application. Over time, you'll learn to decide which is best for your needs in different situations.

To help you get started, this section guides you through the creation of your very first application. You'll see how easy
the Application wizard is to use for an application’s shell. Although the resulting application will not do much (it's only
a shell after all), you will see how much Visual Basic can automatically create when you use the Application wizard.
By tomorrow's lesson, you will be ready to learn how to create an application from scratch without the Application
wizard.

Note

Perhaps surprisingly, you'll probably create more applications from scratch instead of using the Application wizard, or
you'll make a copy of a similar application and modify the copy when making a new program. Although the
Application wizard creates a fully-functioning program skeleton, you'll develop your own style of programming over
time, and you'll probably find it easier to modify a copy of an existing application than first creating a skeleton and
adding to it. Your preferred style will come with time, so just sit back and enjoy learning Visual Basic. Try things, don't
be afraid to mess up, and expect some errors every time you write a program. Programming is creation, and you'll find
that Visual Basic makes creating fun.

As soon as you start Visual Basic, the Application wizard is there to help. The New Project dialog box, shown in Figure
1.3, appears when you start Visual Basic from the Windows Start menu. The tabs on the New Project dialog box offer
these choices:

Figure 1.3. You can select the Application wizard from the New Project dialog box.

MHew Project 7] x|

New | Esisting | Recent|

ﬁ :ﬂ '._"1 e
2 = > B N 7
@
SR RS Active EXE Activex DLL Actives YB Application
Control Wizard
D¢ B B B B
Data Project 115 Application Addin Activel Ackives
Docurnent DIl Document Exe
= O P & ll
Open
Cancel
Help

[T Don't show this dislog in the future

e New lets you create new applications by using various wizards or starting from scratch.
o Existing lets you select and open an existing Visual Basic project.
e Recent displays a list of Visual Basic projects you've recently opened or created.

Note

If you cancel the New Project dialog box, and then later want to start the Application wizard, select File, New Project to
display the New Project dialog box once again. This New Project dialog box will not contain the Recent and Existing
tabbed pages, however, because you are specifying from your menu choice that you want to create a new project.

A project is a collection of files that make up your application. A single application might consist of several files, and
the project is the collection of those files. One or more of the files might contain code, one or more of the files might
contain descriptions of screens inside their respective form windows, and one or more of the files might contain
advanced programming information that your program will use to communicate with other programs and modules

inside the operating system.

Do Don't

DO, if you don't want to see the New Project dialog box every time you start Visual Basic, click the check box
labeled Don't Show This Dialog Box in the Future. The next time you start Visual Basic, the New Project dialog
box will not appear.

When you select the icon labeled VB Application Wizard on the New tab, the wizard begins its work. The first screen
that the wizard displays is an introductory title screen that explains the wizard is about to begin. (In addition, the screen
lets you load another profile that defines options, but you won't need extra profile options for this book.) As with most
wizards, when you finish reading and selecting from one wizard screen, you click the Next button to display the next
screen that the wizard has to offer. Figure 1.4 shows the next wizard screen from which you must select an interface

type.

Figure 1.4. The interface type determines how your application will process multiple windows.

m Application Wizard - Interface Type]

What bype of interface would you like For your application?

Hint:! &+ Multiple Document: Interface (MDI)
Consists of & main window -
which visually contains child " Single Document Interface (SDI)

windows,
" Explorer Styla

What name do you want For the application?

[Project1

| Enish |

Help |

Here are the options from which you can select:

e Multiple Document Interface (MDI) allows your application to contain multiple document windows. In
effect, this interface lets you work with several sets of data in multiple windows within your program. Each
document window is called a child window.

e Single Document Interface (SDI) limits your application to one open document window at a time. Most
applications that you write will probably be SDI applications.

o Explorer Style lets your application take on a Windows Explorer-like interface with topic summaries in the left

window and details for a selected topic in the right pane.

You can click any of the three options to read a description and see a thumbnail sketch of a sample program window.
Many of your applications will contain the single document interface because many applications require only a single
window with data that is open at any one time. For this first example, select the Single Document Interface option.

The wizard screen also lets you name your project. The default name, Projectl, leaves a lot to be desired, so change the
project name to FirstApp (no spaces are allowed), and click Next to display the next wizard window shown in Figure

15.

Figure 1.5. Select the options you want your application's menu to contain.

Menus

v BEdit

W Eiew
| BeTials

v Edindow
W EHelp

Help |

|
EI v EClose
2l
k2

Cancel | <pack

B Application Wizard - Menus Ed |
Select the Menus and Sub Menus you would ke in your
application?

You can always use the Menu Editor to modify the menus after
the application is created,
Sub Menus

v BOpen. ..

¥ [Separator]
v BSave

v Save BAs. .,
v Save A8
| [Separator]

The Application wizard adds the menu options that you select to your application menu. The options are common
Windows options found on most Windows programs. The menus will be the typical Windows drop-down type. You
can select the menu bar options (such as File, Edit, and so on) as well as submenu options, such as New, Open, and
Close. The ampersand (&) next to a letter in a menu name indicates the underscored accelerator key letter; in other
words, &New indicates that New (notice the underscore) appears on the menu and that the user can select the option by
pressing Alt+N. If you want to place an actual ampersand in the name, use two; for example, typing A&&B produces
A&B. For this application, leave all the options as they are (keeping the File, Edit, View, Window, and Help options

checked) and click Next to continue with the wizard.

Note

After the Application wizard finishes creating your application, the menu options will operate as expected. For
example, the File menu will appear when you select Alt+F or click the File menu.

The next wizard screen, shown in Figure 1.6, lets you select the toolbar buttons that your application will have. As you
can see, the Application wizard does a lot of work for you. By creating an initial toolbar, the wizard takes care of a lot
of tedium that you would otherwise have to handle. The left window pane indicates the available toolbar buttons and
the right window pane lists the buttons (and separator spaces between buttons) on your application’s toolbar. As with
the menu options in the previous screen, click Next to accept all the default toolbar settings.

Figure 1.6. The Application wizard saves you time by creating an initial toolbar.

B Application Wizard - Customize Toolbar

Customize the toolbar by maoving the desired buttons to the list on the right. Change the order
with the upjdown arrows and add external imaoes with the image buttan, You may also
drag/drop from list ko lisk,

D|=|d| 8] | s|@f 8| 7|yl

[Separator] ﬂ ﬂ [New a
AR Ié; Crpen
4 Back ﬂ Hsave
=1 Butkon ﬂl [Separator]
0 Camera EDprint
)(Delete ﬂ [Separator]
""" iiDisconnect Mekt Drive Copy
£ Double Underline Jf; Cut -
Kl _IJ _| K — i Y e
Help Cancel | <Back Finish |

The next wizard screen to appear is the Resource screen from which you can elect to use resources in your program,
such as multilanguage text files. Simple programs often do not require external resources. For this example, keep the
option labeled No checked and click the Next button to continue.

The next wizard screen is the Internet Connectivity screen from which you can add an Internet interface to your
program if you want one. If you were to select Yes from this window (please don't select Yes here), the Application
wizard would add a complete Internet browser to your application that would operate much like Internet Explorer.
Without any programming on your part, your application's user can access the Internet. When the user enters an
Internet address (also known as an URL [pronounced "earl"] for Uniform Resource Locator), such as
http://www.mcp.com, the browser displays that Web page in the application's browser window, first logging on, if

needed, using the PC's default Internet service. You can enter a default startup page address that initially displays when
the user starts the browser.

Caution

If you add the browser to your application, you are assuming that your user has Internet access. If not, an error will
result when the user attempts to use the browser.

This first application requires no Internet access, so click Next without changing any of the default options to display
the next wizard screen. The screen gives you the option of adding one of these standard screens to your application:

e Splash screen is an opening title screen that appears when your application first begins.

e Login dialog is a dialog box that asks for the user's ID and password as a part of application security that you
can add.

o Options dialog is a tabbed blank dialog box from which your users can specify attributes that you set up for the
application.

e About box is a dialog box that appears when your users select Help, About from the application menu.

For this application, click the option labeled About Box.

Tip

The button labeled Form Templates lets you select from several form templates located in the Visual Basic Templates
folder. Visual Basic installs the templates you select into your application. The templates include an add-in template

that lets you add a form from your own library, an ODBC Log In form that lets your users connect to advanced
database access, and a Tip of the Day that displays a random tip when your user starts the application.

A form template is a model of a form that you can customize. Form templates are forms with similar properties that
might appear in several different applications.

The After selecting the About Box standard form, click Next to bypass the database wizard screen that lets you add
external database files to your application. You can click the button labeled Finish to instruct Visual Basic to complete
your initial application.

Note

The View Report button displays a summary of the project you have designed, and details the changes you can add and
other wizards that you can run to add functionality to your new project.

Congratulations! You've just created your first application without knowing much about Visual Basic and without
knowing any of the Visual Basic programming language! After a few gyrations on the screen, Visual Basic displays a
dialog box letting you know that your application is complete. When you click OK, the dialog box disappears, and you
can run your application.

Tip

After loading an application from disk or creating one, run or execute that application to see it work just as your users
will eventually do after you've tested and compiled the applications you write. Visual Basic is a lot like a kitchen. You
are the cook, and your application is the recipe. Change the application (the recipe), and the resulting program (the
meal) turns out to be different. The programming stage can take quite a while if your application is complex even if you
use the Application wizard to generate an initial program. As you create the program, you won't see the program do
work until you run it.

Run the program (the program runs interactively by default) by selecting Run, Start. You'll see from the menu option
that F5 is a shortcut key for running the application as well. Figure 1.7 shows the window that appears.

Figure 1.7. Your first application is complete!

. FirstApp M=l E3

File Edit View Window Help

DB & B¢ |®| B|z|u]| =[=]

Status 4/2/38 8:46 PFM

With the Application wizard, you created a fully working program (albeit only a simple shell that only does a little) just
by answering the wizard's screen prompts. You have created an application that does the following:

e A standard program window appears that you can resize and move. The name of the project, FirstApp, appears
in the window's toolbar.

o A status bar displays the date and time. You can turn on and off the status bar from the View menu.

o A working menu appears with four options. Only the Help, About menu option does work (try it), but the usual
menu options, such as File, Open (produces a file locating dialog box) and Edit, Cut, are all there ready for you
to insert active code behind them. The About dialog box follows the standard Windows convention of
displaying system information when you click its System Info button.

Tip
The System Information screen displays a complete summary of the user's operating system and hardware. This

summary appears after Visual Basic executes a System Info program that searches the user's computer for specific
hardware and system information. (You can call the System Info program from locations other than the About box.)

Such a summary can some in handy when your users call you with problems about applications you write. You can ask
the user to display the system information summary to verify that the user is using the proper operating system and
hardware that your program requires. In addition, the System Info window is useful for checking available resources
such as disk space and memory to ensure that your PC is running with enough resources.

o A standard toolbar appears that you can add functionality to and turn on and off from the View menu.

The application does little, yet it is complete and ready for you to fill in the blanks. You can easily change and add to
the application, its menus, and its windows. The application is only a shell of things to come, yet the Application
wizard generated a complete project that takes care of much tedious work that you might otherwise have to add by hand
if you created the application from scratch. You'll find in tomorrow's lesson that you can create working projects quite
easily, but the Application wizard adds basic functionality that applications often require.

To quit the running application, select File, Exit. Answer No to the prompts when Visual Basic asks if you want to save

the project. You don't need to save the application shell because you can easily generate this project again by running
the Application wizard once again.

Event-Driven Programming

Figure 1.8 shows a window from a Windows program. The window contains several kinds of Windows controls such
as command buttons, check boxes, and a scrollbar. These controls are just a sample of the many Windows controls
available for you within the Visual Basic programming environment to add to the programs that you write.

Figure 1.8. Windows programs respond to events.

Combo box

Tlfle [t e just Fgmat [ock T e tel al8lx|
DEE &SRBT Bt o-- a® BRERA RS o= - @
™ 5| Core -2 gl FEEE EEEED-S A
scratch. You'll Fi=d srn bomacroole lessol that oo cae —-p=ta working g

projects gquite os
fusctional ity tha

LR AT B T T —
[ciEvent-Driven P T Onasge I Umir Inhermatesh] Compatbilly | i Lottt

Figure 1.8 shows Compatiolicy ophiark for G4 TYVCR contains
several kinds of ' Promm I ok
boXes, ARd & SoTO Pk = chie many
Windows controle | Recgmendd ot fort

programming envir [Pttt merann 0|

=== ITYVODE . pox

P T —————— T ——————
[Pl pstil'c afom bhe ‘wordPesfenct & 0 for Windioes
Do i apaniematsc baly S0 P hangeng indient
sssCallout “Check Dendt acid e g for raned bovres char acters 4 "List
[Ciors® ackd g (st b pade) Bt romsy of back
[nt ki apuse Pie ireerires
ChECk bﬂxe’s Dot babarais oo For Condiasus solion stals _I
— L Do Budarwin SBC% chur i bart e DBC S charaschind
samadiboh J o Lot blark et ae s behind watalis ptues
(s (b "wol e hem e " e
Figure 1.H. D corvert bacishash charatiens Fts v Sighd _ﬂ
Windows programs LI
Visual Basic's vi A
because. unlike p E ';"ﬂll 5. 2
01wl v T T e L] -
wu|= .'Ii'l 5
Pade 1F S 1 I A LE w4 ol]
Command buttons Scrollbar

Visual Basic's visual nature requires these kinds of controls because, unlike programs written in older text-based
languages, Windows programs must respond to events. An event might come to a program from any of these controls,
as well as from internal activities such as the PC's clock. Events come in random order. For example, the user of Figure
1.8's window might click a command button or check one or more check boxes, or open the drop-down list box. The
user might perform several of these events in a different order each time the user runs the program. You must use
event-driven programming techniques to respond properly to the user's actions and other activities that trigger events.

An event is an activity that occurs during a program's execution, such as a mouse click or a keystroke. Event-driven
programming applies to programming that responds to Windows events.

Note

Not only must your program handle random events, but if more than one Windows program is running at once, each
program needs to analyze and respond to events.

As Figure 1.9 shows, Windows handles a few events but passes most to the programs currently running. Windows is a
multitasking operating system so more than one program can run simultaneously. Your program must handle any and
all events appropriate at the time the events occur and ignore all the others. For example, if your program needs to
display a warning message at a preset time interval, your program will have to check the timer event to see whether the
correct time span has passed since the last warning. If another program running at the same time did not require the
timer, that program would ignore all timing events that Windows sends to it.

Figure 1.9. Your programs must respond to some events and ignore others.

Event #1 Event #2 Event #3 Event #4 Event #5

NP

Windows gets

events
Y
Windows handles
some events | Windows
Windows passes

some events
to the applications
that should receive
those events

Event #1 Event #2 Event #3
(Application #1) (Applicaii on #2)

A Visual Basic program consists of the visual interface that makes up the windows and controls that the user sees and
interacts with. In addition, programming code connects everything together. Each control is both automated and set up
to respond to the programming code. For example, a command button will visually show a click action when the user
clicks the button with the mouse when running the program. You have to do nothing more than place the button on the
form (the program's window) for the button to operate. (As with all command buttons, you can trigger a command
button with the Enter key as well as the mouse.) Other aspects of the command button, however, are under your
control, such as the name or picture that resides on the button, the size of the button, the color of the button, and so on.
These are properties that you can change, although Visual Basic assigns default values. Properties distinguish one
command button from others.

A property helps to differentiate a control from other controls because the property shows appearance and behavior of a
control. Properties have values, such as colors, text labels, size, and location on the form. When you place a control on
a form, you assign properties that make that control somehow unique from the other controls.

Figure 1.10 shows a window with several command buttons. If all of these buttons appeared in a program with no code
behind them to modify the way they respond, you could click any of them and they would all respond the same way,
depressing inward with the click and triggering a click Windows event. Despite these similarities, however, each button

looks differently because its text caption, size, location, color, and text font property values are different from the other
buttons.

Figure 1.10. Multiple controls look different if they have different property values.

. Buttons A=l E

Command Button Gallery
| Regdn | o |

Cormmand3 |

AR

Picture thig!

Once you place controls on a form and assign their individual property values, you are ready to write programming
code that responds to events. The same control can trigger several different kinds of events. For example, a command
button may generate a single-click or a double-click event depending on what the user does. The code that you write for
the program determines which of those events your program ignores or handles in some way.

Tip

If you write code for a particular event, your program will respond to that event when it occurs during the program's
execution. If, however, you don't write code for a particular event, and that event happens, your program will ignore
that event when Windows sends it to your program.

Your programming code behind the forms looks and acts, not like one long listing of text, but like several small
sections of code with each section written to respond to one of the form's control events. Each of those sections sits
around doing nothing until its event occurs; at that time, the program immediately starts executing that event's code.
For example, if the right-click of an object, such as a particular command button, is to produce a warning beep and

message, you must write the code to produce the beep and message. The executing program runs that code if and only
if the user right-clicks over the button.

An object is an element from a Visual Basic program, such as a control, form, or code module that holds programming
statements.

How do all these details work together? The answer to that will take, oh, about 20 more days. Tomorrow's lesson
begins to show you how to specify control properties and how to respond to those controls when you create your very
first Visual Basic program from scratch without the help of the Application wizard. Theory alone is not enough—you
need to get your hands on the keyboard and begin placing controls, setting control property values, and writing code
that responds to events.

Summary

You are well on your way to mastering Visual Basic. Today, you learned the background needed for programming. By
understanding the programming process, you are better equipped to begin using Visual Basic, one of the most advanced
programming environments available today.

Today's lesson explained how you design and write programs. Visual Basic has changed the way programmers design
programs because the Visual Basic environment makes it easy to prototype your program's design and then turn that
prototype into a finished application. Programming often requires several review and edit steps. Programs rarely work
perfectly the first time you write them, but as you saw today, Visual Basic's interactive environment takes care of much
of your work so that you can keep errors to a minimum.

The Application wizard will generate a program shell that you then can add details to so that the program becomes a
separate, working application that performs its needed job. Those details consist of adding controls, setting property
values, and writing code to make the program interact and respond to the controls properly. The rest of your 21-day
tutorial will show you how to fill in those details to make working programs.

Q&A

Q: Do I always follow the programming process steps (design, create visual elements, and so on) for all
Visual Basic programs | write, or just for the small ones?

A: The larger the program, the more you'll need to adhere to the program development procedure. Programs get
complex quickly as you add more and more features to their requirements. One feature may affect other
features, so the more you plan, the less you'll have to redo and correct later. Fortunately, the Visual Basic
environment makes program changes rather simple in many cases, even changes that involve major structural
design changes. Of course, if you start with an Application wizard's shell, the design of your program is your
second step. As you learn how to write programs throughout this book, you'll learn more about proper
program design and creation.

Q: Does the Application wizard generate program code?

A: The Application wizard does generate some code but not much. The purpose of program statements is to

make the program perform a specific function, such as computing accounting figures or processing customer
billing. It's your job as the programmer to specify the code.

Workshop

The Workshop provides quiz questions to help you solidify your understanding on the material covered and exercises
to provide you with experience in using what you've learned. You should understand the quiz and exercise answers
before continuing to the next chapter. Appendix A, "Answers to Exercises,” provides the answers.

Quiz
1: What language did Microsoft use as the basis for Visual Basic?
2: Why is Visual Basic suitable for both beginners and advanced programmers?
3: Which is more important to newcomers to Visual Basic: the programming language or the visual interface?
4. What's the difference between a form window and the application window?
5: What do the terms bug and debug mean?
6: Which runs faster: a program written in an interpreted language or a program written in a compiled
language?
7: Which is easier to debug: a program written in an interpreted language or one written in a compiled
language?
8: What is the difference between a splash screen and a Tip of the Day screen?
9: What's the difference between a control and a control property value?
10: True/False. Controls hold code that makes them respond to the user's input.
Exercise

Use the Application wizard to create an application that includes an Internet browser window and a splash
screen in addition to the other options you selected today when you created your first project. Run the
application to see how the Internet access works. If you don't have Internet access, you will get an error when
you open the browser window, but create the project anyway for the practice.

Day 2. Working with Visual Basic

Now that you've seen how easy the Application wizard is to use, you are ready to take the plunge and create a program
from scratch. Although creating a program without the Application wizard is not difficult, you need to understand
Visual Basic's environment a little more before you write your first application. Today's lesson explains how to
maneuver within the Visual Basic environment so that you then will be ready to create an application from scratch
without the Application wizard.

Today, you learn the following:

e The parts of the Visual Basic environment

e About placing controls on a form

e How to save your project and its associated files
e The Properties window's features

e How to access the Code window

Understanding the Visual Basic Environment

Throughout the rest of your 21-day tutorial, you will be building and studying programs within Visual Basic's
environment. The sooner you acquaint yourself with Visual Basic's environment, which mainly requires understanding
the purpose of Visual Basic's windows, the sooner you will master Visual Basic programming. Figure 2.1 shows the
Visual Basic screen with several of its common elements labeled.

Figure 2.1. You should understand how Visual Basic's components work for you.

Toolbar Properties window Project window
. Comtsoly - Micpavolt Visual Basic [devign) - PrmBultion [Fees] (esd Onlpl] ==
D) B £ e St Fgmet Debug Bun Gy Dpgram ood gt ke feb AL
1" [- ¥ NI s M 2SR N0 ormme Hawass
[T 2 o ;-::1-:‘_'—Fa|
& B s e =3 it et = 8 Controb (Dontsatsvbp) =
AR SEHEE ; SHEE : "7
- : e e o it B Tk [chwschim
Sl : - B froatruagen (e)
F = ¢ Dharge Zigral I [="211 | . B fresiisen (i few)
== : — e Sy A LE: Fresiopisions {aptions:
1 FreaTend (Rext ol o
Toolbox o 0| 1 USRS sl 2
; ; ; ; Piapront 1l =
o = B s L llmMul Foem _ﬂ
= R —]
F_-'] S _L
AR L s 3
m E oRedrge Faise
i ik [eamciacor=)
orderShyie - Sirshke
B .-::- Teet Bilone
Tt Toum
Fumbasa 1| [i
seiiace 13 s Sopy Pen
e B Splie - Solkd
= st Wi by I
==
- ke |
Mame)
Raeburms the nave used in oode to
ety mn object.
Form window editing area Form Layout window

The New Project Window

As you saw in yesterday's lesson, the New Project window appears when you first start Visual Basic or when you select
File, New Project. Throughout this 21-day tutorial, you'll begin most new applications from the New Project window.

If you don't create an application shell with the VB Application wizard, as you did in yesterday's lesson, you'll more
than likely create a standalone program by selecting the Standard EXE icon. The icon is named to represent the
resulting application's filename extension (.exe for executable) if you compile the application you create. Even if you
will not be compiling your application right away, the Standard EXE icon is the one you'll choose most of the time

while learning Visual Basic.

A standard EXE application is an application that you can compile or run interpretively.

Note

You'll see several New Project window icons labeled with ActiveX. ActiveX is the name given to controls that you can
create. These controls have the filename extension .OCX, and you can add them to the Visual Basic environment so
they reside on your Toolbox window. You can write applications that become new controls and then add those controls
to the Visual Basic environment for future program development. ActiveX is a rather comprehensive term that also
applies to other areas of computing.

Tip

Remember that Visual Basic is nothing more than a Windows program (albeit a comprehensive program) that helps
you create new Windows programs. The Visual Basic environment's toolbars, menus, dialog boxes, and windows all
work just as they do in other Windows programs, so the mechanics of working in Visual Basic should not be a problem
for you.

The Toolbar

The Visual Basic toolbar that you see beneath the menu bar changes as you use Visual Basic. Visual Basic has a total
of four toolbars:

« Debug. This toolbar appears when you use the interactive debugging tools to trace and correct problems.
o Edit. This toolbar aids your editing of Visual Basic code.

e Form Editor. This toolbar helps you adjust objects on forms.

e Standard. This toolbar is the default toolbar that appears beneath the menu bar.

You can display and hide these toolbars from the View, Toolbars menu. Each toolbar shows multiple buttons that offer
one-button shortcuts so you don't have to traverse menu items to access common operations. As you use Visual Basic,
you'll run across several buttons that are helpful to you, and you'll never use others. This tutorial will point out many
toolbar buttons that help speed your program development, but it will not serve as a complete reference to every toolbar
button because not all buttons will necessarily help speed your program development time.

Do Don't

DO rest your mouse cursor over a button that you don't recognize to see apop- DON'T try to memorize all the
up ScreenTip message telling you what the button is for. buttons on all the toolbars.

Tip

You can dock and undock any toolbar. That is, you can drag a toolbar from its location under the menu bar to form a
floating toolbar. Therefore, you can place a toolbar close to the item to which it applies so that the buttons are where

you need them. You can then dock the toolbar by dragging it back under the menu bar so that it stays in the fixed
toolbar area.

The Toolbox

The Toolbox window differs from the toolbar. The Toolbox window, typically called the toolbox, is a collection of
tools that act as a repository of controls you can place on a form. You will learn how to add and remove tools from the
toolbox as you move through this 21-day tutorial. Figure 2.2 shows the most common collection of toolbox tools that
you'll see.

Figure 2.2. The toolbox holds tools, or controls, that you can place on your application's form
window.

&
General
Selection pointer k [@Eo—— Picture box
Label A [l Text box
Frame Button —* _ | — Command Button
Check box —r = Option button
Combo box —&8 gg— List box
Horizontal scrollbar —.u Vertical scrollbar
Timer o = Drive list box
Directory list box — ; @—— File list box
Shape —& - —Line
Image —7 @@— Data

The toolbox does not run out of tools! When your application requires more than one command button, you will get all
those buttons from the Toolbox window's Command button tool. In effect, these toolbox buttons generate tools on your
form when you need them, as you'll see in today's last section when you create a new application from scratch.

The Form Window

Most of your work goes on inside the Form window. You'll design all your application's forms, which are the
background windows that your users see, in the central editing area where the Form window appears. You can resize
the Form window to make the windows you create in your applications as large or small as needed. (Scrollbars appear
to let you scroll the Form window if you need to see parts of the forms that run off the screen or underneath other
Visual Basic windows.)

Keep in mind that an application may contain multiple forms; you can display one or more of those forms in their own
Form window editing areas, as shown in Figure 2.3. The active form is the form with the highlighted title bar in its
window. Activate a form by clicking anywhere within the window or on the title bar.

Figure 2.3. Edit one or more of your application's forms in the Form window editing area.

Multiple forms Active form

booe | MEEWR At s g ewexn |

Ead
OE|~
l -‘ e] e oy) TJE;"::-Mmmzw |.ﬁ

Y FroaChedh ched fim
EY Frodmasges (images.|

¥ -E-rl" Frambd, []

The Form Layout Window

The Form Layout window is an interesting little window connected closely to the Form window, because the Form
Layout window shows you a preview of the Form window's location. If one or more forms appear in your Form
window, thumbnail sketches of those forms will also appear in the Form Layout window. The window shows you
where each of the forms will appear on the screen when your user runs the application and, through using the program,
views the various forms.

Not only does the Form Layout window show you where a form will appear relative to the sides of your screen when
you run the program, but you can also move the initial location of a form (where the form will appear when the user
runs the program) just by dragging the form in the Form Layout window to a different location. Therefore, if you want
a form to appear in the center of the screen, move the form in the Form Layout window to the center, and Visual Basic
will place the form there when the user runs your program.

Note
After you learn enough of the Visual Basic programming language, you will be able to write the code to place any form

at any exact screen position. You can even instruct Visual Basic to center the form on the screen as soon as the form
appears, regardless of what the Form Layout window shows during the program's development.

Tip

Many Visual Basic programmers close the Form Layout window to make room for more of the other windows inside
the development environment.

The Project Window

Use the Project window to manage your application's components. As Figure 2.4 shows, the Project window can get
busy. A Windows program, more accurately called an application as yesterday's lesson explained, can consist of several
files. Before you compile a Windows program, the number of Visual Basic-related files can get even more numerous.
The Project window enables you to manage all those components and bring the component you want to work with to
the editing area where you can work on it.

Figure 2.4. The Project window holds your project's components

Project - ATM E3
E E|| G

-3 Forms Grﬂup

Eﬁ Frendsmoinkytikhude zven (Frmammown, Frm)

&1 Frminput (frminpdl-.m!l_ I .

El FrmOpen {openbank.frm) F| IE‘ name
=4 Modules

s modATM (atm.bas)
=] =¥ Related Documents

ﬁ [atm3Z.res) Obj E*Ct name

Note

The Project window is also called the Project Explorer because of its Windows Explorer-like interface that lets you
expand and shrink object groups.

The Project window lists its components in a tree-structured listing. Related objects appear together. You can expand or
shrink the details by clicking the plus or minus signs that appear next to object groups. For example, if you click the
plus sign next to the object labeled Forms, a list of the current project's forms will appear. When you double-click a
form, that form's Form window appears in the Form window editing area.

Each item in the Project window has both a project name and a filename. In Visual Basic, you can assign names to
objects, such as forms and modules. Each of the Project window's items is stored on your disk in a separate file. The
filename, which differs from the project name for the same item (project names, unlike filenames, have no extension
for example), appears in parentheses next to the Project window item. Therefore, you can tell from the Project window
every filename and every project name for all your project's files, and you can activate any object's window by clicking
that object inside the Project window.

Tip

Notice that the Project window contains a toolbar with three buttons. The Code Window button displays the Code
window for a selected object so that you can write and change code related to the object. (The Code window did not
appear earlier in Figure 2.1 but will appear in this lesson’s final section when you add code to an application.) The
View Object button displays the object window for a selected item. Many objects have both a Code window and an
object window associated with them. Each form, for instance, has a code module and a Form window associated with
it. Therefore, the Code Window button and the View Object buttons let you quickly switch between an item's code and
its visual elements. The Toggle Folders button groups and ungroups the Project window's items in an Explorer-like
interface.

The following kinds of objects can appear in the Project window:

e Projects. An application might consist of multiple projects, as can occur when you create ActiveX controls.
Projects always have the filename extension .\VBP.

e Forms. The Project window displays a list of your project's forms. Form files always have the filename
extension .FRM.

e Modules. Your project's modules hold general and reusable routines comprised of Visual Basic programming
statements. You can use the same module in several programs due to its general nature. Modules always have
the filename extension .BAS.

e Class modules. Class modules are special code modules that define objects you've designed for a project. Class
module files always have the filename extension .CLS.

e User controls. User controls are ActiveX controls you've added to the project. ActiveX control files always
have the filename extension .OCX.

e User documents. User documents are document objects that describe parts of your project. User document files
always have the filename extension .DOB.

e Property pages. Property pages (such as those found inside tabbed dialog boxes) that appear in the project file
describe a particular control. Property page files always have the filename extension .PAG.

Note

Other items can sometimes appear in the Project window, such as resources and other documents you add to your
project.

For the majority of your Visual Basic application development, especially the first 21 days that comprise this tutorial,
you'll be working with forms and code modules only.

The Properties Window

A form can hold many controls. As you add controls to a form, you can select a control by clicking the control. When
you select a control, the Properties window changes to list every property related to that control. As you'll see in today's
final section, when you add a control to a Visual Basic application, Visual Basic sets the control's initial property
values. When you display the Properties window for a control, you can modify its property values.

Figure 2.5 shows a Properties window listing some of the properties for a Label control. Notice that the name, type, and
description in the Property window reflect the selected control. To assign a value to a property, select the property and
type a new value. Sometimes a drop-down list box will appear when you can select one of an established set of values
for that property.

Figure 2.5. The Properties window describes each property of the selected control.

Object name Obiject type

Froperhes - blAmounfWith

]

[Iblarmountwith Label o] =]

#phabetic | Cstegorized |
blAmourtidith
0 - Left JustiFy
1-30
Falsa
| ed-3000000F 2
1 - Opagus
0~ Hone
blimourtiith

-

L]

0 - Manual

Trus

MS Sang Sesif

I 2000001 26
735

Property name ——Fst 1950 =l
(Name) 1
Returnes the name used in code to identify an object.

Property value

Property description

Each property has a name so you can work with a particular property, and each property has a value that either you or
Visual Basic assigns. For example, Visual Basic always names the first command button you add to a project
commandl. Therefore, the Name property for the first command button holds the value Commandi1. You'll almost
certainly want to rename the command button to something more meaningful to help document the application. You
might name a command button that triggers a report cmdReportPrint, for example.

Do preface each object name you assign with a three-letter prefix that describes the object. Then when you later look at
the list of objects, you not only know the object's name but also its type (command button, text box, form, or whatever).
Table 2.1 lists common prefixes used for Visual Basic object names. Refer to Table 2.1 throughout these 21 days when
you assign names to Visual Basic objects. When your project contains numerous controls, these names help you
decipher the purpose and type of the controls.

Table 2.1. Preface object names with one of these abbreviations.

Prefix Obiject type
cbo Combo box
chk Check box

cmd Command button

Table 2.1. Preface object names with one of these abbreviations.

Prefix Object type

dir Directory list box
drv Drive list box

fil File list box

fra Frame

frm Form

grd Grid

hsb Horizontal scrollbar
img Image

bl Label

lin Line

Ist List box

mnu Menu

mod Module

ole OLE

opt Option button

pic Picture box

res Resource

shp Shape

tmr Timer

txt Text box

typ User-defined data type
vsh Vertical scrollbar
Do Don't

DO use lowercase letters for the object's prefix when you assign Visual DON'T use the prefix when you assign
Basic names to the objects. filenames to objects.

Tip

Remember that you can move, resize, and close any Visual Basic window. At times, you'll want to see more or less of a
window to make room for a different window.

Getting Help

Visual Basic contains a wide assortment of online tools that give you help when you need help. Before you create an
application in today's final section, you should learn how to access the various help options so that you can learn more
about a procedure when you need the help.

Receiving Local Help

Most of the time, the Visual Basic environment gives you all the help you need without you going anywhere else (other
than this book, of course!). The first option on the Help menu, Contents, produces an HTML-based Windows help
screen shown in Figure 2.6. The left window pane lists several online books you can open and read, and the right pane
is a guided tour through several help topics by a Dr. Gui. (GUI is an abbreviation for the term graphical user interface,
by the way.)

Figure 2.6. Visual Basic's online help gets you through trouble spots.

l’_ MSOH Libeary Viswal 5tuba 6.0
Els Bk Yw Go Hep
o] T

Hidks Prgvicisn Wit

Corterts |l_‘p!t-.= | Sewch | Favrtes |

= 1[] WSO Liberary Wisusl Studio &.0
+ @ isloome 1ot MEDH Livary
@ visusl Studio Documentaton

@

‘Wisusl ©++ Docusmenibation

Wizual Fooro Dooumanialion

+ Wisual InberTiey Docurantabion

4 Wisusl J4+ Documeriation

+ wisual Tourcebate Doosrantabion
Tocis and Technoioges

+ Mcrasoft Gttice Developsent

P fiwrvry S0

el [cnrmeerd o

Dr. GUI's Espresso Stand

Dr. GUI intreduces the Visual Studio 6.0 reloase
of the MSDN Library

Note

Dl Documsnd afior

- Wirckrwr Feaoace Kit
S ifcaliong
Krupalesige Fare
Toctinsl Ak

. ‘ By ouraen s

- ‘ Budk

o @ Poricdicals

% @ Conference Papies

1] I

l

What's Now In the Library
: Gz here Bor B COmOnenenaie
P fEl G

e

Writer's Cornsr
REa S50t B i 1 2 MEON
- I',!'l"""l $ Nirw T IraCa 8T TaOes

BND 5D

MS0N Online
..m Fifad Suff winl s Mg
—P 127 WEDN Oriine mermzer,
e e featue 8O,

mned amarmina . GLI's Onilne Cowmns

& 1911980 Micresofs Corparatian,
Varrsg of i s

Visual Basic's Help system is based on Books Online, a help reference database found in older Microsoft products.
You'll need the MSDN CD-ROMs to access much of the online help.

MSDN stands for Microsoft Developer's Network and is an abbreviation for a series of online articles, CD-ROMs, and
newsletters that Microsoft has produced in the past few years for programmers. Visual Basic's help is now a part of the
MSDN material. The online screens for MSDN are available only through a subscription service plan. You can
subscribe to the online MSDN area by clicking the Help, Contents screen's MSDN Online hyperlink.

Caution

Your help may differ slightly depending on the date of your Visual Basic 6 software publication. Microsoft sometimes
changes help screens from early editions of products.

The Help dialog box offers online and immediate help in the following forms:

o Contents. This option offers help organized by books, such as "Visual Basic Documentation™ and "Tools and
Technologies."

e Index. This option enables you to look for help from a collection of indexed words from the Contents help
references.

e Search. This option enables you to search within articles for specific text.

o Favorites. With this option, you can store useful help topics that you've collected.

Ever wonder why a large development system such as Visual Basic comes without thick, bulky manuals? Visual Basic
does come with many manuals, but they are online as the MSDN help system. You click to "open" one of the books in
the left pane and move to a chapter and page. The page appears in the right pane of the help window.

Tip

The help screens appear in their own window, separate from the Visual Basic window. Therefore, you can keep both
open at once, switching between a reference and Visual Basic by pressing Alt+Tab or by clicking the appropriate
Windows taskbar button.

The Help system offers references on Visual Basic, database connections, ActiveX programming, and other
programming issues that you'll often use to get quick answers you need for programming problems you may encounter.
Think of the Help system as a complete set of expensive reference books that, if they were bound and came as separate
books with Visual Basic, would increase the cost of your software considerably and be far less simple to search when
you needed help on specific topics.

Another entry on the Help menu, About Microsoft Visual Basic, produces a routine About dialog box that shows your
Visual Basic version number, serial number, and registered name. In addition, when you click the System Info button,

the dialog box shown in Figure 2.7 appears after the program performs a check of your system. The system information
contains both software and hardware information.

Figure 2.7. The System Info button performs an important check of your system.

4 Microzoft System Information

Fie Edt View Test Help

o=l

B 8| 8] & t]x] x|~
Syztem Info Ibesi | Wahig]
Operating System Window: 35
Friring Windowrs version: 410
! : Processor Pt
L ?i?_ﬂm p— Total physical memon: E499E KB
B Avalable physical memon: OkE"
- Froohng USER memoty avalsble 3%
#- Graphic Fitess GO memory availabls: %
+ Text Converlers Sveap file size 71680 KB
Dizplay Sweap file uzage: o
¥ Audio Sweap lile setting Dymamic
H- Vides Avadable :pace on dive C 209532 KB
& OO ROM ‘Windows drechony: CAWINDOWS

Apphcationz Running

TEMP direchong

CAWINDOWSNTEMP

+- OLE Regiztration

* Sew "Memons” in Help Index
Bctive Module:

Select a categony to dizplay the associated Rems

In Day 20, "Providing Help," you learn how to add online help to the applications that you write.

Getting Technical Support

When you select Help, Technical Support, a dialog box opens to let you know how to contact Microsoft's technical
support staff for more personal help. The online help and the Books Online may not be able to answer your specific
question. For example, if Visual Basic behaves a certain way that appears to be a bug in the system itself, you may
have to resort to Microsoft for help. (For such problems, though, always try to reinstall Visual Basic to see whether that
fixes the problem before consulting the technical support. That's the advice they would probably give you, so save
some time and reinstall before you call.)

Note

You might wonder why you need help with contacting technical support. After all, don't you just need a toll-free phone
number and the hours of operation? Microsoft offers several levels of technical support, from free to a metered service
and annual subscriptions. The help guide provides a summary of the options available to you. In addition, Microsoft
has technical support offices all over the world. If you live outside the United States, you'll want to contact the office
closest to you.

Getting Online Help

When you select Help, Microsoft on the Web, Visual Basic offers a wide selection of online support options from
which you can choose. (They all require Internet access.) When you select Online Support, Microsoft's Visual Basic
Web page appears. This page is a good place to check frequently even if you don't require online help. You'll find a
rich set of update information, bug corrections, tips, workarounds, sample code, and updated links to related sites.
Other options from the Web menu option are links to the Microsoft home page, a Web search engine, and even a
feedback link to Microsoft so that you can give Microsoft advice and comments about Visual Basic.

Tip

Check the Frequently Asked Questions site to find a list of answers to many common questions from Visual Basic
developers.

Getting Used to the Screen

Before your first day was over, you created a complete, working Visual Basic application. More accurately, you created
an application with the help of the Visual Basic Application wizard, which did all the work. You're about to improve on
that achievement by creating an entire application from scratch.

You now understand the Visual Basic environment better than before, and you know how to get help with Visual Basic
when you need it. Before you follow the next section's steps to create a new application, take a moment to load an
existing application from one of the samples that come with Visual Basic. You then can familiarize yourself with the
windows that appear. The following steps help guide you:

1. Start Visual Basic.

2. Insert the MSDN CD 1 into your CD-ROM drive.

w

Click the Existing tab and maneuver to the Samples folder from the Open Project dialog box.

>

Double-click the icon labeled Controls to open the project named Controls.
Tip

You may not see the .VVBP filename extension on the Controls project in the Open Project dialog box depending on
your Windows Explorer option settings. Regardless of whether you display filename extensions in Windows dialog
boxes, you can distinguish file types from the icon at the left of the files. The Open Project window displays only
project files (unless you change the selection in the Files of Type drop-down list box), and the icon next to the Controls
project is the icon that represents all Visual Basic project files.

5. After you open the Controls project, you may get a dialog box asking if you want to add the project to
something called SourceSafe. Always respond No to this prompt throughout the book. As a follow-up, Visual
Basic will offer two more SourceSafe-related dialog boxes; click OK to close each of them.

SourceSafe is a Visual Studio tool (available for all the Visual Studio languages) with which you can keep track
of versions of your source programs.

The source program is the code and the visual screens that comprise any application you write. You won't
distribute the source program because that is what you make changes to. You'll distribute a compiled
application.

6. After you open the Controls project, your Visual Basic screen will not look all that more interesting. The
Controls application does not start because you only loaded the project from the disk. To run the project's
application (interpretively), select Run, Start to see the program run as shown in Figure 2.8.

Figure 2.8. The Controls program runs within the Visual Basic environment.

fle [e frows Fgmat Deten Ben Qe Dgrew Qocs Gidied Wi Mol

Pl A] PP . rnm BT EWET N honm Fenas

DOE| o
[~ & Contrah. {Cantrobvbah

i Formn

B e (Batnan el

B tswvack bl Foin

&1 tewlage (e e

&7 v {man.frm)
fplphions [optore hm))
e Pttt Fr)

1 Ewworhn s s g]

The Controls
program window

Note

When you run an application interpretively, the program's windows stay within the active Visual Basic environment so
that you can stop the program and change it or examine areas for problems. When you compile a Visual Basic program,
you run the program from Windows and outside of Visual Basic's environment.

Do Don't

DO press F5 or click the Start toolbar button to run a program. DON'T select Run, Start from the menu.

7. The Controls program demonstrates several Windows controls available on the Visual Basic toolbox. Click a
button, and then test the resulting control options that appear.

8. After trying several program options, click the Exit button to stop the program'’s execution and close the
program window. You'll be back in the Visual Basic environment. At this point, the Controls application is still
loaded in the environment, but the Controls application is not running. You can now study some of the Visual
Basic windows.

9. Look at the Project window. Notice that the Controls program consists of forms only. Although some code does
exist (click the Project window's View Code button to see a Code window, and then click the View Object
window once again to return to the list of forms), the code resides in the seven form files that accompany the
project.

10. Double-click a form name within the Project window to see that form appear in the Form window editing area.
The form will look somewhat like it did when you ran the program. Look at the Form Layout window (select
View, Form Layout Window if you do not see the Form Layout window) to see where the form will appear on
the screen when you run the program.

11. Drag the small thumbnail form in the Form Layout window to a different location. If you were to rerun the
program, the initial form window would appear in the location where you dragged the thumbnail sketch.

12. Take a look at the Properties window, which shows the selected control's property values. Keep in mind that the
Properties window shows property values for only a single, selected control in the Form window. In Figure 2.9,
the Properties window shows properties for the option button that is selected (enclosed in eight sizing handles).

Figure 2.9. The Properties window displays property values for a selected control.

The selected control Sizing handles

Hicioscdt Visual Bavic [devign] - [[rmButlon [Form] [Resd Ori]]
D Be G Yo Prowc Fomal Debug Bun Qomy D

. Conilroly -

[=[#]>]
o Hilp =] x|

B-a-DEFH LHBP 8 o | -Htﬁ‘t‘a*‘imi'mun £ s
i
m:(w, Teai Huilomns !EE DE r_l
kB Sl e &% Loerols (Lontrels.vbp) -
........... e A
s SETIN EEEE ::::::::::::g::::::: e E,r?.&mp.w]
sl i m e ek e &Y FremChech (chusch Frm)
Sl 1) = B Frimages (mages frmh
F & 332 Cwmsid |0 mh [BV Frteie frven frra =
e b ~ S - R -1
BB | To change the conal, chck. sither the Charge.~ ©
2u 8 - S o e e hafe: g con ek
do i -
i e
&~
[
P the pame tried in oo 12 iently an ekt
Selected control's property values

13. Scroll through the property values to see the properties for the selected control.

14. Click another control on the form and look at the updated Properties window. When you select a control by
clicking on it, sizing handles appear around the control, and the Properties window updates to reflect the newly
selected control's properties.

Leave the project open as you move to the next section. Also, close the Edit and Form Editor toolbars if they appear on
your screen because you won't need them in the next section. Now that you've gotten better acquainted with Visual
Basic's environment, you are ready to fill that environment with your own creation.

Creating an Application from Scratch

This section concludes today's lesson by walking you through the creation of an application. You won't understand
everything that takes place in the next few minutes, but walk through the example anyway because doing so prepares
you to learn more. This first application is simple, but it illustrates how Visual Basic makes it easy to create programs.
The rest of this 21-day session will explain the details of what this overview shows you.

Setting Up the Form

This first application will display a picture and a command button. The program changes the picture when you click the
command button. Follow these steps to create this simple application:

1. Select File, New Project to display the New Project dialog box. If you still have an application open from an
earlier section, Visual Basic may ask if you want to save changes to that application. Answer No to save any

changes.

2. Select the Standard EXE icon. Your Visual Basic environment will hold only a single form named Form1 (as
the title bar shows). The form appears on the background of the Form window editing area which is white.

3. Click the Maximize window button to expand the Form window editing area (the white background, not the
gray form itself) to its maximum size. This action gives you room to expand the form.

4. Drag the form's lower-right sizing handle down and to the right. As you drag the form, notice the width and
height measurements at the right of the toolbar as they change. Size the form so that it measures about 7,400 by
5,200 twips. This step produces a small background for your program. Figure 2.10 shows your screen. (Your
Form Layout window may appear beneath your Properties window.

Figure 2.10. When you resize the Form window, you are resizing your application's program
window.

Form-location coordinates Size coordinates

. Miogacti - Mool Viessl Basc jdengn] - [f orsi (7 cmsl]

5} ple [t Y Promss Pgwat Qebag Bun Qe Dagew [ook Bddie indoe pep

HB-a-" 2@ P e e | HEPAWR AN as i P o B
]

| By 1°} T Frapeo! - Pasest] L]
e om|a
kB Srw;nu:n-muj
— ¥ Forra
A =] ¢ £ Pommi frorm)
o :
Fo®
= 1=
sy 3 F
=
(o=
- ®

Form window e
[

Note

Sizing handles appear around the form because the form is the only object inside the Form window editing area. Notice
that the Properties window displays properties about the form. Forms, just as other objects, have property values you
can set.

A twip is a screen measurement. You can think of a twip as a dot on your screen, but dif ferent screens and video cards
provide different resolutions and, hence, a different number of dots. A twip is a resolution-independent measurement
value for an imaginary small screen dot (smaller than the highest resolutions allow). Therefore, when you size a form to
7,400 twips, the form will not require 7,400 actual screen dots (called pixels).

5. Select View, Form Layout Window to display the window and center the thumbnail screen inside the Form
Layout window so that your application window will be centered on the screen when the program starts.
Although the Form window itself will not change, the form-location coordinates will reflect the new position.

6. Close the Form Layout window to give you more room for the other windows.
Tip

As you locate and size form windows, pay attention to the form-location coordinates and the size coordinates at the
right of the toolbar. These values always appear in pairs. The first value in the form-location pair represents the number
of twips from the left edge of the screen where the window begins. The second value represents the number of twips
from the top edge of the screen where the window will appear. The second pair of values, the size coordinates,
represents the number of twips wide and high the window consumes. The form properties for the form-location
coordinates are named Left and Top to represent the number of twips from the left and top of the screen. The form
properties for the size coordinates are named Width and Height and represent the width and height of the Form
window. Visual Basic automatically updates these values in the Properties window when you move and resize the form
in the Form window editing area.

The grid is the dot pattern that comprises the Form window's background. You can adjust the grid's dot density from
the Tools, Options dialog box.

Note

The dots that appear inside the Form window make up the grid. You can turn on and off the grid by selecting Tools,
Options, clicking the General page, and checking or unchecking the Show Grid option. The grid will not appear when
you run the application; it appears solely to help you place and size controls on the form.

7. Assign a better name than Form1 to the form. To do so, you'll see how to work with the Properties window. A
property called (Name) (enclosed in parentheses to keep the name at the top of the alphabetical property list)
holds the selected form's name. (In the future, this tutorial will omit the parentheses from around the Name

property.) Scroll the Properties window up until you see the Name value if you cannot see it, and notice that the
Name value is currently assigned Form1.

8. Click the form's Name property and type frmvyFirst for the form name. As you type the name, the name
appears to the right of the property called Name as well as Visual Basic's title bar.

9. Change the form's title bar from its original value to Happy Application by select ing the Caption property and
typing Happy Application. The Caption property determines what appears in the form's title bar when the
user runs the program. The new name appears in both the Properties window and the form's title bar.

Tip

You'll change and assign all properties inside the Properties window the same way you just changed the form's name.
Scroll to the property, click the property, and enter (or select for those properties with drop-down list boxes) a new
property value.

10. Before continuing, save the form to disk for safety. Select File, Save Project. The Save Project option saves
every file inside your project (your project currently holds only a single form file) as well as a project
description file with the filename extension .VVBP. Visual Basic asks first for the filename you want to assign to
your form. Visual Basic uses the form's Name property as the default filename. If you accept that default name,
as you should now do, Visual Basic also adds the extension .FRM to the form's filename. (If your project
contained more forms or modules or other objects stored in files, Visual Basic would ask you to name the
remaining items as well.) Visual Basic then asks for a project name for the project description file. Name the
project HappyApp before saving the project. Answer No if Visual Basic asks to add the project to the SourceSafe
library.

Note
The project description file is what you load when you want to work on your application in the future. When you load

such a project description file, Visual Basic loads all files associated with that project, and their names appear in the
Project window.

Adding the Detalils

Now that the application’s background is complete, you are ready to add the details by putting controls on the form.
Adding controls to a form typically involves one or more of these steps:

1. Select the control from the toolbox.
2. Place the control in its proper location.

3. Size the control.

4. Set the control's properties.

5. Activate the control with Visual Basic code if needed.

In the steps that follow, you'll quickly learn how to select controls from the toolbox and place those controls on the
form. Generally, you'll do these steps in one of two ways:

1. Double-click the control's icon on the toolbox. Visual Basic then places that control in the center of the form.

You then can drag the control to its proper location and size the control by dragging the control's sizing handles
in or out.

Click the control's icon on the toolbox and move the resulting crosshair mouse cursor to the form when the
control is to go. Click and hold your mouse button where the control is to go. As you drag the mouse, Visual
Basic draws the control's outline on your form. When you've drawn the control at its proper location and size,
release the mouse button to place the control in its proper location.

The following steps spruce up the application you began in the previous section:

Tip

1. Double-click the label control so that Visual Basic places the label in the center of your form. The label control

contains the letter A, as you saw in the previous section "The Toolbar.” (Remember that ToolTips pop up to let
you know what a toolbox icon is for.) The label is now the selected tool on your Form window editing area so
the sizing handles appear around the label. In addition, the Properties window changes to show the label's
properties, and the toolbar's location and size coordinate pairs now reflect the label's measurements.

A label displays text on a form. This new label will hold a title banner for your application.

Drag the label up the form until it rests approximately 1,320 twips from the left edge of the form window and
120 twips from the top of the form. The toolbar’s location coordinates will let you know the location.

Unless you change the Align Controls to Grid option located on the General tab of the Tools, Options dialog box,
Visual Basic automatically aligns all controls to the closest grid point on your form, ensuring that your controls align
with each other properly.

3. Double-click the toolbox's command button control to place a command button in the center of your form.

4. Locate the toolbox's image control and click the control's icon once instead of double-clicking to place the

control as you did with the label. Move your mouse to the Form window and draw the image control, trying to
first anchor the image at 2,520 twips from the form's left edge and 2,880 from the form's top edge. Size the
image at approximately 2,175 twips wide and 1,825 twips high. As you size the image, drag the image's sizing
handles slowly so that Visual Basic's ScreenTips pop up showing you the coordinates of the image. When the
coordinates appear at their proper size, release your mouse button to place the image at that size. Figure 2.11
shows your screen at this point. The image control will display a graphic image when you run the program. A
twip is 1/1440th of an inch.

Figure 2.11. Your application is taking shape.

Label Command button

%, Pgect] - Micronolt Visual B wmic [design] - [frmMyFist [“om])]

m Took & Wrdow Heb =18 x|
P AP SWR N T e glamens

OE O

= B Projectl (Heppyipna

=9 Poniey

01 fredfiest (frett

K

it i
[Heupeicon (Norm)
[Heuisfornie 0 - Delauk
CECraciods 0 - Marual
RECrockods 0 - Hore
[Feturs {hzra)
[eRresch Falss

[it Trus
[sehst s ThisHeslp O
[eticitin 2175

Hesght
Retardfiens the heght of an
ik,

Image control

Tip

Although you can place the image control at approximately the same location and size described here, you can match
these location and size twip measurements exactly by filling in the following properties with the measurement values
described in the previous step: Left: 2520, Top: 2880, Width: 2175, and Height: 1825. When property values
are specified in the future, this kind of notation will be used. You now know to click the property name and then type
the property value to assign new values to properties.

Note

Location twip coordinates and size twip coordinates are always specified in pairs. Often, you'll see such coordinate
pairs specified inside parentheses, as in a location value of (2520, 2880).

5. Now that you're more familiar with setting property values for controls, even though you may not understand
many of the properties yet, you are now equipped to set additional properties for the form and controls to
finalize the look of the application. After you set appropriate property values, you will then add code to connect
the controls and to make them work together.

Table 2.2 contains a list of property values that you now need to set for the form and the three controls.
Remember that you must select the form or specific control before you can change property values for that form
or control. To select the form, click anywhere inside the form or title bar but not over any of the controls. The
Properties window will change to display the form's properties. Click either the label, command button, or
image to select the control, and then you can change one of that control's properties by clicking the property
name and typing the new value.

Caution

At first, setting a control's font information is confusing. When you select the Font property for a control, an ellipsis
appears after the property value. The ellipsis indicates that you can set more than one value for the Font property, and
clicking the ellipsis displays a Font dialog box such as the one shown in Figure 2.12. After setting the Font dialog box
values and clicking OK, several property values related to the font used on the control's caption will change to reflect
your new values.

Figure 2.12. The Font dialog box enables you to set multiple property values for the Font property.

Font i E3
Font: Font style: Size:
[Regula E OK

MS Sans Senf M m Cancel

~ MS Senf [talic 10
i:[' MT Extra Bald 12
|'_[' MurrayHill BA BT Bold Italic 14
E OCRE —I 18

' Old English Text MT 24
T OldDreadfulNo? BT ¥ = =
Effects Sample

[~ Stikeout Ja—

[~ Underline et

Script:

I"v'».-"astam EI

Table 2.2. Assign the following property values to the application's form and controls.

Contro Property Property value

Form Max Button False (open the drop-down list box to see values)
Label Alignment center (open the drop-down list box to see values)
Label Name IbIHappy

Label Caption Have a happy day!

Label Font Courier New

Label Font style Bold

Label Size 36

Label Left 1320

Label Height 1695

Label Top 120

Label Width 4695

Image Name imgHappy

Image Stretch True

Command button Name cmdHappy

Command button Caption Click Here

Tip

While writing your application, you can run the application to see what you've done so far. For example, if you now
pressed F5 to run the application, Visual Basic would analyze your program and display an active program window
with a command button that you can click. Nothing happens when you click the command button except that the
command button shows the click. In addition, nothing appears where you placed the image control, but the next section
will fix both of those minor problems. To exit the program, click the program window's Close window button. You'll
learn how to add more graceful exit capabilities in tomorrow's lesson.

Finalizing with Code

Adding Visual Basic programming statements will turn your creation into a working, although simple, application. The
following process may seem like magic because you'll be adding code that looks somewhat cryptic in a Code window

that will pop up unexpectedly. Follow the next few steps to add the code, and subsequent days will fill in the details
about what you are doing:

1. Double-click the form somewhere on the grid inside the Form window. The form disappears, and a Code
window appears with the following lines at the top:

Private Sub Form_Load()

End Sub

These lines are two of the four lines needed for code required by the form. The Code window works like a
miniature word processor in which you can add, delete, and change statements that appear in your program
code.

Note

All code appears in procedures, and all procedures require beginning and ending lines of code that define the
procedure’s start and stop locations. Visual Basic automatically adds the first and final line of many procedures as it has
done here.

A procedure is a section of Visual Basic programming code that holds Visual Basic programming statements and that
performs a specific task, such as the centering of a Form window.

2. 'You can now type the following lines. Press the spacebar three times before each line so it appears slightly to
the right of the start and end lines. Visual Basic programmers often indent the body of procedures to make it
easy to locate the procedure's beginning and ending in a list of multiple procedures. This code ensures that your
application window appears in the center of the screen no matter what screen resolution you run the program in:

froMyFirst.Left = (Screen.Width — frmMyFirst.Width) / 2
fromMyFirst.Top = (Screen.Height — frmMyFirst.Height) / 2

After you type just a little of the first line, Visual Basic displays an Auto List Members drop-down list box as

shown in Figure 2.13. When Visual Basic senses that you are about to specify a control's property value, Visual
Basic offers this drop-down list box of property choices for that control, so you can select a property instead of
typing the full property name. After you select a property and press the spacebar, Visual Basic fills in the
property, and you can continue with the rest of the line.

Figure 2.13. Visual Basic helps speed up your entry of code.

w. Promet] - Miciozoli Visual Basc [desgn] - [frmbyFirst [Codal]

I3 e Eo Yoo Peet Fomst [ehug Bon Query Disgas [ock fdddn Windw el =le)x
P-a-" R BM e s NEFEEWEED m2cs
B rarm <] [ima 7] R
_Geowrdl | — . ==)=
PE¥vACE Sun Forsm Lowd() =
k] frmByFirat. = |= B¢ Project] (Happyipp.s
L End Sub B Aatved ntral - =i~ 3 Forms
f" = e Appentan:e 0 It (frmit
=1 B At edaw
o BackiColor
PR B Acidersile
E!Eﬂ e Caplon
- & Circle -
ad 3
(o =
3 [E
&~
=] . st the bevt
== | e nimm;mebrm

3. Click the Project window's View Object button to return to the Form window.

4. Double-click the command button to once again open the Code window. Your previous code will be there, and
a new set of beginning and ending statements will appear for a new procedure related to the command button.
Press the spacebar three times and type the following line between the two that are there:

imgHappy-Picture = LoadPicture(*"\Program Files\Microsoft Visual
Studio\Common\Graphics\Bitmaps\Assorted\Happy.-bmp)

As soon as you type the LoadPicture's opening parenthesis, Visual Basic offers a pop-up help similar to the

Auto List Members drop-down list box you saw a couple of steps ago. Some Visual Basic statements, especially
those with parentheses such as the ones you see in this statement, require that you type one or more values.
Visual Basic pops up the format of these required values, so you'll know how many to enter. You'll learn more
about why these values are required as you learn more about the language. Visual Basic is a large language, so
this help from Visual Basic comes in handy.

5. Run your program and click the command button. An image like that shown in Figure 2.14 appears. You have
successfully completed your new application without resorting to the Application wizard. You've created an

application that displays a picture when you click the command button. The application contains code, and its
controls all have property values that you've set.

Figure 2.14. Your application produces a graphic image from the click of your mouse.

. Happy Application M=l E3

Have a
happy day!

6. Click the Close window button to terminate the program. Be sure to save your project before you exit Visual
Basic.

Summary

Today's lesson described the Visual Basic environment because you can become an effective Visual Basic programmer
only with an understanding of the various windows and interface. Visual Basic supplies several levels of help,
including Online Help, Web support, and personal technical support offered in a variety of ways. If the Visual Basic
interface or language poses a problem too big for you to figure out alone, help is close at hand.

To create an application, you must create a new project, add controls to the Form window, set properties for the form
and controls, and activate the controls with code. The project you created in today's lesson should have been
surprisingly simple to produce, especially given the little bit of code required (three lines).

Tomorrow's lesson answers a few questions you may have about controls and their properties.

Q&A

Q: How large should my application's Form window be?

A: Your application determines how large your Form window should be, as well as how many forms the
application will need. For simple programs, one form is plenty, but the size of that form depends on the
number of controls you place on the form and the nature of the program.

Today's lesson could have created a project with a fully maximized form, but with only three controls, there
would have been too much empty space on the form.

Q: What did the code in today’s lesson do?

A: The code was necessary for today's application to work properly. The line with the LoadPicture keyword is
critical because it loads the picture when the user clicks the command button. The other two lines, the ones
you added when you double-clicked inside the Form window to open the Code window, center the form
within the screen coordinates of whatever screen size displays the program.

Q: If the code centered the Form window, did I have to use the Form Layout window to center the form?

A: No matter where you placed the form in the Form Layout window, the two lines you typed in the form's
procedure will center the form when the program begins.

The Form Layout window is a rough guide to give you an idea where the Form window will appear when the

form loads. For completely accurate control, especially if you are unsure of the size of the screen on which
your program will run, you need to position the form with code in the Code window.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. You should understand the quiz and exercise answers before
continuing to the next chapter. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: What is the difference between the toolbox and the toolbar?

2: What is the name of the subscription-based online service Microsoft offers for programmers?

3: True/False. The Form window holds one form at a time.

4: What happens when you click a toolbox control?

5: What happens when you double-click a toolbox control?

6: True/False. You set control properties from the Toolbox window.

7: How does Visual Basic determine which control properties appear in the Properties window?

8: What does an ellipsis indicate on a Properties window value?

9: What is the name of the property that specifies the command button's title?

10: Why should you change the control names from their default values?

Exercise

Load the application you created today so that you can modify it. Add color to the application by making the
form's background blue. In addition, place an extra command button, labeled Exit, on the form and add an
appropriate Name caption for the control. Add the following line inside the new procedure that appears in the
Code window, which is related to the command button :

End

Run the application and click the Exit button to see a more graceful exit than you previously had in the
application.

Day 3. Managing Controls

Now that you've created two applications, one with the Application wizard and one from scratch without the help of the
wizard, it's time to begin studying how Visual Basic works. The previous two days'worth of hands-on sessions showed
you how easy it is to create programs and helped give you a feel for the Visual Basic environment. Starting today,
you'll begin to understand how the components of a Visual Basic program go together, especially how the controls and
properties work together.

Today, you learn the following:

Common control properties

Why controls come with so many properties

About the more common tools on the Toolbox window
How accelerator keys help speed data entry

How focus helps users select controls

How event procedures work

Studying Controls

The toolbox holds the collection of controls that you use in your applications. The toolbox does not hold a limited
number of each tool; in other words, you can double-click the Label control as many times as you like as you create
your forms; Visual Basic sends a new label to the target form each time.

The collection of controls (also called tools) on the toolbox varies depending on your application's requirements. For
much of this 21-day tutorial, the toolbox will hold the same set of tools you saw in yesterday's lesson. These tools are
the standard controls loaded when you create a new application.

Caution
A control is not available to your program until that control appears in the toolbox. Therefore, you cannot, for example,

add an Internet browsing control to your form until you add the Internet browsing control to your toolbox. If you use
the Application Wizard, the wizard will add controls to the toolbox when needed to generate your project.

Note

When a lesson in this book requires a control not found on the standard toolbox, the lesson will explain how you can
add that control to your toolbox.

As Figure 3.1 shows, your toolbox can get quite complicated when it fills up with too many controls. Such a large
toolbox can take away from your other windows'space. You can drag the Toolbox window's title bar to another location
if you want to use the left edge of your screen to view your form. In addition, you can resize the Toolbox window for
more or less room.

Figure 3.1. The Toolbox window should be a manageable size.

aeneral I
V=P
"._I[w_f @
ER E8 «u 3
% =N
& ~ &8

“nid
g."{hn? A
g & B o

o [o v Y =53¢
BEI O
O @ d
£ = B [F=
| e~

Do Don't

DON'T make the Toolbox so small that tools get hidden from view. No scrollbars appear if you size the Toolbox
window so small that some controls are no longer visible. To use the controls that are outside the window's
boundaries in this case, you have to expand the Toolbox window until the hidden tools appear once again.

Visual Basic purists apply more strict names to the sets of controls available. The controls that first appear in the
Toolbox window are called the intrinsic controls. The ActiveX controls, with the .OCX extension, are external controls

you can add to the Toolbox window. Insertable controls are controls made from external applications, such as
Microsoft Excel.

Many of the controls require similar properties. Table 3.1 lists some common properties that most controls support.
You can probably see why so many of Table 3.1's properties exist for multiple controls. All controls have a screen

location (indicated by the Left and Top properties) and a size (indicated by the width and Height properties), and
most have foreground and background colors as well as font properties, if the controls display text.

Table 3.1. Common properties for several Visual Basic controls.

Property Description

Alignment Determines whether text on the control, such as a label or command button, is left-justified, centered,
or right-justified on the control.

BackColor Specifies the color of the control's background, which you select from a palette of colors when you
open the property's drop-down list box of colors.

BorderStyle Determines whether the control has a border around it.
Caption Lists the text displayed on the control.

Enabled Set by a drop-down list box, this property is either True if you want the control to respond to the user
or False if you want the control not to respond to the user. This property is useful for turning on and
off controls when they are and are not available during a program's execution.

Font Displays a Font dialog box from which you can set various font properties, such as size and style, for a
control's text.

ForeColor Specifies the color of the control's foreground, which you select from a palette of colors when you
open the property's drop-down list box of colors.

Height Specifies the number of twips high the control is.

Left Indicates the starting twip from the left edge of the form where the control appears. For a form, the
Left property specifies the number of twips from the left edge of the screen.

MousePointer Determines the shape of the mouse cursor when the user moves the mouse over the control at runtime.

Name Specifies the name of the control. As you saw in yesterday's lesson, the Properties window displays the
Name property in parentheses so that it appears first in the list of properties.

ToolTipText Holds the text that appears when the user rests the mouse cursor over the control at runtime (similar to
ScreenTips).

Top Is the starting twip from the top edge of the form where the control appears. For a form, the Top
property describes the number of twips from the top edge of the screen.

Visible Set by a drop-down list box, this property is True if you want the control to be visible on the form or
False if you want the control to be hidden from view.

Width Specifies the number of twips wide that the control is.

Remember that all controls have all their property values set before you ever change a value. As soon as you place a
control, Visual Basic uses a set of predetermined property values (the most common values) for the controls. In
addition, Visual Basic assigns default names and captions to the controls, although you'll surely want to change these
properties. Many of the default values work well in many cases. You won't change all of a control's property values
from its default set.

You already know that you can set the properties for a control when you write the application, but you can also set and
change property values with Visual Basic code during the application's execution. For example, the Enabled property
is often changed during the execution of a program if a particular control is temporarily unavailable to the user. You
may, for example, disable a command button that produces a report until the user has specified the contents of the
report.

Caution

Not all properties for all controls appear in the Properties window. Properties that you can set only with Visual Basic
code do not appear in the Properties window.

Tip

Some control properties, such as the Alignment property values, may look strange because their drop-down list boxes
display numbers to the left of their values. For example, the Al ignment property can take on one of these three values:
O-Left Justify, 1-Right Justify, and 2-Center. You can use your mouse to select these values from the list
without worrying about the numbers in them, but you can also, after opening the drop-down list box for a property,
type the number that corresponds to the value you want to quickly set that value. The numbers also come in handy
when you assign property values to controls with Visual Basic code. You can assign the numeric value instead of
having to type the entire value, such as 0-Left Justify. The numbers provide shortcuts when you write code, as
you'll see in future lessons.

The following sections describe the most useful standard toolbox controls. You'll learn about several important
properties associated with those controls. Today, you will not learn about all the toolbox’s controls, just those that you'll
work with over the first few days of Visual Basic programming.

You don't need an in-depth reference on all the properties for all the controls because some of the properties are rarely
used. Most Visual Basic programmers don't even know all of the properties available for a control. Generally, if you
need to make a control appear a certain way, a property probably exists to accomplish that. By taking a brief tour of the
controls and their properties in the following sections, you'll better understand the purpose for the controls, and you'll
have a better idea of which properties are available.

Tip

Some programmers prefer to view properties in the Property window grouped by category. To group properties this
way, click the Properties window's Categorized tab, as Figure 3.2 shows.

Figure 3.2. You can categorize properties to more quickly locate properties you need.

Properties - Form1 [X]
IFurml Form EI
Alphabetic Categurizedl

E Behavior
AutoRedraw False
ClipControls True
DrawMode 13 - Copy Pen
DrawStyle 0 - Solid
DrawWWidth 1
Enabled True
HasDiC True
OLEDropMade O - None
PaletteMode 0 - Halftone
RightTolLeft False
Visible True

DDE

Font

Misc

Ll Position
Height 3600
Left 0
Moveable True
StartUpPosition 3 - Windows De
Top 0
Width 4800

Scale

The Form's Properties

Many form properties correspond with other control properties that you learned about in Table 3.1. The form, however,
is unigue in that it does not reside on a form, but appears on the user's window. That is why the form's Left, Top,
Wwidth, and Height properties all correspond to the edge of the screen and not to a Form window.

These form properties are important as well:

e BorderStyle. This property determines how the Form window responds to the user's efforts to resize it. Some
values you may need are 0-None, which offers a form without any edge or title bar, 1-Fixed Single, which
offers a nonsizable window (the user can close the window but not resize, minimize, or maximize the window),
and 2-Sizable (the default), which offers a regular sizable window with maximize and minimize buttons.

e ControlBox. This property's value of True or False determines whether the form's Control menu appears.

A Control menu is the menu that appears when you click a window's icon in the upper-left corner of the
window. The Control menu enables you to move, size, minimize, maximize, and close a window.

e Icon. This property specifies an icon filename for the Windows taskbar icon that appears when the user
minimizes the form.

e MaxButton. This property determines whether the form contains an active Maximize window button.

e MinButton. This property determines whether the form contains an active Minimize window button. (If you set
both the MaxButton and MinButton properties to False, neither appears on the form.)

e Movable. This property determines if the user can move the form or if the form is to remain in its displayed
location.

e ShowlnTaskbar. This property's True or False value determines whether the open form appears on the user's
Windows taskbar.

e StartUpPosition. This property provides a quick way to specify the starting position of the form on the
screen. One of the most useful values is 2-CenterScreen that centers the form on the user's screen when the
form first appears.

e WindowState. This property determines the size (normal, maximized, or minimized) of the form (useful for
starting a minimized form).

The Pointer Tool

The pointer tool is the only toolbox item that is not a control. About the only use for the pointer tool is to eliminate the
crosshair mouse cursor that appears when you select any of the other controls in the Toolbox window.

The Label Control

The label control displays text. Although your user cannot alter the text that appears on a label, you can, at runtime,
change the label's text through code. (See Day 5's lesson for details.) Programmers often use labels for titles, prompts,
and descriptions. For example, when you want the user to enter a value into another control, such as a text box, you
place a label next to that data-entry location on the form describing the value you want the user to enter. Without the
label, the users would not know what you needed them to enter.

Two properties, AutoSize and WordWrap, affect the way you display text on a label. If you set AutoSize to a True
value, the label automatically expands horizontally across the form to display all the text you've assigned to the
Caption property. If you set Wordwrap to True, Visual Basic keeps the label's width but expands the label vertically to
display as many lines as needed to show the full caption. Figure 3.3 shows three versions of a label with the same
Caption property but with a different combination of AutoSize and Wordwrap properties, so you can study the effect
of the two properties.

Figure 3.3. The AutoSize and WordWrap properties affect the way a label displays its caption.

i, Label Comparison H=] E3

| Labels

[The rain in Spain falls mainly on the plain.

AutoSize: True
‘WordWrap: False

[The rain in Spain falls

AutoSize: False
Wiondwiap: True

[:Ihe rain in Spain falls

ainly on the plain.
AutoSize: Tiue
Wordwian: Tue

Mote: All three labels were placed on this form with the zame
Wwidth and Height properhies at design hme.

Caution

Surprisingly, for wordwrap to work, you must also set AutoSize to True. Visual Basic needs to be able to expand the
label at least partially horizontally if a single word in the caption is larger than the label's width.

The Text Box Control

Use a text box control when you want the user to type something, such as an answer to a prompt, when you want to
collect values, such as name and address information. Often, a default value is helpful for your users, and your Visual
Basic program can supply an initial value. For example, if you are asking the user to enter a date, you might place
today's date in the text box so that the user can accept the date without having to enter it.

Text boxes don't make for good yes/no, true/false answers. In other words, if you must ask your user to select between
two values or answer a yes or no question, other controls—such as an option button or list box control that you'll learn
about on Days 5 and 6—are better to use.

Do Don't

DO use a Label control to prompt the user for a value before you offer a text box control. In a name and address
form, for example, you might place a Label control before the name TextBox control that reads Enter your
first name:. Your users then will know what information you expect them to type in the text box.

Programmers must distinguish between designtime and runtime. Designtime is the time when you write and maintain
an application. Runtime is when you or a user runs an application. When you place a value in a text box's Text
property at design-time, you are placing the default value that the user will see at runtime. At runtime, the user then can
change the text box's value to a different value by typing over or editing your default value.

When placing text boxes on forms, you'll find the following text box properties useful:

e Alignment. This property determines how the text aligns inside a text box whose MultiLine property is set to
True. The Alignment property has no meaning for single-line text boxes.

e Locked. This property determines whether the user can enter a value or change the default value of the text
box. If True, the user cannot change the text box value until the program, at runtime, assigns a False value to
this property.

e MaxLength. This property specifies the maximum number of characters that the text box will accept. A value of
0 indicates that the user can enter a value of any length.

e MultiLine. If True, the property specifies that the text box can hold more than a single line of text. A vertical
scrollbar will appear if the user enters more text than will fit on a single line, unless you've disallowed
scrollbars with the Scrol IBars property. The Alignment property, whose default value is 0-Left Justify,
determines how the multiple lines of text align.

e PasswordChar . This property designates a character, such as an asterisk, that will appear in place of the
characters the user types into the text box. In other words, if the user is entering a secret code, only asterisks
will appear on the screen as the user types the code instead of the code's value so that nobody looking over the
user's shoulder can read the code. Although the asterisks appear, the text box receives the actual value that the
user types.

e ScrollBars. This property determines if and how many scrollbars will appear on the text box. A value of 0-
None keeps scrollbars from appearing. 1-Horizontal allows only horizontal scrollbars. 2-Vertical allows
only vertical scrollbars. 3-Both allows both horizontal and vertical scrollbars.

Caution

You must set the Mul tiLine property to True before vertical scrollbars can appear in a text box.

e Text. This property specifies the initial text (the default value) that appears in the text box.

A special cursor comes into play with text boxes and forms. Your user enters and edits text using the text cursor.
Clicking a text box's text places the text cursor at that point so that the user can add, change, or delete text from within
the text box.

The text cursor, also called the caret or the insertion point, is a vertical bar used for entering and editing text in controls
such as text boxes.

Tip

Load and run the sample application called Controls from your MSDN's Samples folder. Select the text box option to
practice using text boxes. Figure 3.4 shows the screen that appears. You will be able to practice working with single-
line and multiline text boxes as well as with the text cursor and scrollbars. The Controls application even shows that
you can select text within a text box and copy, cut, and paste text to and from text boxes using standard Windows
operations.

Figure 3.4. The sample Controls application lets you work with several styles of text boxes.

. Text Box Properties _ O] x|
IThe MultiLing property is set to False in this & The MultiLine propetty is set to

T i thas best boy

Set the Insertion Point
v Default Settings
" Irgertion Paoirt at End
(" Insettion Point After 5th Character 2005k B0 oponi Sen e e
" Select All Text

O Insert Text

Resat | Cloge

The Command Button Control

Almost every application's form contains a command button. With the click of a command button, the user can indicate
that an answer is ready, a printer has paper, or that it's time to terminate the program. As you saw in yesterday's lesson,
Visual Basic takes care of showing that the command button is pressed when the user clicks it.

An accelerator key is a key that, when combined with the Alt key, triggers a response. For example, menu bar options
all have accelerator keys, such as Alt+F for the File menu option. The underlined letter in a menu bar option name or
on a command button's label indicates the accelerator key for that object.

Tip

Command buttons aren't just for mouse clicks! You can add an accelerator key to a command button's label so that the
user can select the command button by pressing the appropriate key combination, such as Alt+R. The Caption property
determines a command button's accelerator key. In addition to an accelerator key, the user can select a command button
by pressing Enter if the command button is the selected control (see the section called "Control Focus" for more
information) or if the Default property is True. In some cases, you may want the user to be able to trigger a command
button by pressing the Esc key, such as when a command button offers an exit from a program and the Cancel property
handles Esc.

The following properties are useful for command button programming:

e Cancel. This property determines how the command button responds to the Esc key. If True, the user can
trigger (simulate a click) the command button by pressing Esc. Only one command button on a form can have a
cancel value of True. If you set more than one command button's Cancel property to True, Visual Basic
resets all but the last one to False.

e Caption. This property specifies the text that appears on the command button. If you precede a letter with an
ampersand (&), Visual Basic makes that letter the accelerator key. A Caption of E&xit produces a command
button such as the one you see in Figure 3.5. The user can trigger this command button by clicking the button or
by pressing Alt+X.

Figure 3.5. A control's caption property that contains an ampersand before a letter determines
the accelerator key for that control.

Exit

e Default. This property determines how the command button responds to the Enter key. If True, the user can
trigger (simulate a click) the command button by pressing Enter unless the user moves the control focus (see the
next section) to another control first. Only one command button on a form can have a Default value of True.

If you set more than one command button's Default property to True, Visual Basic resets all but the last one to
False. The command button with a befault value of True is always the selected command button when a
form first appears.

e Picture. This property specifies a graphic image that appears on the command button in place of a caption.
The Style property must be set to 1-Graphical before a picture will appear.

e Style. This property determines whether a command button displays a text caption (if set to 0-Standard) or a
picture (if set to 1-Graphical).

Do Don't

DO choose different ~ DON'T use the same accelerator key for more than one control. If two or more controls have

accelerator keys for the same accelerator key, Visual Basic will select only the first one in the focus order (see the

your controls. next section) for the accelerator key, and your user will not be able to select any of the other
controls with that accelerator key.

The Image Control

A brief mention of the image control is in order here because you placed an image on the application you created in
yesterday's program. The image control is one of two controls (the picture box is the other) that display graphic images.
The image properties determine the file used for the image and whether the image control resizes to fit the file or the
file resizes to fill the image control's size. You'll learn all about the image and picture box controls in Day 14's lesson,
"Introducing VB Graphics and Multimedia."

Although many more controls exist, you'll learn about the others as you progress through these 21 days. The next
section describes how the user can use the keyboard to trigger any control on the form.

Control Focus

Only one control on a form can have the focus at any one time. The first control with the focus is determined by the
order in which you placed the controls on the form or, more accurately, the order determined by the TabIndex property
of each control on your form. Not every control can receive focus. Only those controls the user can interact with can
receive the focus. For example, a label control cannot receive the focus because the user cannot interact with label
controls.

The focus, or control focus, is the currently selected control. Visual Basic indicates the control with the focus by
highlighting the control.

For a moment, study Figure 3.6. Notice that the center command button has the focus because it's highlighted by a
dashed box. Visual Basic typically displays the control with the focus with just such a dashed box. In the figure, if the
user pressed Enter, the center command button would trigger because that's the command button with the focus. The
user could also press Tab or Shift+Tab to move the focus to another control. If the user pressed Tab, the third command
button would receive the focus, so then if the user pressed Enter, the third command button would be the one to
respond.

Figure 3.6. The highlighted control has the focus, but the user can move the focus to a different
control before pressing Enter.

iw. Managing Focus M[=] E3

How do you do?

Click for Happy | (Click fog Shrug| Click for Sad

Highlight indicates current focus

Note

Notice that the third command button's accelerator key is Alt+A, not Alt+S. The center command button already used
the Alt+S accelerator key with a Caption property value of Click for Shrug, so the programmer had to select a
different and unique accelerator key for the third command button.

Tip

Remember that if a control contains a Default value of True, that control will be the one with the focus when the user
first sees the form. Of course, the user can always move the focus to a different control.

All controls have a TabIndex property. As you place controls on a form, Visual Basic automatically sets the TabIndex
property to 0, 1, and so on, placing a unique and sequential number in each control's TabIndex property. Even controls
that the user does not normally interact with, such as labels, have TabIndex properties. The TabIndex property
determines the focus order.

You will not always place controls on a form in the correct TabIndex order. Sometimes you'll add a control between
two others. You may need to change the TabIndex order to match the focus order you desire. For example, you may
want the focus to move down the form in columns as the user presses Tab, or you may want the focus to move across
the controls in rows as the user presses Tab. The order you want the focus to move is determined solely by the values in
the controls'TabIndex properties.

Tip

If the next control that gets the focus—indicated by the TabIndex property—is a label, Visual Basic sends the focus to
the next control in sequence. Knowing this, you can offer your user an accelerator key for a text box that you could
otherwise not offer. Consider the form in Figure 3.7. The First Name: label has a TabIndex one greater than the text
box that follows. No matter which control has the focus, if the user presses Alt+F, Visual Basic sends the focus to the
label, which immediately sends the focus down the line to the text box because labels cannot normally accept the focus.
When you place text boxes with description labels on a form, consider adding accelerator keys to the labels that
identify the text boxes so that your users will have quick access to any text box they want to enter or change. Of course,
you must make sure that each matching pair of label and text box controls has consecutive TabIndex values.

Figure 3.7. The user can press Alt+F to enter the first name in the text box.

& Customer Data-Eniry M= E

Customer Information

. Text box that
Eivst Mome: | will receive
Last Name: | | the first name

Addeezs: [

ciy: |

State: [

Postal Code: |

Event Procedures

Event procedures sometimes challenge beginning Visual Basic programmers, but the concept of an event procedure is
very simple. When the user presses a command button or enters text into a text box, something has to happen that tells
the application the user has just made a move. You saw in yesterday's lesson that Windows receives events from all
kinds of sources. Most events come directly from the user at the keyboard and mouse running applications within
Windows.

When Windows recognizes that the user triggered an event and that the event is not a system event, such as a Windows
Start button click, but an event directly needed by an application, Windows passes that the event to the application. If
you've written an event procedure to respond to that exact event, your application will respond to the event. If you
haven't written an event procedure, the event goes unhandled.

All kinds of events can occur, such as a click, a double-click, or a keystroke. In addition, multiple controls on your
form can receive the same kinds of events. For example, both a command button and a text box can receive a Click
event, because the user can click the mouse over either control. Therefore, you must not only write an event procedure
for a particular event, but you must also specify which control that event belongs to.

Note

The concept of writing event procedures for all events you want to handle and for each control is vital to your
understanding of Visual Basic. How many click-related event procedures must you write to handle three command
buttons on your form? You must write three event procedures, because the user can click any of the three command
buttons. If you write a Click procedure that is not tied to a specific control, your program cannot respond differently to
the command buttons. You have to write a separate Click procedure for each command button. When Windows passes
the Click event to your program, Windows also passes the control that generated the event. Only if you've written an
event procedure for both that control and that event will your application be able to respond to the event.

Suppose your application displays four command buttons on the form. Here's the process that can occur:

When the user clicks any of the command buttons, Windows recognizes that an event just took place.
Windows analyzes the event and notices that the event belongs to your application.

Windows passes the event and control to your application.

If your application has an event procedure written for the control that received the event, the event procedure's
code (the code that you wrote in the Code window) executes.

Awnh e

Note

Code inside a control's event procedure will never execute if the control's event never takes place. This quality makes
Visual Basic a very responsive system, because you'll write all kinds of event procedures that sit around until their
exact event occurs. Then they take over no matter what else is being done at the time.

Common Control Events

You should familiarize yourself with common events that can occur for the controls that you know about. Both the
form and its controls can receive events. Here are some common form events that can occur during an application's
execution:

e Activate. This event occurs when a form gets the focus. If an application contains multiple forms, the
Activate event occurs when the user changes to a different form by clicking on the form or by selecting the
form from a menu.

e Click. This event occurs when the user clicks anywhere on the form. If the user clicks a form that's partially
hidden from view because another form has the focus, both a Click and an Activate event take place.

Note

A right-click triggers the Click event when the user right-clicks over a form. As you learn more about programming
with the mouse, you'll learn how to determine which mouse button triggered the Click event.

e DblIClick. This event occurs when the user double-clicks the form.

e Deactivate. This event occurs when another form gets the focus. Therefore, both the Activate and
Deactivate events occur when the user selects a different form. You may choose to write event procedures for
both events for each form, for only one event for one of the forms, or a combination thereof depending on the
needs of your application.

e Initialize. Thisevent occurs when the form is first generated.

e Load. This event occurs right as the form is loaded into active memory and appears on the screen.

e Paint. This event occurs when Windows must redraw the form because the user uncovered part of the form
from under another object, such as an icon.

e Resize. This event occurs when the user changes the size of the form.

e Unload. This event occurs when the application removes a form from the window using code. When an
application is terminated, all loaded forms are first unloaded, so you must write an Unload event procedure for
each form if you want to perform some kind of clean-up or file-saving procedure at the end of an application's
session.

The following events are common text box events:
e Change. This event occurs when the user changes the text.
e Click. This event occurs when the user clicks the text box.
e DblClick. This event occurs when the user double-clicks the text box.

Note

Some events available for most controls, such as keyboard and mouse- control events, are handled elsewhere in this 21-
day tutorial.

Most of these text box events are supported by labels as well, but the nature of labels makes them trigger the events in a
slightly different manner. For example, although a label control supports a Change event, the user cannot change a label
directly. Visual Basic code, however, can change a label, and when that happens, the Change event takes place.

The Image control supports the same set of events as the Label control. The Image control is a lot like a Label control
except that a graphic image appears in place of text on an image.

Note

Remember that many more events exist than you are learning about today. The events described here will be useful as
you begin to probe more deeply into Visual Basic.

The command button control also supports the same set of events listed previously for text boxes. Keep the following
in mind when programming command button events:

e When only a single command button resides on a form, pressing the spacebar when the command button has the
focus will trigger the command button's event procedure.

e If acommand button's Cancel property is True, pressing Esc triggers the Click event.

o Pressing the accelerator key combination can trigger a command button's Click event.

Note

Not all of your application's events come from the user's actions. You can trigger events with Visual Basic code. For
example, you could ask your user to press a command button when the user is ready to see a computed total. The
command button's Click event procedure will compute and print the total. However, after a certain period of time, your
code can trigger that same Click event for the command button. Therefore, the total eventually appears with or without
the user's clicking of the command button.

Writing Event Procedures

Remember that event procedures contain Visual Basic code. The event procedures are sections of code that handle a
particular control's event. One control might have several event procedures if you want to respond to several different
kinds of events for that control.

Visual Basic uses an event procedure's name to determine these two things about the procedure:

e Which control will trigger the procedure
e Which event will trigger the procedure

Here is the format of all event procedure names:

ControlName_ EventName ()

The underscore separates the control name from the event name and is required. All event procedures are named this
way. Therefore, an event procedure namedcmdexit_DbIClick () executes if and only if the command button named
cmdExit's event named DbIClick occurs.

You'll eventually fill some event procedure parentheses with values after you learn more about Visual Basic
programming. Even if the parentheses are left blank, as they were in the application you created yesterday, the
parentheses are still required. The parentheses also offer a way to distinguish event procedure names from control
names, even though the parentheses are not part of the actual name.

The code inside the cmdexit_DblIClick () event procedure executes only if the user double-clicks the command
button named cmdexit. If this were the only event procedure in the application, the application would ignore every
other event that takes place. If the user clicked the Exit command button, for example, nothing would happen, because
a click is different from a double-click.

Almost every event procedure you write while you learn Visual Basic will begin with the words Private Sub. The
Private keyword is optional; if you don't specify Private, Visual Basic assumes that the event procedure is private.

Visual Basic supports two kinds of procedures: functions and subroutines. All event procedures will be subroutines.
The body of an event procedure can be one to several hundred lines long, although it's best to keep procedures as short
as possible. If you find yourself writing an extremely long procedure, consider breaking it down into multiple, smaller
procedures to make maintenance easier later on. Listing 3.1 is a sample of what cmdexit_DbiIClick () might look like
if it appeared inside an application.

Listing 3.1 An event procedure that occurs when the user double-clicks the command button.
1: Private Sub cmdeExit DbIClick ()

2 IbITitle.Caption = ""New Page"
3: intTotal = intCustNum + 1

4: End Sub

Note

You'll see numbers such as those to the left of Listing 3.1's code throughout the rest of the book's listings. The numbers
are not part of the program; they are for reference only as you learn to program. If the text needs to refer to a line of
code, the number to the left of the line makes for an easy reference.

A function acts like a baseball pitcher because a function always sends a value, called the return value, to somewhere
else in the program. The keyword Function indicates that a procedure is a function and not a subroutine. A subroutine,
indicated by the sub keyword, does not send a return value, but it does perform work through its code. Event
procedures are always subroutines; you'll use functions for other kinds of work. You'll learn much more about the
differences between functions and subroutines as you progress through these 21 days.

The first line of this event procedure tells much about the event procedure. From the first line, you know the procedure
is private (available only to the current application module). You also know that the event procedure is a subroutine, so
no value is returned anywhere. The event procedure is for the command button (indicated by the prefix cmd) that the
developer named cmdExit. You know the event procedure responds only to double-clicks that occur on this command
button.

The body of the event procedure is two lines long. You don't have to understand anything in the body at this time. The
last line of event procedures always finalizes the procedure and lets you and Visual Basic know where the procedure is
to end. (All functions end, as you can probably guess, with the End Function statement.)

Remember that you enter all code from the Code window. The Code window acts like a simple word processor. When
you are ready to write an event procedure, you can get to the Code window in several ways. You can select the control

for which you want to write an event procedure for and select View, Code, or you can click the Project window's View
Code toolbar button.

An even easier way is to double-click any control or form inside the Form window editing area. Visual Basic
automatically opens the Code window for that object, guesses at the kind of event you want to write (using the most
common event for that particular control), and writes the event's first and last lines for you! That's what happened in
yesterday's application when you double-clicked the command button. Visual Basic decided that the most common
event for a command button is the Click event and displayed the Code window with these two lines for you:

Private Sub cmdHappy Click O

End Sub

Visual Basic even placed the text cursor between the two lines, so you could type the body of the event procedure!
After you finish the event procedure, you can write another event procedure below that one (if you do, you are
responsible for the first and last line of the event procedures that you add) or click the Project window's View Object
button once again to return to the Form window.

Note

If Visual Basic guesses wrongly, and you want to write an event procedure for an event that differs from the one Visual
Basic supplies, you can change the event name, perhaps to cmdHappy_DblClick (), and complete the event.

Figure 3.8 shows a Code window that lists the code for several event procedures. The Code window not only separates
procedures for you, it also supports routine Windows Copy, Cut, and Paste operations. Unlike a word processor, the
Code window will not wrap lines because each statement of a Visual Basic program must reside on its own line. You
can continue extra long lines down to the next line if you place an underscore at the end of the first line to let Visual
Basic know that the statement continues on the next line. With the underscore, Visual Basic treats the two lines as one
long continuous line; but the broken lines are easier for you to read because you can see all the code without scrolling
the Code window left and right.

Figure 3.8. The Code window acts like a word processor for your procedures.

oy Hiths - Mesossll Vaus Daic |dougn| - P owl (Coda] [Masd Ordg]]

O fe G gow Proiet Fgmat Debug e ey D Jok gl Wrder beb i

B-a-" FH L s HMEEWR2 ANt oe £ P x S

_— [l ol =

G | |2 L |

H_HJ Feivate Dub LstTIEleduihars CHLER(]
[
BR = dblrrl 21 . Basordesr . Too e T

A = cordset . FindFirat L Pl

_ “huther = === & IseTicledutbors.List (1seTitbeduwtbors . Lise Index)

el |bethors] Becordser,BoBacoh = Trus Ther

ECnrdldunkars| Feeosrdaes. Iookomsk = BR | | |

F &
El e

o 11
24 4 Fod S

IE] |
= = Private Sub moulukhors CLick(] '
apdreup_Click |Authoes

1
& o~ Erd Suk

ap layiroup LT ST £

Lines separate Qe *heding cha Fabliskaza pizwme
event procedures —| @ & Dirplayooup Click (Pablishare]

HB &) Exd Hub

Using Bonus Projects

You've just read through a lot of theory. Today should have answered some questions for you, but perhaps it generated
additional ones. To help put things into perspective, Bonus Project 1, "Controls, Properties, and Events," appears
between today's and tomorrow's lessons. You'll walk through the creation of another application from scratch so that
you can put today's theory to practice. Although you won't receive as much detailed instructions as you did for
yesterday's application, you don't need as much detail now that you are more familiar with the nature of Visual Basic.
Throughout this 21-day tutorial, Bonus Projects will pop up between some of the chapters to reinforce your learning.
Consider them homework for the next day.

Summary

Today's lesson was more theory than the first two were. You now should understand controls, properties, and events
better than before. Procedures should also be less confusing, even though you've yet to learn any Visual Basic code. An
event procedure must exist for each control and event that you want to respond to in your program. Without an event
procedure, an event gets ignored.

Tomorrow's lesson teaches you how to add menus to your applications so that your users can more easily control the
programs you write.

Q&A

Q: Why do we need to indent the body of event procedures?

A: Actually, you need to indent the body of all procedures. The indention is not required, but it helps you
distinguish events from one another in long lines of code. Although the Code window does a good job
of separating procedures from one another with dividing lines, you might print a program listing for
study and analysis, and the indention will help keep your eyes focused on individual procedures.

Q: Can I make up new names for event procedures?

A: The only way to change the name of an event procedure is to first change the name of the control that
triggers the procedure. Remember that the special name format of event procedures lets Visual Basic
determine which controls and which events should trigger the event procedures. You'll be able to make
up many of the subroutine and function procedure names you write that are not event procedures, but
you are stuck using the event procedure names that correspond to the model described today.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. You should understand the quiz and exercise answers before
continuing to the next chapter. Appendix A, "Answers to Exercises," provides the answers.

Quiz

1: What is an accelerator key?

2: True/False. Properties support multiple events.

3: Why would you assign the Cancel event to a command button?

4: How do you know which control contains the focus?

5: How does the user move the focus from control to control?

6: What property determines the focus order?

7. 1s LoadPicture () _asubroutine, function, or event procedure (you may have to quess at this)?

8: True/False. Visual Basic automatically generates the first and last lines for the Click event procedure when
you double-click a control inside the Form window editing area .

9: True/False. You can trigger a user event, such as bbiclick, from Visual Basic code .

10: What is the purpose for the PasswordChar _property?

Exercises

1: Write the first line for a form's Load event procedure. The form's name is frmMyApp.

2: Bug Buster: Why can't the following be an event procedure?

1: Private Function txtGetName_KeyDown ()
2: * Start the report

3: Call ReportPrint

4: IbIWarning.Caption = "Get ready.."

5: End Function

3: Create an application with three multiline text boxes. Make the text boxes tall enough to display three or four
lines of text. Give the first one a vertical scrollbar, the second a horizontal scrollbar, and the third one both
Kinds of scrollbars. In all three text boxes, supply the default text Type here. In addition to the text boxes,
include an Exit command button, so the user can press Alt+X to terminate the program .

Bonus Project 1: Controls, Properties, and Events

Throughout this book's 21 sessions, you'll find Bonus Project sections scattered among them that help reinforce the
material you've learned to this point. These Bonus Project sections include complete applications. You should take the
time to create these applications because the practice will familiarize you with the Visual Basic environment and get
you up to speed quickly as a Visual Basic programmer.

This first Bonus Project application demonstrates the text box's PasswordChar property. The program uses a text box
property to request a password. Once the user enters a correct password, a special graphic image appears.

Experiment with the Bonus Project programs. As you learn more about Visual Basic, you can modify the Bonus Project
applications to test a hypothesis you might have and to practice coding. You probably won't understand all the code
you'll enter in this Bonus Project's Code window. That's okay for now, though, because you'll understand the code
soon.

Tip

The password to run this application is Sams. Shhh... don't tell anyone.

The Visual Elements

Figure BP1.1 shows the application's Form window that you'll create. You already know how to place controls on a
form, and Table BP1.1 contains all the controls and their respective property values that you need to create the
application’'s window. To begin, follow these usual steps for creating a simple Visual Basic application:

1.

2.

3.

4.

Note

Select File, New Project.
Select the Standard EXE icon.
Set the form's properties to those listed in Table BP1.1.

Place the remaining controls in Table BP1.1 on the form and set their properties. Leave all the default values for
all the properties not listed in Table BP1.1.

You don't have to assign a control's properties as soon as you place it on the form. You can place all the controls first
and then go back to set their properties.

Figure BP1.1. This application uses the text box control's PasswordChar property.

SRR EEEE TR Type the secret ::::i::iiiiiiiiiiid
Prriiiiiiiiiiiiiiiin password below Toiiiiiiiiiiaiiiiin

Table BP1.1. Set these controls and properties on the form.

Control Property Name

Form Name

Form Caption
Form Height
Form width
Image Name

Image BorderStyle
Image Height
Image Left

Image Stretch
Image Top

Image width
Label Name

Label BorderStyle
Label caption
Label Font

Label Font Size
Label Font Style
Label Height
Label Left

Label Top

Label width
Text box Name
Text box Height

Text box Left

Text box PasswordChar

Text box Text
Text box Top

Text box Width

Property Value

frmPassword
Try a password
5610

8475
imgPassword
1-Fixed Single
1890

3000

True

2640

2295

IblIPrompt
1-Fixed Single
Type the secret password below
MS Sans Serif
14

Bold

855

2520

600

3375
txtPassword
375

3360

*

(Leave blank by clearing the default value)
1800

1695

Table BP1.1. Set these controls and properties on the form.

Control Property Name Property Value
Command button Name cmdTest
Command button Caption &Test Password
Command button Left 6360

Command button Top 3000

Command button #2 Name cmdExit
Command button #2 Caption E&xit

Command button #2 Left 6360

Command button #2 Top 3720

Adding the Code

Once you create the Form window, you're ready to enter the code. Listing BP1.1 contains the code you'll enter. Notice
that two event procedures exist: cmdexit_Click() and cmdTest_Click(). Each of these event procedures responds to
the Click event for that particular command button. When the user clicks the command button named cmdExit,
cmdExit_Click() executes. When the user clicks the command button named cmdTest, cmdTest Click() executes.

Tip

The Click event is the most common event that occurs for command buttons. Therefore, you can quickly open an
event procedure for each command button by letting Visual Basic complete the procedure's first and last lines. To type
the small one-line body of the cmdExit command button's Click event procedure, double-click the cmdExit command
button on the Form window and fill in the body of the procedure. To type the body of the cmdTest command button's
Click event procedure, double-click the cmdTest command button and fill in the body of the procedure.

L|st|ng BP1.1 This code activates the password-based form.

: Private Sub cmdExit Click()
End
: End Sub

: Private Sub cmdTest Click()
: " This event procedure executes as soon as the
" user wants to test the entered password

IT txtPassword.Text = "Sams'" Then

" Success! Password matched

10: Beep
11: Beep " Now, display the picture
12: imgPassword.Picture = LoadPicture("'C:\Program Files\" _

@OO\JCDU'I-POOI\JH

13: & "Microsoft Visual Studio\Common\Graphics\MetaFile\" _

14: & ""Business\coins.wmf™)

15: IbIPrompt.Caption = *""'Show me the money!"

16: Else

17: IbIPrompt.Caption = "Wrong password - Try Again"
18: txtPassword.Text = """ " Erase old password

19: txtPassword.SetFocus " Put focus on text box
20: End If

21: End Sub

Analysis

Although you have yet to learn how to interpret Visual Basic programming statements, a few words about this code
now would make a great introduction to the code basics you begin learning on Day 5, "Analyzing VB Data."

Lines 1 through 3 form the cmdExi t button's Click event procedure. When the user clicks the cmdExi t button, the End
statement causes the application to terminate. The application stays on the user's screen, even if the user enters a
successful password match, until the user clicks the cmdExit command button (or until the user closes the program
window).

As you type the code, you'll notice that Visual Basic uses different colors for certain text. This syntax coloring is a
handy tool that you can use to locate bugs early in the program-writing stage. As you program more and more, you'll
recognize that Visual Basic assigns specific colors to specific kinds of text. A Visual Basic program keyword, such as a
command, is always blue. An object, such as a control name and its property, is always black. Other kinds of code
words are green. Therefore, if you notice that a keyword is green, you'll know immediately that you've entered
something incorrectly and that you must correct the typo before Visual Basic will properly recognize the code you're
writing. You can change the colors from the Tools, Options Editor Format page.

Syntax is a programming language's collection of grammar and spelling rules. If you misspell a command or forget a
required punctuation character, a syntax error will occur.

Visual Basic recognizes most syntax errors as soon as you press Enter at the end of a line. Figure BP1.2 shows the
dialog box that appears after a line was typed incorrectly. (The dialog box will not always describe the error as a syntax
error; sometimes the error message is more specific and points out an incorrect command.) If you see the problem
(such as the extra equal sign in this case), press OK and correct the problem. If you need more help, click the Help
button, and Visual Basic will give you more information about the possible problem.

Caution
Visual Basic does not always correctly locate the problem when you type something incorrectly. Sometimes Visual
Basic will not highlight the exact problem (although in Figure BP1.2, Visual Basic correctly found the problem)

because it might not realize a problem exists until a few keywords after the real problem. Therefore, you may have to
look back through the last line or two to locate the real problem if Visual Basic fails to highlight it.

Figure BP 1.2. Visual Basic locates syntax errors as soon as you press Enter.

ummwacmmmmwwmulmmm%m =8 x|

H-n-" EFE B o Bl e T T
B [T Slllce=: T S
_Generdl | = - — OEo
Frivate Sub cmdfxic_Clickl) -
kB Ind = [= 55 Prajectt (Praject
End Sub B Formes
]
A [l Private Sub emaTesc_Click() 5 frmPasswords
L e
_] . 11| b
p f:' I cxcFPFasawvoed. Texe = "Saea™ ._.hi"ru
FH En Beep
e L Heep =p LA & &
= imgFassword.Picture = LoodPi -u.r.l.:l.cnf LY Fe -., am Fileah™ _
6 = £ "Miceosofc Visusl Scudic)Cossor)Graphics)MecaFiley™ _
i "Business\Ccoins.wst™)
@ = Micioealt Visuasd Bagic BE iackColer Dﬂ'l'l-'l"'-
E E i i Tyl T = Simabie
Compslls #nor Caplion Try & packsr=—
Hm
3 drks T
4 Espacted sspiesmm :‘:-\:EL Tn:
waswblods 13~ Copsy F
[I Hel wamTiyls 0 - Sobd
rasvdicth L
atked Trae
tcokr [l senon
15y L - Trarspe
onc M= Sans S
orlranspa Troes
il g ||
hall 1 T
=[=F4] | 2 [Returnstbe name usedin

Lines 6 and 7 illustrate the primary way you'll document your Visual Basic code. You may recall from Day 1,
"Welcome to Visual Basic," that documentation is important because you'll maintain your code over time, and the more
descriptions you place inside the code, the more quickly you'll understand what you've written. Lines 6 and 7 are
examples of remarks. Visual Basic completely ignores any line that begins with a single apostrophe, which indicates
that a remark follows. Remember, remarks are only for people, not for computers.

A remark is a comment inside a Visual Basic program that describes the code. Sometimes, a programmer will put a
remark at the top of a program with his or her name and phone number. This way, if anyone else has to modify the code
later and has a question, the original program author can be contacted.

Do Don't

DO add a line with the date and description of any changes you make at the top of the code. This maintenance
log will let you (and others who might maintain the program) know exactly which changes you've implemented
since the program’s original generation.

You now know part of the Visual Basic programming language! Remarks, although they are for people, are valid and
important Visual Basic statements. You should scatter remarks throughout your program to describe in easy-to-
understand language what the program is doing. As you can see in line 11, you can place a remark at the right of a
program statement if it's a short remark. Try to fit all your Visual Basic code and remarks inside the Code window
without requiring horizontal scrollbars at the bottom of the Code window. Keeping all the code in one window makes
editing and debugging much simpler.

Tip

Take advantage of Visual Basic's code-completion tools. For example, when you type txtPassword.Text in line 8,
Visual Basic displays the properties available for the text box as soon as you type the period. Type T and e and Visual
Basic scrolls to the correct property, Text. You can press the spacebar to continue without having to complete the final
two letters because Visual Basic completes Text for you. Of course, this only saves you two characters, but other
properties, such as IblPrompt.Caption, will go even quicker.

Lines 12, 13, and 14 are actually one single Visual Basic statement that spans three lines. The statement is long due to
the long pathname required to get to the graphic. You can type the entire statement on one line, but doing so would far
exceed the Code window size. Therefore, Visual Basic offers a way to continue one logical line onto two or more
physical lines. When you want to break a line into an additional line, press the spacebar and type an underscore
character. The underscore, being the final character on a line, tells Visual Basic that the next physical line is actually a
continuation of the present one.

Caution

The path that begins in line 12 assumes you have installed the sample images when you installed Visual Basic. If you
did not, the pathname will not work. You may have to search using the Windows Find menu option for the Coins.wmf
file on your Visual Basic installation CD-ROMs to locate the file. To add the graphics, insert your first Visual Basic
CD-ROM in the drive and select Add/Change Options from the screen to add the graphics to your hard disk.

A special problem arises when you want to break long text enclosed in quotation marks (as is being done here). You
must close the quotation marks before the space and underscore and then begin the next line with an ampersand (&)
followed by another quotation mark. When you learn about text strings in Day 5's session, you'll better understand the
need for the ampersand character.

Tip

As you learn more of the Visual Basic programming language, you'll understand why some of the statements in Listing
BP1.1 are indented farther to the right than others.

Here's a final thought before you quit for the day: You may be surprised that this application uses the Test Password
command button. Why not let the user type the password and press Enter instead of having to click the extra command
button to test the his or her password? As you'll learn in Day 7, "Advanced Keyboard and Screen Support,” sensing
certain keystrokes, such as Enter, would add extra code to this program. This application was kept as simple as possible
because you're still early in this 21-day course.

Day 4. Creating Menus

A menu bar offers a special kind of control that lets your users select options and issue commands. Some menu options
might mimic controls on your form. For example, you may want to include an Exit command button as well as a File,
Exit menu option to let your users exit your application. In addition, some menu options mimic toolbar buttons that
you'll supply. Other menu options might be the only way you provide access to certain areas of your program. Visual
Basic makes adding menus simple.

Today, you learn the following:

e More about the Application wizard's generated menus

e What kinds of menu options are available to you

e How to create menu bars, drop-down menus, and submenus

« About menu event procedures

e How to use the Code window's Object and Procedure drop-down list boxes to enter event procedures quickly

Using the Application Wizard for Menus
You've already seen the Application wizard in action in Day 1's lesson. Figure 4.1 shows the Application wizard screen
that enables you to generate a menu bar for your application. After you click the menu options and submenus you want
in your applications, the Application wizard generates the appropriate menu controls and places them in the generated
application.

Figure 4.1. The Application wizard helps you generate standard Windows menu bars and options.

B Application Wizard - Menus |

Select the Menus and Sub Menus you would like in your
application?

You can always use the Menu Editor bo modify the menus after
the application is created.

Sub Menus
&
v &Edlt _I | B0pen...
| BaiEi X | v &Close
&Tools v [Separator]
o Bivindiows T | | BSave
| EHelp v Save BAs, .,
+ | v Save Agl
v [Separator] Reset |
Help | Cancel | < Back Finish |

Tip

Menus are useful controls because your users already know how to use them. Users are more likely to use menu
commands they understand.

If you've used many Windows programs, you'll recognize most or all of the Application wizard's menu options. Menu
bar options such as File, Edit, and Window appear in many Windows programs; the corresponding submenu options
that the Application wizard provides are also familiar, such as the Exit option on the File menu.

Although you'll probably never include as many menu bar options and submenus as a huge mass-distributed program
such as Microsoft Word does, Word and the other top-selling Windows programs do provide good guidelines for menu
design. Almost every Windows program includes a File, Exit option. Virtually every Windows application includes

Edit, Cut and Edit, Copy commands. Your menus will not perfectly match other Windows applications because your
application’s goals will differ. Nevertheless, when you can follow general Windows menu guidelines, you should do so.
Your users then will have less trouble adapting to your program. The faster your users learn your program, the more
likely they will use your program and keep using subsequent editions you produce.

The Application wizard makes generating an initial menu so easy that you should strongly consider using the
Application wizard to create your program's shell if you want your application to contain a complex menu. Starting in
the next section, you'll see how easily you can create your own menus using the Visual Basic tools, but the Application
wizard is even easier to use. All you have to do is click an option to include it in your final application. Even if you
don't want a toolbar or anything else the Application wizard can provide, you may want to create an initial application
with the Application wizard just to generate an application with a full menu before you add the details and special
menu options that your application requires.

Do Don't

DO check out the online MSDN help's reference book called, The Windows Interface Guide to Software
Design. Make sure you follow the Windows standards for menus and other controls. By following the
guidelines, you can be assured that your application conforms to the Windows standard and will be as familiar
as possible to your users.

Learning About Menus

You've used Windows menus many times before, including during the first three days of this course because Visual
Basic includes a standard Windows menu bar. Figure 4.2 shows the Visual Basic menu with the File menu dropped
down and the parts of the menu labeled. Even if you are extremely familiar with Windows programs, take a moment to
study the figure's callouts so that you will know the Visual Basic names of the various menu items. The rest of today's
lesson describes how to include these items on your own application's menus.

Figure 4.2. Visual Basic can create a standard Windows menu and options.

Menu bar Accelerator key
O e [0 e fromi Fgwsl Dele) Do Qoey Diapem [l Gdblee Wedos Hele =l x|
2 R e et b ¥ s HFSAWR2 40 h ae o7 e s
(B Opes Prowct.... S
Ak Pt ..)
[—— — Enabled aptions

T — S clected option

Sarvy Frofect &2

' LSk adi——Shortcut
Produces a dialog box e Pl ...
}—Diia bled options
& g o]
O prive ot
—— Separator

Caption

g oL

Lo W et L vl
& AN R O P b
14y beoumentsl ieiigh- Tobp
841 Ty Do et ol Mg -8 b

gt Sy

Tip

When one of your application's menu options displays a dialog box, be sure to end the option with an ellipsis as Figure
4.2 shows. When you create a menu with a submenu, Visual Basic takes care of adding the right-arrow indicator.

Some menu options produce additional menus. Figure 4.3 shows the Visual Basic View menu with a submenu coming
off the Toolbars option. Notice the checked option on Figure 4.3's Toolbars submenu. The checked option indicates an
option that the user turns on or off by selecting the option. The Menu Editor lets you create checked menu options as
well as regular menu options.

Figure 4.3. Visual Basic creates submenus for you when you request them.

g, Propeet] - Microroll Vissal Bask: [dosgn] - [Foem] [Foem]]
£3 fle EAF | Veew Project Fomat Qetag @n Ouery Diagram [ooks dddine dindes fep =18 x|

] cnde

B st SriftaFY

N choect Browsa 2

1 predste window Ot

[Locas Window

ﬂwmhm

B progeer Expiwer ool

E5' Fropeities Yndow =

) Eoem Layouk Wandow
FrepertyPages Shftsfd

Tl (]
Zos '
St P e 3
B Teobog
o, Dt iew Wirdions
Colkw Palette
[foobes Submenu
A emisl Campedant Manage

Checked option

Introducing the Menu Editor

The Toolbox window doesn't contain any menu-creation tools. Instead, Microsoft offers a special menu tool called the
Menu Editor, shown in Figure 4.4, that you use to create menus. From the Form window, you can press Ctrl+E (the
shortcut key for Tools, Menu Editor) to display the Menu Editor.

Figure 4.4. You'll use the Menu Editor to create menus and submenus.

et 5]

Cagiion [i I

oz | [cwol |

nder [Shortoutr dora) - =
—Menu properties

Heipontesdde | () NepohatePoshion: |0 . Hone = p p

™ Checkad = Eraied [I Hirciondist

ol alols] [] _pmt | o | |

Menu control list box

The Menu Editor helps you design menus for your applications. In a way, the Menu Editor acts like a Properties
window for the menu bar because you'll designate the names of the menu controls as well as the captions that the users
see on the menus and other related information from within the Menu Editor. The Menu Editor has been around in
Microsoft programming products for many years with little change during that time. The Menu Editor's longevity is a
testament to its power and simplicity.

The top half of the Menu Editor, the Menu properties section, specifies the control properties for one menu option. That
option can appear on the menu bar or on a submenu that pulls down from the application's menu bar. The Menu control
list box adds to a tree-structured diagram of your menu bar as you build it.

Working with the Menu Editor

Perhaps the best way to learn how to build application menus with the Menu Editor is to create a simple application
that includes menus. You've yet to master file-related operations and other advanced Visual Basic concepts, so this
sample application's menu will not conform well to the standard Windows program menu. Nevertheless, the application
does acquaint you with the steps needed to build menus, and you'll see how easy the Menu Editor is to use.

The following are the goals of the application:

o Display a label in the center of the form.

« Offer a menu option that lets the user change the label's background color.

o Offer a menu option that lets the user change the label's text.

o Offer an exit menu option that lets the user terminate the program.
As you can see, the program will be simple, but you'll gain insight into menus by creating it.
First, start a new Standard EXE application from the File, New Project menu option. Assign the form the name
frmMenu, change the form's title bar to read Menu Application by changing the Caption property. Finally, resize the
form to a Height value of 6030 and a Width value of 8415.

Add a label to the form with these properties:

Name: IbIMenu

Alignment: 2-Center
BackColor: Red (click the BackColor"s Palette tab and select the first red in the list of colors that appears)
BorderStyle: 1-Fixed Single
Caption: Select a menu option
Font Size: 24

Font Style: Bold

Height: 615

Left: 1800

Top: 2160

Width: 4935

Note

Your PC can display from a few hundred to more than a million colors. Each color has associated with it a unique
numeric color code value. Visual Basic uses the hexadecimal numbering system for the color values. Selecting the red

color from the palette, however, is much easier than typing the red color's exact hexadecimal value, such as
&HOO0000FF& .

A hexadecimal numbering system, also called base-16, is a counting system based on the number 16. In the normal
base-10 numbering system, 10 unique digits exist, 0 through 9. In base-16, 16 unique digits exist: 0 through 9, plus the
letters A, B, C, D, E, and F to represent the remaining "digits." Hexadecimal numbers are always preceded by &H to let
Visual Basic and the programmer know the number is a base-16 number and not a normal base-10 value. You can
represent a numeric value using either base-10 or base-16, but base-16 offers a more compact format for large values.
With over a million color combinations available, the base-16 numbering system enables you to use fewer digits to
represent each shade of color than the base-10 would allow.

Your screen should look like the one in Figure 4.5.

Figure 4.5. You have now placed a label that you'll control with menu options.

iy, Propect] - Miciosoli Visual Bass [design] - [hmMenu [Faim)]
[o] Eis Edt Yiew Project Fonmst Debug Bun Quary Disgram Took AddDne Yandow Hel =181
H-a-BEE B oo | s HEFSER AM 0 so 1] #415 = 60

flbdee - Fromct - Prosect | EY
p— . Won Application Hﬁlﬂ OoE =
aua uwmuuu Eprmﬂngrn-.pwr:

=) = Formes
P e (fami

You are ready to begin the application's menu. Click the form and press Ctrl+E to display the Menu Editor. Most of the
fields in the Menu Editor will be blank because you must fill in values as you specify menu options.

A field, often represented by a text box, is a generic name for a location where the user or programmer types values in
an application. The Menu Editor includes many fields, as do most dialog boxes, where you type values.

Here are the values that will appear on the menu bar you now create:

o File
e Color
e Message

Notice that the menu bar options all will have accelerator keys so that the user can select a menu bar option using the
keyboard. When you add items to the Menu Editor, those items either appear on the application's menu bar or on a pull-
down menu depending on how you specify the values. Follow these steps to add the File menu option to the
application's menu bar:

1. Type &File for the caption field. As with all other Visual Basic values, the ampersand indicates that the F will
be the accelerator key for the menu selection. As you type the caption, Visual Basic displays the caption in the
Menu control list box in the bottom half of the Menu Editor.

2. Press Tab to move to the Name field. Tab and Shift+Tab shift the focus between the Menu Editor fields.

3. Type mnuFi le for the name of the first menu option.
Tip

Keep in mind that menu options are special controls, and like other controls, they have names.

Do Don't

DO use a consistent naming convention for menu names. Begin all menu names with the prefix mnu followed
by the name that appears on the menu bar. Therefore, the menu bar's File menu option is named mnuFile.
When you create submenu options, use the related menu bar name as a prefix to the submenu name. In other

words, mnuFi leExit is a great name for the File, Exit option.

4. Leave all the other fields alone and click the Next button to prepare for the remaining menu bar options. The
Next button lets the Menu Editor know that you are through with the first option and want to enter another.

5. Type &Color for the next menu bar caption and type mnuColor for the name.

6. Click Next to add the next item.

7. Type &Message for the third and final menu bar caption and type mnuMessage for the caption. Your Menu
Editor should look like the one in Figure 4.6.

Figure 4.6. The first three menu bar options now exist.

Caption: | &Message oK |
Mame: | mruMessage Cancel |
ndex: [shortcut: [(hone) =l
HelpContextiD: [0 MNegghiatePosition: [0-Nore |

™ checked I Enabled I wisible I windowList

S| e8] [et]| west | oo |

Three menu |f-He
. — EI.':__I:I'IC\T
bar options

Test the Menu

You can test your menu at any point during its creation. Click the OK button to close the Menu Editor. The Form
window shows your application's new menu bar. Press F5 to run your application. Because you've not yet created
submenus or written event procedures, nothing happens when you select from the menu bar, but you can already see
how simple adding menus can be. Click the Window Close button on the running application (or click the Visual Basic
toolbar's End button) and press Ctrl+E to return to the Menu Editor.

Adding a Pull-Down Menu

You can either create pull-down menus as you build the menu bar or add the menus later. If you create the complete
menu bar first, however, as you've done here, you'll have to insert the menu options in their respective locations when
you are ready to add them. The Menu Editor's Insert button lets you do just that.

Note

The Insert button inserts a blank menu bar or menu position. Before clicking Insert, highlight the menu option that
appears after where you want to insert an option. In other words, to add a menu option to the File menu, click to
highlight &Color in the Menu control list box and then click Insert; Visual Basic adds a blank row between &Fi le and
&Color so that you can add a menu option to the File menu.

Somehow, Visual Basic must distinguish between a primary menu bar option and a pull-down menu option. If you
inserted the Exit option after File using the same technique you used in the previous sections, Visual Basic would add
the Exit option to the menu bar between File and Color and not as a File menu option.

After inserting a new menu position after &File, click the Menu editor's right arrow button. Visual Basic adds an
ellipses after &File that indicates the current item will be a menu option and will not appear on the menu bar. Click
Caption and type E&xit for the new option's caption. As you type, notice where the Menu Editor places the option:
indented to the right of the other options at the bottom of the Menu control list box. The indenting shows that the item
is an option from the menu that precedes it. If a menu has yet another menu coming from it, often called a submenu,
you would click the right arrow twice to add two sets of ellipses before the submenu option.

Caution

Too many submenu levels can get confusing. At most, include two levels of menus—one menu that drops down from
the primary menu bar and possibly one submenu coming off that.

Note

Do you know why you didn't use the E in Exit as the accelerator key? The standard Windows File, Exit option always
uses the letter x for the shortcut, and you should follow the standards everywhere you can.

Type mnuFileExit for the name of the option. You've now completed the short File menu and its drop-down menu.
You can run the program to see that selecting File now produces the drop-down menu with the Exit option. Of course,
nothing happens when you select the Exit option because you've yet to write event procedure code for the menu.

Add Three Checked Options

The second menu, Color, will contain three options: Blue, Green, and Red. These colors will be mutually exclusive; the
label will not be able to be all three colors at once, but only one color at a time. Such colors make perfect candidates for
checked menu options.

A checked menu option is a menu option that includes a check mark indicating that the option is set.

Study the drop-down Color menu shown in Figure 4.7 to see the menu you are about to create. As you can see, the
check mark appears next to one menu option, and the other two options are not checked. When you create the Color
menu, you will make Red the option that's first active because you are setting the label's background color to red at
design time. The user will first see the red label until the user selects a different color.

Figure 4.7. Only the checked menu option is active.

. M Applcabion

Fied

Only one color

Caution

Actually, more than one menu option can be checked at once, but through programming the menu's event procedures
properly, you can ensure that only one is checked. When the user checks a different option, the original one appears
unchecked.

Then follow these steps to add the Color menu options:

1.

2.

10.

11.

Open the Menu Editor if you closed it in the previous section.
Click the &Message option in the Menu control list box to highlight that option.

Click the Insert button, click Right Arrow, then click Insert two more times to add three empty rows for the
Color menu options.

Highlight the first blank row where you'll add the Blue option.

Type &Blue for the caption and mnuCollorBlue in the Name field. When the user first runs the program, the
Blue option will be unchecked to indicate that Blue is not currently selected.

Click Next to enter the next option.

Type &Green for the caption and mnuColorGreen for the name of the next option.
Click Next to enter the next option.

Type &Red for the caption and mnuColorRed for the name of the next option.

The Red option is to be checked when the user first starts the program. Therefore, click the Checked field to
place the check mark next to Red.

Close the Menu Editor and run your application to test the Color menu. Your program's window should match
that of Figure 4.7.

Not only can you provide checked menu options, but you can also, initially from the Menu Editor and also through
Visual Basic programming statements, enable and disable menu options. Figure 4.8 shows the Visual Basic Debug
menu with several enabled options and several disabled menu options. Visual Basic grays menu options that are
disabled, so the user knows not even to try the option.

Figure 4.8. The Enabled property determines which menu options are enabled and disabled.

Debug

%2 step Into & l—Enabled options
I:_E Step Cver Shift+Fg__

Disabled options

Add Watch...

Clear All Breakpoints Chrl+Shift+F9

The Menu Editor's Enabled option lets you indicate whether you want an option enabled when you design the menu.
Depending on the application, you might enable menu options as they become available and then disable some options
if the user should not be allowed to select an option. Many word processors disable the Paste option on the Edit menu,
for example, until the user copies something to the Windows Clipboard. Your application's menu is little more than a
set of controls, and the various Menu Editor fields are all properties for the controls. Therefore, your Visual Basic code
can modify the Enabled property for any menu item, setting it to True or False as you'll learn how to do in tomorrow's
lesson, and the option will be enabled and available for the user to select or disabled and unavailable until the program
once again enables the option.

Notice that the Debug menu, as well as most others, have shortcut keys to the right of menu options. F8 is the shortcut
for Step Into, and Shift+F8 is the shortcut key for Step Over. (Accelerator keys are often called shortcut keys when
referring to the keystrokes that trigger menu options, such as Ctrl+C for Edit, Copy.) If you want to add shortcut keys
for some of the menu options, select the shortcut key combination you want to use from the Shortcut field's drop-down
list box. Most shortcut key combinations use the Ctrl key, such as Ctrl+C.

Note

You'll see that seven options in the Debug menu (some are disabled) have graphic icons to the left of the options. These
icons indicate a corresponding toolbar button. In other words, a Debug toolbar button exists for the Debug, Step Into
option, and the icon on the toolbar matches that of the menu option. The icons give users an added chance to learn
which toolbar buttons mimic the various menu options. Unfortunately, Visual Basic provides no way to add an icon to
the left of menu options in your application menus although some third-party controls are available that do offer this
feature.

Completing the Menu's Message Submenu

The Message option will produce a drop-down menu with three options and only one checked at any one time, as to the
Color menu. The checked option will be the message that currently appears in the label. Just for practice, you're going
to format the Message menu differently from the normal way of doing things. The Message menu will look like the one

in Figure 4.9.

Figure 4.9. A separator bar lets you group menu options.

Separator bar

. Menu Application

Enabled option

Note that the Message menu has a separator bar. A separator bar separates some menu items from others. Your user
cannot select a separator bar. As the user presses the down arrow key when a menu is displayed, the highlight moves
over the separator bar to the next menu option.

Follow these steps to add the Message menu and include the separator bar on that menu:

1.

2.

Press Ctrl+E to display the Menu Editor.

Click the row beneath &Message in the lower half of the Menu Editor to prepare the Menu Editor to receive the
next option.

Click the right arrow to indicate that you are about to enter a menu option that will drop down from the menu
bar's Message option.

Type &Initial Message and mnuMessagelnitial for the new option's caption and name.

Click the Checked field to place the check mark on the first option when the program begins.

6. Click Next to prepare for the next menu item. Notice that Visual Basic indents the next item automatically
because the previous item was indented. (If you do not want an item indented, but you want to make it a menu
bar item, click the left arrow to remove the ellipses. The up and down arrows let you move an item up or down
the menu tree to other options.)

7. Type asingle hyphen (-) for the caption of the next menu item. All separator bars have this caption. When
Visual Basic encounters the hyphen for a menu caption, Visual Basic turns that hyphen into a separator bar.

8. Type mnuMessageSep1 for the separator bar's name. Separator bars are objects and, as such, require unique
names. You could name subsequent separator bars on the Message drop-down menu mnuMessageSep2,
mnuMessageSep3, and so on.

Caution

Separator bars cannot be checked, disabled, or have shortcut keys.

9. Click Next to prepare for the next menu option.
10. Type &VB is Simple! for the caption and mnuMessageSimple for the name and click Next.

11. Type &Programming is Fun! for the caption and mnuMessageProgramming for the name of the next option.

Your Menu Editor window should look like the one in Figure 4.10. Close the Menu Editor and run your program to see
the menu. You are almost done. The only thing left to do is add the code that activates the menu.

Figure 4.10. Your menu is now finished.

Menu Editor X
Caption: | &Programming is Fun! QK
MName: mnuMessageProgramming Cancel
Index: Shortcut: |(N-:lne} -
HelpContextID: | 0 NeggtiatePosition: |.;.-N.;,|-,e v
[~ Checked [V Enabled [v Visible [~ WindowlList

Q-I -bl 1‘| vle Mext Insert | Delete |
&File -
et —
&Color

«=&Blue

wofiGreen

weRed

&Message

wodnitial Message

Tip

The Application wizard lets you add separator bars to the program it generates. Select the option labeled [Separator]
when you want to add a separator to a wizard-generated program.

Finalize the Menu with Code

You must now add the procedure event code for the menu you just created that will make the menu do work. As with
the previous days'lessons, don't worry about the details of the code at this point. For now, concentrate on getting the big
picture. A menu and its options are just controls that produce events at runtime. Your users will interact with your
application's menu. Each time the user selects from a menu, that selection generates a Click event. That menu option's
Click event procedure then executes.

You should now know, after yesterday's lesson, that the menu option named mnuFi leExit would require a Click event
procedure named mnuFileExit_Click (). The procedures for the other menu options are named accordingly. Listing
4.1 contains the complete code listing required for the application. You can enter the code in several ways:

You can enter the code one procedure at a time. From the Form window, select the menu option you want to
add code for. Visual Basic will open the Code window and display the wrapper lines of that option's Click
event procedure for you. You then can fill in the body of the code. Close the Code window and click the next
menu option to enter its code body until you've completed the code.

Wrapper lines, or wrappers, are a procedure's first and last line. You learned the requirements of an event
procedure’s wrapper line format in yesterday's lesson, but you did not know at the time that the lines were called
wrappers.

After entering the first event procedure using the method just described, you can select the next menu option
from the Code window itself. Toward the top of the Code window are two drop-down list boxes labeled Object
and Procedure. Figure 4.11 shows an open Object list. Select the next menu option for which you want to write
a procedure from the Object list, and Visual Basic places the wrapper lines for that event procedure in the Code
window beneath the previous event procedure. You can then complete the procedure's body. Continue adding
event procedures until you've added all of them for the menu options.

Figure 4.11. You can request another pair of wrapper lines from inside the Code window.

Object list Procedure list

M Project] - frmMenu |Code) =] E3
|[Generai,'p | ﬂ |[Dec|aral'mns} | ﬂ

mnuColorGreen

mnuColorRed

mnuFile

mnuFileExn
mnulesagelnitial
mnuMessage
mnuMessageProgramming

== | =

Note

In this application, every object other than the label is a menu control. Menu controls only support the Click event, so
Click is the only event you'll see in the controls'Procedure drop-down list box. You can add an event procedure for
other kinds of events using the Code window's drop-down list boxes when you work with controls that support
additional events. For example, if you selected this application's label control from the Code window's Object list box
and then opened the Procedure list box, you would see several event names listed because the label control supports
several kinds of events.

e You can open the Code window and type the code from beginning to end. This method takes extra time,
however, because you must type the wrapper lines yourself.

Tip

The Code window's Object and Procedure drop-down list boxes are useful for locating code you've already entered but
want to edit or view. For example, if an application contained multiple event procedures for several kinds of controls,
and you wanted to locate a specific command button's double-click event procedure, display the Code window and
select the command button from the Object drop-down list box. Then select DbIClick from the Procedure drop-down
list box, and Visual Basic locates and displays the code for that event procedure in the Code window.

Listing 4.1 The menu code controls the label's color and contents.

- Private Sub mnuColorBlue_Click()
2: " Color the label Blue and check the Blue

3: " menu option. Make sure both the Red
- and Green options are unchecked

5: IbIMenu.BackColor = vbBlue

6: mnuColorBlue.Checked = True
: mnuColorGreen.Checked = False

8: mnuColorRed.Checked = False

9: End Sub

10:

11: Private Sub mnuColorGreen_Click()
12: ® Color the label Green and check the Green

13: - menu option. Make sure both the Blue
14: -~ and Red options are unchecked

15: IbIMenu.BackColor = vbGreen

16: mnuColorBlue.Checked = False

17: mnuColorGreen.Checked = True

18: mnuColorRed.Checked = False

19: End Sub

20:

21: Private Sub mnuColorRed_Click()
22: " Color the label Red and check the Red

23z " menu option. Make sure both the Blue
24: ¢ and Green options are unchecked

25: IbIMenu.BackColor = vbRed

26: mnuColorBlue.Checked = Fasle

27: mnuColorGreen.Checked = False

28: mnuColorRed.Checked = True

29: End Sub

30:

31: Private Sub mnuFileExit _Click()
32: ® Terminate the program

33: End
34: End Sub
35:

36: Private Sub mnuMessagelnitial _Click()
37: * Change the label"s message to the original

38: " message and check the proper menu option.
39: *© Make sure the other options are unchecked
40: IbIMenu.Caption = "Select a menu option"
41: mnuMessagelnitial .Checked = True

42: mnuMessageProgramming.Checked = False

43: mnuMessageSimple.Checked = False

44: End Sub

45:

46: Private Sub mnuMessageProgramming Click()

47: " Change the label"s message to a replacement

48: * message and check the proper menu option.
49: * Make sure the other options are unchecked
50: IbIMenu.Caption = "Programing is fun!”

51: mnuMessagelnitial .Checked = False

52: mnuMessageProgramming.Checked = True

53: mnuMessageSimple.Checked = False

54: End Sub

55:

56: Private Sub mnuMessageSimple_Click()
57: ® Change the label"s message to a replacement

58: -~ message and check the proper menu option.
59: - Make sure the other options are unchecked
60: IbIMenu.Caption = VB is Simplel™

61: mnuMessagelnitial .Checked = False

62: mnuMessageProgramming.Checked = False

63: mnuMessageSimple.Checked = True

64: End Sub

Again, don't worry about the code's details, but do make sure you understand how event procedures work before going
further. Starting tomorrow, you will begin to learn the details of the Visual Basic language, so understanding how the
language supports event procedures now will help you tomorrow when you tackle the code specifics.

Run the program and test it. Select the Color and Message menu options several times to ensure that the check mark
moves accurately as you select options and that the label updates accordingly. You can change the colors before or after
you change the label's text.

Summary

Today's lesson taught you how to work with Visual Basic menus. The Menu Editor operates like a special Properties
window that lets you easily set menu control values. The Menu Editor lets you manage the checked and visible
properties of menu options and also lets you specify shortcut keys for the various options.

Tomorrow's lesson dives into the specifics of the Visual Basic programming language. You'll learn how Visual Basic
recognizes and stores data, and you'll learn how to assign property values at runtime with the code that you write.

Q&A

Q: Why don't menu bar selections generate Clickevents?

A: Actually, they do unless a drop-down menu appears on the menu bar option. If no drop-down menu appears
from a menu bar, the menu bar option will generate a Click event when the user selects the menu bar option.
If a menu appears, however, the menu takes priority over the Click event, and the drop-down menu will
appear instead of a Click event being generated.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. You should understand the quiz and exercise answers before
continuing to the next chapter. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: What do you call the dialog box that helps in your creation of menus?

2: True/False. Menu options are controls.

3: Which event do all menu options support?

4: What is the term shortcut key usually reserved for?

5: How do shortcut keys relate to menu usage?

6: What events do menu options generate if the user uses a shortcut key to access the menu options?

7: True/False. The Menu Editor helps you design your menus and create Click event procedure code for the
menu options .

8: What's the purpose of the Checked menu option?

9: True/False. More than one menu option can be checked at once.

10: InListing 4.1, what are lines such as 57, 58, and 59 used for?
Exercises

1: Describe the difference between entering a menu bar option and a drop-down menu option within the Menu
Editor.

2: Bug Buster: Manuel the menu master is having trouble with his menus because the check mark does not go
away from a menu option when the user selects a different checked option. Can you give Manuel some
general advice? (You don't have to write any code yet.)

3: Add shortcut keys to every menu option in the menu application that you created today. Make sure that no

two menu options have the same shortcut keys.

Day 5. Analyzing VB Data

Today's lesson begins your foray into Visual Basic programming using the Visual Basic programming language.
Instead of working with graphical objects such as command buttons, you'll type text into the Code window to give your
applications the brains they need to make things happen. You'll begin first by looking at Visual Basic data, and
tomorrow you'll learn how to manipulate that data using commands and controls on the form.

Today, you learn the following:

More about the Code window

The kinds of data you can declare

How to distinguish between data types

The data storage requirements of Visual Basic data

How to declare and assign values to variables

Why Visual Basic uses an order of operators when calculating

A Few Preliminaries

When you're working with code, you need to know a few preliminary details. You need to understand more fully just
how code fits in with an application's forms and controls. To begin, remember that the Project window lets you manage
your applications and view all the files associated with your application. Although you write event procedures inside
the Code window, event procedures don't require their own files. They stay with their respective controls. Therefore,
your projects to this point have included only one form, and that form holds controls and the event procedures related
to those controls. As you'll see, a form can hold code that is not specifically event procedure code but is more general
purpose also.

Some projects hold other kinds of code as well. You have learned that all code appears in procedures and that Visual
Basic supports both subroutine and function procedures. Event procedures fall into the subroutine category, but as you
progress through these 21 days, you'll learn how to write function procedures as well. If a procedure is not an event
procedure for a particular control, that code can appear inside a separate code module. The Project window lists the
module if one appears in the project.

A module is a file that holds procedure code. The file that holds the form and its code is technically called the Form
module, so you've already worked with modules.

If a project contains several forms, the project contains several Form modules because each form's controls must
respond to events; therefore, each form has its own set of code in the Form module. One of the first points to consider
when you're adding multiple forms to a project is which form will be the first form to appear on the screen when the
user starts the application. The first form you create is the default startup form, but you can designate another startup
form by selecting Project|<project name>Properties from the Visual Basic menu, where <project name> is the name
of the current project. Visual Basic then displays the Project Properties dialog box, as shown in Figure 5.1. As you
progress through these lessons, you'll learn how to program Visual Basic so that a secondary form appears when
needed.

Figure 5.1. Designate the startup form from the Project Properties dialog box.

Gﬂﬂluhumﬂltwm-mlbml
Panject Tpe: Db Object: \
7] [Fomi — The startup form’s name goes here
Pragect Hame:
| Profec
Project Help
g File hgeme; Contest [0:
| o e
Propect Descriphon:
[
- The st Pkl
[E]
I Unorads Actived Cortrok e
r : ¢ =
-
o | Concel | Hep |

Working Inside the Code Window

Now that event procedures are familiar to you, you'll work with event procedures over the next few days to learn the
fundamentals of the Visual Basic programming language. Before starting on the language specifics, however, you need
to understand that Form modules hold not only event procedures but also a declarations section as well. Each module
that holds code also holds a declarations area.

A declarations section reserves space for and names data areas used throughout the rest of the module. You don't have
to declare controls in the declarations section, but you often must declare other Visual Basic data storage areas in the
declarations section.

The declarations section always appears at the top of every module that contains code. Therefore, the declarations
section appears before any event procedures in a form module. Any time you type code before a module's first event
procedure, that code is considered to be general purpose and not linked to a specific control. For the early part of your
Visual Basic programming, you'll declare data in this area, so you'll treat the whole area as a data declaration section.
Later, you'll also write general-purpose procedures in this area.

Study the Code window in Figure 5.2 to help put all this information into perspective. The details aren't important at
this point, but the general concept is. The selected text makes up the declarations section starting with the first
statement, which reads Ooption Explicit. Notice that the Code window's Object and Procedure drop-down list boxes
read (General) and (Declarations). The Code window lets you know where each line of code falls in the program'’s
scheme through these drop-down list boxes.

Figure 5.2. The Code window contains several sections.

—Declarations section

Pugject] - Forml [Code) M= ||
(Gariad)] [t atioens -]
- d
Opta & =]
[
D ks Inte;
D sTotml As Zingls
Frivate Sub Update <Count ()
;n:focnl:o;.an: = intTotel{ount = 1
General-purpose End Sub
— Private %ub WMpdate Total () -
procedures e oty ,_
angValueToral = angWalueToral * sngRaceFactor
End Sul
Event procedures start Priwate Cub Forw Load(]
He.Move 0, (Screen.Height Hz.Heighe) ¢ 2
He . Show
DoEvenca
Erd Sub
Private S5ub Form Paink ()
t up d fla -
[=f= +] | X

The next two procedures are not event procedures, and you know that fact from their names. Remember that an event
procedure must contain an underscore that separates a control name from an event name. If you were to place the text
cursor anywhere within the Update_Count() procedure, the Code window's Object drop-down list box would still read
(General) because the code falls within the general-purpose section of the module. The Code window's (Object) list
box, however, would read Update_Count because that is the name of the selected procedure, and the Code window
lists the procedure name in the (Object) list box for all procedures that are not event procedures.

Okay, enough with the big picture, you're now ready for the nitty-gritty details.

The Data in Visual Basic

Visual Basic computing requires that you process several types of data. For example, you'll work with names,
addresses, dollar amounts, large numbers, small numbers, and logical data that may be true or false (or yes or no).
Visual Basic supports many data types so that it can handle all your programming needs.

Visual Basic, like most programming languages, gets picky about its data, so you must go along with Visual Basic's
data requirements. Visual Basic requires that, before you work with a data value, you tell Visual Basic exactly what
type of data the value is. Therefore, the place to begin learning Visual Basic programming is to learn about the data
types. Visual Basic supports 12 data types.

Numeric Data
Generally, all numeric data falls into these two categories:

e Integers. Whole numbers without decimal points such as 614, 0, —934, and 3,918,938. Integers represent ages,
counts, year numbers, and other whole number values.

o Decimals. Numbers with decimal points that can represent fractional values such as 8.709, 0.005, and —
402.35534. Decimals (sometimes called floating-point numbers) represent temperatures, dollar amounts, and
interest rates. All decimals require decimal points even if the fractional portion to the right of the decimal point
is zero.

These sample numeric values are called literals or sometimes constants because they never change. The value 614 is
always 614. In the later section "Working with Variables," you'll see how to declare data that can change.

Caution

Integers and decimals are stored differently inside Visual Basic, and Visual Basic treats them differently even though
people don't always treat them differently. For example, —8 is not the same as —8.00 to Visual Basic.

Some data types consume a lot of memory and are inefficient, whereas others consume less memory and compute more
quickly. You cannot tell by looking at a number how much memory it consumes. The number 29,999 requires the same
number of memory locations as the number 701.

Tip

As you learn about the data types that Visual Basic supports, you'll also see how much memory each data type requires.
Although memory requirements are less important now than they used to be, you, as a programmer, will want your
program to run as efficiently as possible. Therefore, if you have the choice of using two or more data types for a value,
use the data type that consumes the least amount of memory.

Table 5.1 describes each of the seven numeric data types that Visual Basic supports, the storage requirements of each
data type, and the range that each data type covers. Use the storage requirements and ranges to determine the data type
you want to use when you declare data. For example, if you need to represent negative numbers, you cannot use the
Byte data type. If you need a way to hold people's ages, however, the Byte data type would be the most efficient and
best data type to use.

A byte is one storage location in a PC's memory.

Table 5.1. Visual Basic supports seven numeric data types.

Type Storage Range

Byte 1byte 0to255

Integer 2 bytes —32,768 to 32,767

Long 4 bytes -2,147,483,648 to 2,147,483,647

Single 4 bytes -3.402823E+38 to —1.401298E-45 for negative values; 1.401298E-45 to 3.402823E+38 for
positive values

Double 8 pytes -1.79769313486232E+308 to —4.94065645841247E-324 for negative values;
4.94065645841247E-324 t0 1.79769313486232E+308 for positive values

Currency 8bytes -922,337,203,685,477.5808 to 922,337,203,685,477.5807 (the extra precision ensures that
monetary calculations are kept accurate to two decimal places)

Decimal 12 +/-79,228,162,514,264,337,593,543,950,335 if you use no decimal; +/-
bytes 7.9228162514264337593543950335 with up to 28 decimal places (the Decimal data type is not
fully supported in Visual Basic yet but remains for compatibility with future versions)

Note

Some of the data values in Table 5.1 are expressed in scientific notation.

Scientific notation is a shortcut method for approximately representing extremely large or extremely small decimal
values. The E means exponent (stored as a single-precision, Single, data type), and high-precision scientific notation
numbers use a D for double-precision exponent (stored as a Double data type). Lowercase e and d are allowed as well.

To convert a value from scientific notation to its numeric equivalent, multiply the number to the left of the E or D by 10
raised to the number on the right. If the scientific number contains a negative sign after the E or D, divide the number
to the left of the E or D by 10 raised to the number on the right. For example, 5.83E+5 is 5.83 times 10 to the 5th
power, or 5.83 times 100,000, or 583,000 stored as a single-precision value. Although the scientific notation is not
shorter in this case than writing 584,000, the scientific notation would be much shorter for 5.83E+125 (which translates
to 583 followed by 123 zeros). The number —-3.2D-6 represents —3.2 divided by 1,000,000 or —.0000032 stored as in a
Double memory location.

The issue of data types may still seem unimportant because you've yet to learn about data storage areas, but you will
shortly in the section called "Working with Variables." When you type the literal value —8.3 in a program, you don't
have to specify that the literal is the Single data type. You must be concerned, however, with the type of the location
that will hold that literal value. You cannot store —8.3 in an integer location and expect Visual Basic to represent the
value properly.

Sometimes when you use a literal, you'll want to guarantee that Visual Basic uses a specific data type for that literal.
For example, suppose that you are going to use —8.3 in a calculation that requires high-precision mathematics combined
with values that are Double. If Visual Basic assumes the —8.3 is a Single data type, the calculation may not be carried
out to as many decimal places as needed in some cases. Therefore, you can add a data-type suffix character to literals to
ensure that Visual Basic treats the literal as a specific data type. Table 5.2 lists these data-type suffix characters. If you
type -8.3# in the calculation, therefore, Visual Basic knows that you want the —8.3 treated from the beginning as a
double-precision number with the highest decimal accuracy possible.

Table 5.2. Visual Basic suffix characters for literals.

Suffix Data Type Represented
& Long
! Single
Double
Currency
Caution

The E and the D in scientific notation values represent Single and Double data types, so no suffix character is needed
for scientific notation values that you type because the scientific notation itself declares the literal's type.

Visual Basic respects the Windows International settings you've specified for your PC. Therefore, if you've set up to
use your PC for a European country, for example, you use the comma in place of a decimal point.

Tip

The good news is that, despite this section's heavy theory, you don't have to worry too much about data types when
you're working with literal values. If you need to assign a number to a control's property, just do so. Only in special
cases, such as high-precision scientific and mathematical work do you need to concern yourself with whether a literal is
single or double precision. One of the most important things to watch for is that you don't embed special characters
inside a number. For example, don't put commas inside a long numeric literal unless your Windows International
settings are set to a country that uses a comma in place of a decimal point for fractional values.

The Remaining Data Types

The nonnumeric data types are easier to understand than some of the higher-precision numeric data types if you are not
mathematically inclined. One of the reasons that BASIC and its incarnations have remained on the scene, despite the
proliferation of "more powerful languages™ over the years, is the result of BASIC's text-handling power. BASIC, and
therefore Visual Basic, far surpasses virtually every other language available when it comes to processing text strings.

A string is a series of zero or more characters. Although a string may hold numeric digits, a string is never used in
calculations but only holds characters. You use strings for names, addresses, codes, Social Security numbers, and other
data values that you do not need to compute with. Use the numeric data types only when you need to compute or hold
strict numeric information such as monetary amounts.

In addition to string data, Visual Basic supports other kinds of data such as dates and Boolean data. Table 5.3 lists the
nonnumeric data types that Visual Basic supports.

Table 5.3. Visual Basic supports several nonnumeric data types.

Data Type Storage Range

string (fixed length) Length of string 1 to about 65,400 characters

String (variable) Length + 10 bytes 0 to 2 billion characters

Date 8 bytes January 1, 100 to December 31, 9999
Boolean 2 bytes True Or False

Object 4 bytes Any embedded object

Variant (numeric) 16 bytes Any value as large as Double
Variant (text) Length plus 22 bytes Same as variable-length String

Boolean data, named after the mathematician George Boole, represents data that can take only two values. These values
are usually represented as true or false although they can also be treated as yes or no values.

Always enclose string literals in quotation marks. Strings can contain any characters; all the following are valid string
literals:

"Oh me, oh my"
''543-00-0234"
1020 S. Yale Avenue"

Anything between two quotation marks is a string, even the null string at the end of the list.

A null string, sometimes called a zero-length string, is zero bytes in length and is sometimes used to initialize string
data to a value of nothing. The special Visual Basic value called Nul I also represents null strings. Visual Basic also
supports a special string value called an empty string, represented by the Empty keyword. Empty strings represent
strings that are similar to null strings but hold a slightly different interpretation; a control property that contains the
Empty keyword is assumed not to have been initialized with any value yet, not even a null string.

The distinction between fixed-length strings and variable-length strings will become more critical as you learn more
about Visual Basic data storage methods.

When you type a date or time literal, enclose the date or time value between two pound signs (#). Visual Basic allows
for virtually any kind of date and time format. The dates and times can follow whatever international setting you've
assigned to your PC. All the following are valid date and time literals:

#July 4, 1776#
#7:11 pm#
#19:11:22#
#1-2-2003#
#5-Dec-99#

The Boolean data type is useful for setting values to a control property that takes only a True or False value such as
an Enabled property value.

The variant data type can hold any kind of data except fixed-length strings. You employ variant data for different
uses, especially when a data storage area is to hold different kinds of data. A variant storage area can act as a temporary
storage location for any data type that you will later place elsewhere in a more specific data-typed area.

Note

Perhaps you've heard of the year 2000 problem, also known as the Y2K bug. For many years, programmers used two-
digit years in code to save the space needed to carry the full year. These kinds of programs may have problems when
the two-digit year moves from 99 to 00. Visual Basic is year-2000 compliant which means that the internal date
representations take the next millennium into account. Therefore, at midnight on December 31, 1999, your Visual Basic
programs should have no trouble moving to the next year.

Nevertheless, some Visual Basic programmers resort to fancy time- and spacing-saving tricks, so not all Visual Basic
code will necessarily work. As a newcomer to Visual Basic programming, keep focued on the Y2K problem and
always work with the full year in your programs. You should have no problems when the year 2000 finally hits.

Working with Variables

Variables hold values that can change. A variable's value can change because a variable is nothing more than a storage
area, not unlike a box, that can hold one value at a time. When you store a different value in a variable, the original
value is replaced. The literal value 54 never changes, but if you were to store 54 inside a variable, the variable would
hold the 54 until you stored a different value in the variable, and then the variable would hold something else.

A variable is a temporary named storage area inside your program's memory that holds data. Variables hold
intermediate calculations and values that you assign to and load from controls on the form.

You are responsible for naming all variables in your code. Two different variables cannot have the same name within
the same procedure because Visual Basic cannot distinguish between them. Unlike control properties that are already
named, variables don't have names until you give them names. Before you can use a variable, you must declare the
variable by telling Visual Basic the name and data type that the variable is to hold. Variables can hold data only from
the data type you've defined the variable to hold. A variable declared as Byte cannot hold a string value. (The exception
to this rule is a variable declared as a Variant data type.)

Declaring Variables

The Dim statement declares variables by assigning them a name and data type. Before you can use a variable, you must
first declare that variable with a Dim statement. You can relax this rule a bit, but doing so can make for sloppy
programming that produces errors at times. Visual Basic's Tools, Options menu produces a dialog box. When you
select the Editor tab, you can check the Require Variable Declaration option to ensure that Visual Basic requires the
initial declaration. The declarations section of your code also includes a statement, by default, that looks like this:

Option Explicit

This statement tells Visual Basic that the rest of the code in this module is to declare all variables before they are used.
Thereafter, if you misspell a variable name in the middle of your program, Visual Basic will catch the error. If you do
not require explicit declaration before you use a variable, Visual Basic treats the misspelled variable as an uninitialized
variable and uses a bad value when the variable appears inside calculations.

Note

If you don't require explicit variable declarations, Visual Basic assumes that an undeclared variable is of the variant
data type.

Here is the format of the Dim statement that you use to declare variables:

Dim VarName As DataType

VarName Is the name you assign to the variable, and DataType is one of the data types listed in Tables 5.1 and 5.3. If
you declare variables inside a procedure (event procedures or nonevent procedures), you declare them immediately
after the opening wrapper line. The variable is then available to that procedure and only to that procedure. No other
procedure knows about the variable, which keeps the variable local to the procedure. If you declare a variable in a
module's declarations section, every procedure in that module has access to the variable. The variable is then said to be
global to the module, but no other module in the application has access to the variables. You can even make some
variables global to an entire project, but the more local you make your variables, the less likely you will attempt to use
the same variable for two different purposes.

Note
Two variables can have the same name and still be different variables as long as they are declared locally within

different procedures. In addition, two procedures can share a variable that is local to only one of the procedures. You'll
learn about how to share local variables on Day 8, "The Nature of VB Programs.”

You make up variable names, so you should know the rules for naming them. When naming variables, you must

o Begin all variables with an alphabetic letter.

e Use letters or numbers in the name.

o Keep the name from 1 to 255 characters in length (so don't make up 256-character names).

o Use a limited set of special characters in the name. To be safe, use only the underscore character (_) in the
name. When you stick to letters, numbers, and the underscore, you don't have to worry about forgetting which
special characters are and are not allowed. Especially, don't embed spaces in a variable name.

The following are not hard and fast rules but good general rules of thumb to follow when naming your variables:

« Preface variable names with a prefix that describes the variable's data type. This way, you don't have to keep
referring to the declarations section of a long program to locate the variable's data type, and you are less likely
to store an incorrect data-typed value in the variable. Table 5.4 lists common variable-name prefixes you can
use.

Note
You can store some values of one data type into variables declared for a different type if the data types are compatible

in type and size. For example, you can store a byte data value in an integer variable because the Integer data type
accepts a larger range of integer numbers than the Byte data type.

o Use names that are meaningful, such as curHighTotal instead of something ambiguous such as a or curX1.
The names help document the code.

o Use a combination of uppercase and lowercase letters to separate parts of variable names. (This tutorial uses
only letters and numbers in variable names although many programmers prefer to use the underscore to separate
parts of a name, such as curHigh_Sales.) A combination of uppercase and lowercase is called camel notation
due to its hump-like nature (that is, acame IHump).

Table 5.4. Variable name prefixes that describe the variable's data type.

Prefix Data Type Example

bln Boolean bInButtonEnabled
byt Byte bytLength

cur Currency curSales98

dte Date dteOverdue

dbl Double dblScientificAmt
int Integer intYearl1998

Ing Long IngWeatherDistance
obj Object objWorksheetAcct99
sng Single sngSaleslstQte

str String strFirstName

vnt Variant vntValue

Here are some possible variable declarations using Dim:

Dim intTotal As Integer

Dim curSales99 As Currency
Dim dteFinal As Date

Dim strName As String

Dim bInlsChecked As Boolean

Name your variables of the Boolean data type like a question that can be answered as yes or no (or true or false), as
done here with bInlsChecked.

You can also combine variable declarations in one Dim statement, separated with a comma, but you must use the As
DataType clause for each variable, as in the following:

Dim intTotal As Integer, curSales99 As Currency

If you don't specify the As DataType clause, Visual Basic declares the variable as a variant data type. Therefore, the
following statements are equivalent:

Dim vntControlvVal As Variant
Dim vntControlval

Caution

When you declare variant variables, always specify As Vvariant to clarify your intentions with the variable.

Declaring Strings

Strings pose an extra problem when you declare them because the String data type works for two kinds of strings:
variable length and fixed length. The most common string data type is the variable-length string; such string variables
are the easiest to declare because they follow the same Dim statement format as the other data types. The following
statements declare two variable-length string variables:

Dim strCityName As String
Dim strStateName As String

Both strCityName and strStateName can hold strings of any length. If you first store " Indianapolis™ in
strCityName, you can later store "Tullsa" in that same name and the variable adjusts to the new string length. Most of
the time you'll work with variable-length strings; however, this book does not describe fixed-length strings too much
unless the length is vital, as is sometimes the case when working with disk files. In addition, you may want to limit the
number of characters that appear in a label or some other control by assigning only fixed-length strings to them.

Note

The quotation marks are not stored as part of the string but serve only to delimit the string in a string literal.

Here is the format of the Dim statement that you must use to declare fixed-length strings:

Dim VarName As String * Length

The * Length option tells Visual Basic that the Dim statement declares a fixed-length string that will never hold more
characters than Length specifies. The following declaration declares a variable that will hold at most five characters:

Dim strZipcode As String * 5

If you attempt to store more characters than a fixed-length string variable allows, Visual Basic stores only the fixed
number of characters and discards the rest. Such bugs are often difficult to trace.

Using Variable Storage

After you declare a variable, you can store data in the variable. Using the assignment statement is the easiest way to
store values in variables. Here is the format of the assignment statement:

ItemName = Expression

I'temName can be a declared variable, and is for most of today's lesson, but 1temName can also be a control property
value. Expression can be any of the following:

e A mathematical expression

e Aliteral

e Avariable

e Alogical or string expression

« A control's property value (control properties are variant, but Visual Basic converts them to a data type when
you store them in variables)

o A mathematical, logical, or string expression that contains a combination of literals, variables, and control
property values

The concept of an expression may seem daunting at this point, but an expression can be virtually anything that becomes
a value. All the following are valid assignment statements:

curSales = 5712.75
strFirstName = “Terry"
blnPassedTest = True

bInlsEnabled = IblTitle.Enabled
dblvValue = 45.1

intCount = intNumber

dteOld = #4-1-92#

sngO0ld97Total = sngNew98Total - 1000.00

You can easily see how the assignment works from the first assignment here. The value 5712.75 is stored in the
variable named cursSales. You can add a data-type suffix after a literal, as done in the fifth assignment, to keep both
sides of the assignment the same data type. In this case, however, 45.1 is smaller than a Double data type, so Visual
Basic would automatically make the conversion if you omitted the suffix. Assign variables declared with the Boolean
data type either True or False, or a property value that contains either True or False. Notice that the last assignment
includes a minus sign. You'll learn how to write mathematical expressions in the next section.

Note

Visual Basic still supports an older assignment statement format that starts the assignment with the Let keyword. The
following two statements do exactly the same thing:

Let intCount = 1

intCount = 1

Throughout the first four lessons, you learned that you can store control property values through Visual Basic code.
You use the assignment statement to do just that. The following statement changes the value shown on the form's label
named IblTitle:

IblTitle.Caption = "The task is completed”

All controls have default properties that are the properties Visual Basic assumes you are assigning to if you don't
specify a property name. The default property for label controls is the Caption property, so the following assignment is
equivalent to the preceding one:

IbITitle = "The task is completed”

Tip

Although assigning to controls'default properties requires less typing, the more explicit you make your code, the more
self-documenting the code will be and the more clear the code will be to readers. Always type the property you are
assigning to even if that property happens to be the default property. When you later maintain the code, the statement
will be less ambiguous.

The moment a statement assigns a value to a control, that control is updated on the form. Therefore, the new title
appears immediately as soon as this assignment to the title is made. The user will instantly see the new title on the
screen.

Visual Basic's Operators

Visual Basic supports numerous mathematical and string operators. Table 5.5 lists the most common operators. You
use these operators in expressions when calculating and working with data.

Operators manipulate data by combining or computing results. Most operators are symbols, but some, such as Mod,
look more like Visual Basic commands.

Table 5.5. These common operators perform calculations and manipulate data.

Operator Meaning Example Result

n Exponentiation 273 8

” Multiplication 2 *3 6

/ Division 6 /2 3

+ Addition 2 +3 5

- Subtraction 6 -3 3

/Mod Modulus 11 Mod 3 2

/\ Integer division 11 \3 3

+0r& String concatenation "Hi," & "There™ "Hi,There™

The exponentiation raises a number to a power. Therefore, 2~ 3 is the same as 2 raised to the 3rd power, or 2 times 2
times 2, which equals 8. You can raise fractional values to a power, and you can raise values to a negative power to
compute the root of the number if you need an nth root. The multiplication and division operators work as you would
expect. The expression 10 / 3 results in the approximate value 3.3333, and 10 * 3 results in a value of 30.

The Mod operator returns the remainder from an integer division. Only integer values can appear on each side of Mod; if
you include a different data type, Visual Basic attempts to convert and round the data to an integer before proceeding
with the modulus. For example, 11 Mod 3 returns a 2 simply because 11 divided by 3 is 3 with a remainder of 2. The

integer division operator, \ (notice that the backslash and not the forward slash denotes division), returns the whole
number value of a division and discards any remainder. Therefore, 11 \3 is 3 because 11 / 3 is 3 with a remainder of 2.
(Using the normal division operator, 11 / 3 would compute a fractional value, such as 3.666.)

The plus sign (+) is an overloaded operator because it performs two operations depending on the data you place on
either side of it. When you place two string values on either side of the plus sign, or on either side of the ampersand, &,
Visual Basic concatenates the strings and treats the concatenated string as a single string. Visual Basic adds nothing
between the concatenated strings, so if you want a space between them, you have to concatenate a space between them
specifically.

An overloaded operator is an operator that performs more than one operation depending on the context in which you
use it.

Concatenation is the merging together of two or more strings into one longer string.

The following assignment concatenates the values from two labels into a single string variable, putting a space between
them:

strCompleteName = IblFirst.Caption & " " & IblLast.Caption

Tip

To avoid possible confusion with the addition operator when you maintain your code, use the ampersand only when
you are concatenating strings.

Analyzing the Order of Operators

Visual Basic performs math in a strict predefined order, which is illustrated in Table 5.6. Exponentiation is performed
first, and then multiplication and division are performed before any addition and subtraction in an expression unless
parentheses override that order.

Table 5.6. Visual Basic follows an order of operators when computing results.

Order Operators Example Result
1 Parentheses O @+3)*7 35
N 27M3+1 9

2
3 *,/, \, Mod 2 +3*7 23
4

+, — 10 -4*2+1 3

Unless parentheses override the default order, Visual Basic always calculates the intermediate results of any
multiplication and division in an expression before the addition and subtraction. Exponentiation has an even higher
priority.

If multiplication and division both appear in the same expression, Visual Basic performs them from left to right unless
parentheses override that order. Therefore, the following expression produces a result of 15 because Visual Basic first
divides 10 by 2 to get 5 and then multiplies the 5 by 3 to get 15. In the same way, addition and subtraction compute in
their left-to-right order if they appear in an expression without other operators or parentheses changing their behavior.

10/ 2 * 3

If you embed one set of parentheses within another, Visual Basic computes the innermost set first. Therefore, Visual
Basic computes the (8 — 3) before anything else in the following expression:

(10 +2 - (8 -3)) +1

Summary

Today's lesson introduced you to preliminary details of Visual Basic code. First, you learned how the declarations
section fits into the overall Visual Basic application, and then you studied the specifics of code starting with data types.

Visual Basic supports several kinds of data, as you learned today. You must not only understand how to distinguish
between two or more data types but also how to declare the various data types that you want to work with. You'll use
variables for intermediate storage as a program runs, but before you use a variable, you must properly declare that
variable and name it. After you declare a variable, you might then use the Visual Basic math operators to calculate
results and store those results in the variables that you've defined.

Tomorrow's lesson takes you to the next step of Visual Basic programming by showing another set of operators with
which you can compare data. After you tackle the operators, you then will learn new programming statements and
controls that work with those operators.

Q&A

Q: Why does Visual Basic not compute all operators from left to right?

A: Visual Basic follows a standard and historical algebraic operator hierarchy. Don't blame Visual Basic; blame
the mathematicians! Seriously, the order of operators keeps ambiguity from your code by defining a preset
order that is always followed. Actually, you don't have to rely on the order of operators because you can
dictate all order by using extra parentheses, even where they are not needed. For example, the following
assignment would store the same result with or without the parentheses, but the parentheses might be clearer

because they eliminate all possible ambiguity:]

intvValue = (8 * 9) + intResult

Why are local variables better than global variables?

You'll gain more insight into the local versus global discussion as you learn more about Visual Basic
programming. The rule of thumb is that local is always better than global with few exceptions. Generally, a
procedure should work on a need-to-know basis. It should have access only to variables that it needs and not
to any others. Such separation helps eliminate nasty and hard-to-find bugs that can appear if all variables are
global.

Perhaps already you realize that controls are global to the entire project. Any procedure may need to modify
or read a control's property value so that a form's controls are available to all code within a project.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next day's lesson. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: What kind of code goes in the declarations section of a program?

2: What can you do if two or more procedures need access to another procedure's local variable?

3: True/False. A literal's value never changes.

4: True/False. A variable's value never changes.

5: Why does Visual Basic support two kinds of division operators?

6: What is an overloaded operator?

7: Which operator is preferred for concatenating string expressions?

8: Which data type holds any other data type?

9: True/False. The variable prefixes are required in variable names.

10: What two ways can you use to ensure that Visual Basic doesn't allow for undeclared variables?

Exercises

1: What do you think Visual Basic will do with the following variable declaration statement?

Dim intCnt As Integer, abc, curSales As Currency

2: Bug Buster: Sally is having difficulty calculating a correct average using the following expression. Can
you help her?

sngAvg = sngGradel + sngGrade2 + sngGrade3 / 3

3: What is the result of each of the following formulas?

a. 1+2*4/2

b. 1+2)*4/2

c. 1+2*(4/2)

d 9\2+1

e. 1+(10-(2+2)))

4: Write assignment statements that convert each of the following formulas to their Visual Basic
equivalents:

3+3
4+4

x=(@-b)*(a-2)
alz’E
) f= bls’E

5: The program from the first Bonus Project, "Controls, Properties, and Events," included the following
procedure :

Private Sub cmdTest _Click()
" This event procedure executes as soon as the
" user wants to test the entered password
IT txtPassword.Text = "'Sams"™ Then
" Success! Password matched
Beep
Beep " Now, display the picture
imgPassword.Picture = LoadPicture("’C:\Program Files\" _
& "Microsoft Visual Studio\Common\Graphics\MetaFile\" _
& "Business\coins.wmf'")
IblPrompt.Caption = "Show me the money!"

A WOWN P

©O©oo~NO O

10: Else

11: IblPrompt.Caption = "Wrong password - Try Again™
12: txtPassword.Text = " " Erase old password
13: txtPassword.SetFocus " Put focus on text box
14: End If

15: End Sub

Study this procedure to see how the assignments are made. More importantly, can you now see why
long statements that you continue with an ending underscore, such as lines 7, 8, and 9, must include
ampersands when you break string literals?

Bonus Project 2: Variables and Expressions

This Bonus Project's code demonstrates variable declarations, assignment statements, and expressions. Now that you've
mastered the basics of form design using some of the controls, you need to tackle the details of code and learn how to
activate an application's controls with Visual Basic programming statements. The place to start is with data.

The simple code in Listing BP2.1 demonstrates the concepts you learned about in Day 5's lesson ("Analyzing VB
Data"). No visual Form window is described here so that you can concentrate on the code. If you want to create a Form
window to test the code, you can do so by designing a form that contains three labels named I1b1GrossPay,

IblTaxes, and IbINetPay. Add a command button named cmdCalcPay to trigger the code. You only need to create a
simple form, such as the one shown in Figure BP2.1. After performing some calculations, the code will place the
payroll results in the three labels.

Figure BP2.1. You can create a simple form to test this code.

iw, [est Payroll Computations

Gross Pay:

Taxes:

MNet Pay:

Listing BP2.1 This code demonstrates variables and assignment statements.

1:
2:
3:
4:

17:
18:
19:
20:
21:
22:
23:

Private Sub cmdCalcPay Click()
" Computes three payroll variables

Dim intHoursWorked As Integer

Dim sngRate As Single, sngTaxRate As Single

Dim curTaxes As Currency, curGrossPay As Currency
Dim curNetPay As Currency

" Initialize the variables

* (Normally, data such as this would
* come from the user or from a file)

intHoursWorked = 40 " Total hours worked
sngRate = 7.8 " Pay per hour
sngTaxRate = 0.42 " Tax rate percentage

" Calculate the amounts

curGrossPay = intHoursWorked * sngRate
curTaxes = sngTaxRate * curGrossPay
curNetPay = curGrossPay - curTaxes

" Display results in appropriate labels
IbIGrossPay.Caption = curGrossPay
IblTaxes.Caption = curTaxes
IbINetPay.Caption = curNetPay

24: End Sub

Analysis

Lines 1 and 24 are the wrapper lines for the command button's event procedure. Lines such as 2 and 8 help document
the code for ease of maintenance. Lines 3 through 6 declare several variables. Three of the variables are of the
Currency data type.

Lines 11, 12, and 13 assign data values to three variables. Normally, payroll data might come from the user entering the
values from the keyboard or perhaps from a data file; however, because you have yet to master keyboard and file input,
the assignment statements work well for this short example. Notice also that when a literal is assigned to an integer
variable in line 11, no decimal point is used; however, a decimal does appear in the assigned values for the two single-
precision variables in lines 12 and 13.

Lines 16, 17, and 18 perform the payroll calculations. The order of operators does not come into play in any of the
expressions because they are short. You'll see that data types are mixed in the expressions, but all the data is compatible
with each other.

Finally, lines 21, 22, and 23 assign variable values to the label controls. As soon as each assignment is made, the
corresponding form updates the labels with the computed and assigned values.

Caution
An assignment statement copies an expression on the right side of the equal sign to the data holder (such as a variable

or control) on the left side of the equal sign. The assignment is not a move operation. After line 21 executes, for
example, the variable curGrosspPay still holds its value, but that value also now appears in the label's caption as well.

Day 6. Controlling Programs

Today's lesson continues to teach you about Visual Basic operators, but the operators you'll study today compute no
mathematical results. Today you'll learn about the conditional and logical operators that perform data comparisons. In
addition, you'll learn some control statements so that you can write programs that repeat sections of code as many times
as needed and that test various data conditions.

Today, you learn the following:

« Conditional operators that you can use to test data

o The logical operators and how they enable you to combine conditional operators
e About the If statement

e When to use a loop

e The difference between the four kinds of Do loop formats

e How the For and Do loops compare

Conditional Operators

Consider the scenario in which you are writing an accounts payable application. The application totals owed amounts
for each vendor that you do business with and prints the checks to the vendors. What if you did no business with one of
the vendors within that past pay cycle? Do you want the program to print a check made out for $0.00? Certainly not.
Until now, all program code within a procedure that you've seen has executed one statement after another. By using
conditional operators and related statements that you'll learn today, you can write a program so that it changes its order
of statement execution if the data requires such a change. Therefore, the application can print checks only to those
vendors to whom you owe money.

Table 6.1 lists several new Visual Basic operators. None of these operators perform math as did the ones in yesterday's
lesson. Instead, these conditional operators compare data. These conditional operators make your Visual Basic
programs somewhat smarter. By comparing data and analyzing results, your Visual Basic program can decide an
appropriate course of action based on data alone. By writing programs with conditional operators and statements, you
let Visual Basic decide, at runtime, which statements to execute in a program.

The conditional operators let you compare one Visual Basic data value to another. Through the conditional operators,
you can learn if a value is less than, equal to, or greater than another.

Table 6.1. Visual Basic supports six conditional operators.

Operator Description Example Result
= Equal to =2 False
> Greater than 6>3 True
< Less than 5 <11 True
>= Greater than or equal to 23 >= 23 True
<= Less than or equal to 4 <=21 True
== Not equal to 3 <> 3 False

Notice that Table 6.1 has a result column. What is the result of 6 > 3? Is 6 greater than 3? Yes, so the result of that
conditional expression is true. As you know from yesterday's lesson, Visual Basic supports the Boolean data type that
accepts a true or false value. The Visual Basic programming language supports the keywords True and False, S0 you
can use them inside code to assign values to Boolean variables and to control properties that accept True and False.

Note
From Table 6.1, you can see another operator that is overloaded in addition to the plus sign that you learned about

yesterday. The equal sign is used in assignment statements to assign expressions to variables and controls. The equal
sign is also used for equality comparisons. Visual Basic distinguishes between the two operations from the context in

which the equal sign appears in your code.

Before you see these operators inside Visual Basic code, make sure that you understand how they work. The expression
23 >= 23 s true because 23 is greater than or equal to 23. Study the result column in Table 6.1 to make sure you
understand how the values compare.

Literals aren't the only values that can appear on each side of a conditional operator. You can place literals, expressions,
variables, controls, and combinations of all of them around conditional operators. Visual Basic works with many kinds
of data, and your programs have to test to see how data compares before determining the best code to execute.

A special case occurs if a value on one side or the other of a conditional contains the Nul I value. Visual Basic returns
neither True nor False but Nul I for the conditional's result. You have to be on the lookout for the Nul I value if you
suspect such a value is possible in one of the values you are comparing. In these cases, you look for three possible
results: True, False, or Null. Because such results get confusing, Visual Basic contains tools called internal
functions that can help you detect Nul I values; you'll learn about them on Day 8, "The Nature of VB Programs.” Along
these same lines, the conditional operators assume that an Empty value (meaning that a control or variable has yet to be
initialized with any value, as you read in yesterday's lesson) is the same as zero, or a null string if you are comparing
strings.

You use the conditional operators to compare strings just as you do for numeric values. Generally, string comparisons
follow these rules of thumb:

e Uppercase letters are less than lowercase letters, so "ST. JOHN" comes before "St. John."

o Letters compare in alphabetical order, so "A" is less than "B" and the name "Walter" is greater than (comes
before) "Williams."

e Numbers are less than letters, so "3" is less than "Three."

If these general rules of thumb seem confusing, you can be assured that Visual Basic compares most string data in the
same order that you find names listed in your phone book. Being able to compare string data lets your program
alphabetize names, test passwords, and analyze information.

Caution

Visual Basic supports a special statement in the declarations section of a module that reads as follows:

Option Compare Text

If this statement appears in a module's declarations section, possibly along with the option Explicit statement you
learned yesterday, uppercase and lowercase letters compare equally. If you do not want a case-sensitive comparison,
you can include the option Compare Text statement in your module, but generally, you won't want to compare

uppercase and lowercase letters equally because you would then be unable to alphabetize properly in most situations.

Note

Visual Basic follows the ASCII table order when comparing strings unless the Option Compare Text Statement

appears in the module.

An ASCII table (pronounced ask-ee) is a list of all 256 characters available on the PC along with a corresponding and
unique number assigned to each character. The letter A has an ASCII value of 65, B has 66, and so on. If you search for
ASCII codes in Visual Basic's help index, the ASCII table appears on your monitor, as shown in Figure 6.1. In addition

to the online help that's always available, Appendix C contains an ASCII table.

Figure 6.1. Visual Basic follows the order of the ASCII table when comparing string data.

¥ W5SDH Libeary Yieual Stedio 5.0

Fie Edt Yew Go Heb

0 B ¢ & & 0 0D & &

Hds Locsbe Prevou: Med Back S%p Aebety Home Pret

Gewech | Fawerpes
Tyme i the keneword to
[ah‘:l:m-.

== a]
defined
ATCE charatlen codas —l
ASCH characie ool
| ATCN characiedy
mkdinag 0 srings
diplarying in HTML pages
ASCH po

ASCE muliirgual codes
ASCH shring s
i
ASCH e fles
ASCH vailaes
_ASCHIOLE
ARG
asclfe
LA, 2w furscieon
aSELBN)
A IGO0 TS
mEin
LAzin
AT
Al
aam
Mhcroso f-specific
uing i © code :l

g |

ASCII Character Codes

Consider the following string comparisons:

"abcdef > "ABCDEF"

"Yesl" < "Yeg?"

"Computers are fun!"™ = "Computers are fun!*

"PC'" <> "'pc"'

Cnl Dwe Hos Chas Cods | | De¢ s Clar | | Dws Ben Clas | | Dot Ban Ol
“%| 0 | WL L e =p u |a |@ 56 | w0 e

R -] R T ¥ i e |@ or (el &
“F :o|m (e s » (@ |* w |47 |B =g b
- o | JEEX B (2 |& 7 |43 |C =ia |
o | & |6 |* |moa[[a [m |8 w |4 D o (e |d
*L) 4 |ad (o |mEp(|YF |3 =g i [«3 |E T PO
“F i |oi (4 |ACK U] n |46 |F 1E | i
s |7 (o [+ JEEL || @ |0 (a7 |G wE |7 (g
S I1ERCRI-RE w @ n [# |H i & |
=T ® (@ |o [HF i |@m |} A |4z |1 wi e |1
s (m foa |[B (oo [fe |m e 7 ik | wi fan | §
g [|op |& [vE O E- - T | wr e |k
at |m |oc | g |w I F-l. n |4z |L wa ez |1

M| |In | F |CE LN -] |+ |H g sk W
o |w |k (g |2 T e] 1 e |m
=0 (15 |0F | |® | | A & [4F |& 1| &F
N LI 4E w |w (B W [s P m (m (P
=gl o |4 |c w | |1 TR ET -] s (= e
“E |H | B I o= m o |m |E a1 |4 |R 14 | r
5 (@ (13 | ¥ (o3 io(m |3 a8 s |m |=
=1 |m (w |9 [Doe i o|u g w4 T | |t
aff 3 |18 § Ak | |3 [|5 as |48 U iwr e u
% |z W | AW |5 [& (38 [N e (™ |w
= | (¥ | ¥ |itE i e T wr (47 U e ™ e
ax |2« |m | T |canm o (m (g | | 1w = %
¥ |25 (B |1 |EM 5w |G @ |iF Y L™ gy
g a8 [|+ |20 W[= m |an 2 32 |m =
af |af | |+ |EsE im | R i m | i

"Books, Books, Books' >= ""Books, Books"

Each string comparison you see here returns a True result.

Visual Basic supports another conditional operator, Like, which compares values based on a wildcard match. Perhaps
you've used the * and ? wildcard characters when working with files. * stands for zero or more characters, and ? stands
for only one character. In addition, Like uses a third wildcard character, #, to stand for a numeric digit. A few
examples should help explain Like quickly. Consider these conditional expressions that use Like and that all return the
value True:

"Sams Publishing” Like "Sa*"
"Qtr???" Like "QtrOne'
"Data##" Like Data98"

"X Like “[Xvyz]"

The last example shows a special kind of Like expression. If the character is like any character inside brackets, a True
result is produced. The brackets offer a way to test for one of a few characters. All the following compare true when
you use Like against a string value of "Code[12345]Red": "CodelRed", ''Code2Red", "Code3Red", 'Code4Red",
and ""Code5Red™ .

Note

In real-world Visual Basic programming, you'll compare variables and controls, and the data in them can change as the
program executes. These examples compare literals against literals only to show you how the operators work.

The equality conditional operator would return false for these expressions because = does not recognize wildcard
characters.

Conditional Data

Always compare two values whose data types are compatible. For example, you can compare one number of any
numeric data type against another to see which is larger. You can compare strings against each other and Booleans
against each other. Don't try to compare a string and a number, however, because the results are usually wrong.

Caution

Strings, Booleans, currency values, dates, times, and the integer data types (Byte, Integer, and Long) compare
against each other well for equality. Never try to compare two single- or double-precision values against each other for

equality, as in sngSales = sngGoal . Due to the way Visual Basic stores precision data, two equal single-precision
values may compare as unequal because of rounding that Visual Basic performs to such values internally. If you want
to test for two equal precision variables, you have to subtract them and test the size of the difference to see whether
they are approximately equal. Such coding is tedious, so avoid it if you can.

Visual Basic handles the variant data type nicely when you make a conditional compar ison because you'll often
compare a control's value, such as a text box's Text value, to a variable or to a literal. Control properties generally
compare as if they were variant data. If the variant variable or control holds characters that correspond to a number,
such as 234.56, and you compare that variant value to a numeric variable, Visual Basic makes a numeric comparison
by temporarily converting that variant value to a number. If, however, you compare a variant variable or control to a
string, Visual Basic temporarily turns that value into a string to make a true character-by-character, ASClI-based string
comparison. Therefore, Visual Basic takes care of some ugly details that would otherwise be difficult to handle when
one side of a comparison is the variant data type.

Caution
Visual Basic issues a nasty runtime error if you compare a variant value to a numeric value and the variant's value does

not properly translate into a number. Be sure that you know your data. Visual Basic offers help for testing of data types
in some internal functions that you'll read all about in Day 8's lesson.

Combining Conditional Operators with Logical Operators

Technically, the six conditional operators offer enough power to test for any condition, but you can greatly enhance
their flexibility by combining the conditional operators with Visual Basic's logical operators. Table 6.2 lists the logical
operators.

The logical operators let you combine two or more sets of conditional comparisons. Like the Mod operator, the logical

operators use keywords instead of symbols.

Table 6.2. Visual Basic supports three logical operators.

Operator Description Example Result
And Both sides must be true (2 <3) And (4 < 5) True
or One side or other must be true (2<3)0r (6<7) True
Xor One side or other must be true but not both (2 < 3) Xor (7 > 4) False
Not Negates truth Not (3 = 3) False

Programmers use And and Or much more often than the other two logical operators. The Xor operator helps you
distinguish between mutually exclusive options. If more than one option is true in a mutually exclusive situation, such

as a user selecting multiple months for a date of birth, Xor lets you know that more than one option was selected (or
that none were) due to a false xor result. Finally, the Not negates true and false expressions, although using Not too
much can confuse code because you have to swap the logic when writing and debugging code that uses Not. Don't
overdo the use of Not.

Consider the following expression that combines conditional operators with the And logical operators:

(curSales < curMinSales) And (intYrsEmp > 10)

If the current sales are less than the minimum required and the number of years employed is more than 10 (see how
meaningful variable names help document code?), the entire expression is true. Although you could test both of these
conditions separately without combining them, the And lets you do so in one expression.

Caution

Don't combine too many conditional expressions with logical operators, or your code will become more confusing.
Break up extra-complex expressions such as the following:

(a>6) And (b < 1) Or Not(1l = ¢) Xor (d = 4)

The order of operators affects the placement and execution of conditional and logical operators. Consider the following
expression:

curSales * sngCommission > curHighSales /7 10

Which operation does Visual Basic perform first? Does Visual Basic compare sngCommission to curHighSales and
then multiply the answer by cursSales and divide that by 102 That order of operation makes no sense because the
greater than operator returns a True or False result, and performing math on such a result makes no sense.

Table 6.3 shows a more complete order of operators than the one shown in yesterday's lesson. Table 6.3 shows how the
conditional and logical operators work in conjunction with mathematical operators when they all appear in the same
expression.

Table 6.3. The complete order of operators table includes conditional and logical operators.

Order Operators

Table 6.3. The complete order of operators table includes conditional and logical operators.

Order Operators

Parentheses

Conditional operators including Like

Not logical operator
And

Oor

© 00 N O O b~ W N -

Xor

Tip

Just to make sure that your programs are as clear as possible, add parentheses around expressions to reduce ambiguity
with their order of operation. The preceding expression would then clearly read like this:

(curSales * sngCommission) > (curHighSales /7 10)

The 1+ Statement Uses Conditional Operators

One of the most popular commands in the Visual Basic language is 1¥. The 1 command is part of an overall multiline
statement called the I¥ statement, whose format is this:

IT conditional Then
Block of one or more Visual Basic statements
End If

The conditional is any expression that returns a True or False result. Therefore, the conditional might be a
Boolean variable, a control that equates to a True or False value, or a longer expression that includes conditional and
possibly one or more logical operators.

Note

Visual Basic still supports the old BASIC-like 1 statement that appeared all on one line. Its format is

IT conditional Then Visual Basic statement

I T statements almost always trigger more than one statement, so the multiline 1 makes more sense and is more in use
today. Even if the I ¥ is to trigger a single statement and the one-line 1 would work, use a multiline 1¥ to make adding
to the I¥ easier in the future.

Do Don't

DO indent the body of an 1f statement so that you can, at a glance, tell when an 1 statement begins and ends.
All multiline 1 ¥ statements have a matching set of End 1 statements somewhere later in the program. The End
1T always goes with the most recent 1'f no matter how you indent the code.

People use 1f-like statements every day. Consider the following:

IT 1 go to work early, then I will finish early.
IT 1 clean my room and empty the trash, then 1 can play baseball.

In other words, people use exactly the same I f statement format as Visual Basic does. The I statement works this
way: If and only if the Condition is true does the code body of the I execute. Read the two previous real-world 1-
like statements again. If and only if you go to work early will you finish early. If you don't go to work early, well, you
won't finish early. The second statement says that both conditions must be true: If you clean your room and empty the
trash will you play baseball.

Consider the Visual Basic 1 statement in Listing 6.1.

Listing 6.1 Compare data using If.

IT (curSales > curSalesGoal) Then
" The salesperson beat the goal
curSalaryBonus = 1000.00
IblSalesNote.Caption = "You beat the goal!"
IblSalesNote.BackColor = Red
IblSalesNote.FontBold = True

End If

" Rest of program code continues here

O~NO OB~ WNPE

If the value in curSales is greater than the value in curSalesGoal, the four statements (not counting the remark) in
lines 3 through 6 execute. If the value is not greater (even if it's equal), lines 3 through 6 do not execute. Either way, the
program continues, starting at line 8 after the 1 does whatever job it's supposed to do. Do you see that the data drives
the 1F statement? Do you see that the program is making a decision at runtime? That decision is whether to execute
certain parts of the code, namely the code inside the body of the If.

Note

The parentheses around the condition are not required in an If statement, but they do help pinpoint the expression to
make the I f clearer.

Completing the 1+ with eise

The preceding sections described one form of 1, but programmers often use the expanded form that takes the
following format:

If conditional Then

Block of one or more Visual Basic statements
Else

Block of one or more Visual Basic statements
End If

As with all multiline statements, the indention of the body is suggested for clarity but not required. The first I f format
offered code that executed if the condition was true but did not offer code that executed if the condition was false. The
Else does just that. The If. . .Else statement provides two bodies of code: one that executes if the condition is true
and the other that executes if the condition is false. No matter what the condition is, the rest of the program continues
after the 1. . .Else test finishes.

Bonus Project 1, "Controls, Properties, and Events,” contained an 1f. . .Else to test a password field. Listing 6.2
contains that I1f. . _.Else.

Listing 6.2 If tests a password for a match.

1: If txtPassword.Text = "Sams" Then

2: " Success! Password matched

3: Beep

4: Beep " Now, display the picture

5: imgPassword.Picture = LoadPicture("'C:\Program Files\" _
6: & "Microsoft Visual Studio\Common\Graphics\MetaFile\" _
7: & ""Business\coins.wmf'")

8: IblPrompt.Caption = *Show me the money!"’

9: Else

10: IbIPrompt.Caption = "Wrong password - Try Again™

11: txtPassword.Text = "' " Erase old password

12: txtPassword.SetFocus " Put focus on text box

13: End IT

Line 1 performs a test to see whether the text box control contains the correct password. If so, the body of code right
after the I¥, starting in line 2, executes. The Beep statement rings the PC's speaker so that, if the password matches,
lines 3 and 4 make the PC do a double-beep. The image then gets the picture in the continued lines 5, 6, and 7, and the
label's caption changes to reflect the correct password. After the I is over, the program executes starting on the line
that follows the End I ¥ statement. If, however, the condition is not true and the password does not match, the body of
the Else keyword executes, and lines 10, 11, and 12 inform the user that the password did not match.

You can embed one IF within another as Listing 6.3 shows.

Listing 6.3 Nested If statements add power to data comparisons.

1:1f (curSales > 10000.00) Then
2: If (intHrsWorked > 40) Then
3: curBonus = 750.00

4 Else

5: curBonus = 500.00

6: End IF

7 Else IblBonus.Caption = "Good work!"
8:End IT

When you embed 1f. . .Else statements like this, each Else and End 1 always goes with the most recent 1f. The
further indention of each embedded 1F body helps show where one If begins and another one ends.

An Early Exit

Sometimes, depending on the data, you may want to terminate an event or other kind of procedure early. You can
combine the 1F and Exit statement to do just that.

The Exit statement has the following format:

Exit Sub | Function | Do | For

The vertical bars between the keywords indicate that only one of those keywords can follow Exit; the one you use
depends on what you want to exit from. To exit from an event procedure, which is a subroutine as you learned in Day
4, "Creating Menus," you use the Exit Sub statement. To exit from a function procedure, you use the Exit
Function. The Exit Do and Exit For statements will become clear before today's lesson is finished .

Listing 6.4 terminates the event procedure in line 3 if the 1 statement's condition is true.

Listing 6.4 Use an Exit Sub to terminate a procedure early.

1 Private Sub cmdCalc

2 IT (txtSales.Text < 5000.00) Then

3: Exit Sub "Terminate procedure

4 Else

5 * If the bonus is at least $5,000...

6: " perform the next statement that

7: " displays the sales as a percentage
8: " of the sales

9: IbIBonus.Caption = txtSales.Text * .05
10: End If

11: End Sub

Nesting 1r.._ei1se Statements

If you embed one If. . _.Else statement inside another 1f. . _Else statement, you have to use the Elself to start the
nested I ¥ statement. Consider the code in Listing 6.5.

Listing 6.5 The Elself helps combine two or more nested If...Else statements.

1: If (intHours <= 40) Then

2: curOverTime = 0.0

3: " Now test for hours between 40 and 50

4: " and pay time and a half

5: Elself (intHours <= 50) Then

6: curOverTime = (intHours - 40) * 1.5 * sngRate
7: Else

8: " Must pay double time over 50 and

9: " time and a half for the hours between

10: " 40 and 50

11: curOverTime = ((intHours - 50) * 2 + (10 * 1.5)) * sngRate
12: End If

A nested statement is one statement that appears inside another's body.

The Elsel T statement in line 5 starts a new 1¥. . _Else block of code. If the hours are not 40 hours or less in line 1, the
hours must be more than 40. Therefore, line 5 tests to see if the hours are between 40 and 50 (line 5 would never
execute unless the hours were at least 40). Time and a half is computed for those overtime hours. If line 5 is false, then
the hours worked must be more than 50. Line 11 contains a complex expression that computes double time for all hours
over 50 and time and a half for the 10 hours between 40 and 50.

Do nested I1f.. _Elself.._End If statements like these get confusing and difficult to debug? Of course, they do, and
this simple example illustrates just how difficult they can be. In the next section, you'll see how the Select Case
statement offers a better alternative.

SeleCting With setect case

The Select Case statement is more suited to checking for multiple conditions. Having more than three or four
embedded 1. . _Else statements results in a complicated program. You get into messy logic such as "If this is true,
then if this is true, then if one more thing is true, then do something, else...." Here is the Select Case Statement's
format:

Select Case Expression
Case expressionMatch
Block of one or more Visual Basic statements
[Case expressionMatchl
Block of one or more Visual Basic statements]
[Case expressionMatch?2
Block of one or more Visual Basic statements]
[Case expressionMatchN
Block of one or more Visual Basic statements]
[Case Else
Block of one or more Visual Basic statements]
End Select

Select Case selects from one of several conditions. The number of conditions, indicated by the [Case
expressionMatch# ...7] body, varies depending on the number of conditions that you need to test. If none of the
cases perform a match, the Case Else code body executes if you supply one.

Despite its foreboding format, Select Case is simple to use. Consider the example in Listing 6.6.

Listing 6.6 Select Case statements compare against multiple values.

1: * Test for a child"s letter grade
2: Select Case txtGrade.Text

3: Case "A™
4: IblAnnounce.Caption = ""Perfect!"
5: Case "'B"
: IblAnnounce.Caption = "Great!"
7: Case "'C"
8: IblAnnounce.Caption = "Study harder!"
9: Case D"
10: IblAnnounce.Caption = "Get help!™
11: Case "F"
12: IblAnnounce.Caption = "Back to basics!"
13: Case Else
14: IblAnnounce.Caption = "Error in grade"

15: End Select

Note

The data type of the Expression must be the same as for each case's expressionMatch. Listing 6.6's code assumes
that txtGrade. Text holds string letter grades; for that reason, lines 3, 5, 7, 9, and 11 all check to see whether that
string value matches a string value.

If the text box named txtGrade. Text holds the letter A, line 3's Case body executes, and then Visual Basic skips all
the remaining cases. Once that happens, the code that begins after line 13 executes. If the text box named

txtGrade. Text holds the letter B, line 5's Case body executes, and so on. The body of a Case can cover several lines,

although only single lines of code are shown in this example. Visual Basic knows that after a Case expressionMatch

Is made, each line in that matching Case body executes until the next Case, at which point the entire Select Case has
done its job and the program can continue.

If, for some reason, a grade other than A, B, C, D, or F appears in the text box, the Case Else takes over and warns of
the error by setting the label's value.

Visual Basic supports another form of Select Case that lets you specify one conditional operator for each
expressionMatch using the Is keyword. Listing 6.7 rewrites the preceding Select Case to take advantage of
conditional Select Case choices.

Listing 6.7 You can use conditional Select Case comparisons.

1: * Test for a child"s numeric grade

2: Select Case txtGrade.Text

3: Case Is >= 90

4: IblAnnounce.Caption = "Perfect!”

5: Case Is >= 80

6: IblAnnounce.Caption = "Great!"

7: Case Is >= 70

8: IblAnnounce.Caption = "Study harder!"
9: Case Is >= 60

10: IblAnnounce.Caption = "Get help!™

11: Case Is < 60

12: IblAnnounce.Caption = "Back to basics!"
13: Case Else

14: IblAnnounce.Caption = "Error in grade"

15: End Select

Given this format and the numeric grades, each case is dependent on the numeric grade being 90 or above for the best
message and below 60 for the worst message. Notice that no test has to be made for a numeric grade less than 60
because if the grade is not between 60 and 100, the grade has to be below 60. (This example assumes that the grade will
fall between 0 and 100 and not be bad data to illustrate how the Case Else can work as one of the Case statement
bodies.)

Caution

Select Case statements don't work for all nested comparisons. No Select Case format supports the inclusion of
logical operators, so you cannot use And, Or, Xor, or Not for the Select Case's test expression. You have to resort
toanested If.. _Elself.._End If statement for complex nested conditions.

One final format of Select Case appears in the Visual Basic language; that Select Case allows for a range of
choices using the To keyword. The range determines which Case body executes. Use the range-based Select Case
when you can order the possibilities sequentially as shown in Listing 6.8.

Listing 6.8 Use arange for select Case when comparing from grouped values.

1: " Test for a child®"s numeric grade

2: Select Case txtGrade.Text

3: Case O To 59

4: IblAnnounce.Caption = ""Back to Basics"
5: Case 60 To 69

6: IblAnnounce.Caption = "Get help!™

7: Case 70 To 79

8: IblAnnounce.Caption = "Study harder!"
9: Case 80 To 89

10: IblAnnounce.Caption = "Great!"

11: Case Else

12: IblAnnounce.Caption = ""Perfect!"

13: End Select

Notice that the order of Listing 6.8's cases is different due to the range format being used. The first Case test, in line 3,
checks for the lowest possible range. If the numeric grade falls between 0 and 59, the worst message appears in the
label. (Integers are assumed, which could produce errors if someone enters 79.5 for a grade; but integers keep things
simpler here.) Each succeeding range moves up sequentially. You can also test for string ranges as long as the lowest
strings, conditionally according to the ASCII table, are tested earliest.

Tip

You can combine the various forms of Case expressions into a single Select Case Statement. Here's a Case that uses
all the formats to check for a value:

Case 101, 102, 201 To 205, Is > 300

If the expression in the Select Case statement is 101, 102, 201, 202, 203, 204, 205, or more than 300, the body of this
Case executes.

Repeat Code with Loops

Visual Basic supports loops through a series of statements called looping statements. Your PC is fast. Therefore, your
PC can process large amounts of information quickly, such as calculating customer payroll records. The secret to
processing large amounts of data or testing a large number of values is to put such code inside looping statements and
let your program process the data over and over until the data runs out.

A loop is a series of one of more statements that execute more than one time. The loop statement repeats until a certain
predetermined condition is met.

Loops pave the way for tomorrow's lesson, which teaches you how to get input from the user without using text box
controls. Some input just doesn't lend itself well to text box controls. Often, you need to ask your user questions and
grab the answers when the user presses Enter. A text box is a little cumbersome for simple answers to which your

program responds. (Text boxes are great for input of form information, such as name and address values and payroll
amounts.)

You need to understand loops before learning about getting user input because the user does not always enter the
expected answer. Suppose you ask a user how old he or she is, and you get the answer 291. The user obviously made a
mistake. With a looping mechanism, you can keep asking the user that question until a reasonable answer is given. Of
course, your program won't know whether the user entered his or her true age, but you can keep asking until the user
enters an age that is more plausible than 291. As you can see, loops can repeat any block of code.

The po Loop

Visual Basic includes a multiline statement called the Do loop. As with the I statement, Do loop statements come in
several formats, as shown here:

Do While condition
Block of one or more Visual Basic statements
Loop

Do

Block of one or more Visual Basic statements
Loop While condition
0
Do Until condition

Block of one or more Visual Basic statements
Loop

Do
Block of one or more Visual Basic statements
Loop Until condition

The condition in each Do loop is any expression, control, or Boolean value that equates to true or false. Your choice
of formats primarily depends on your preference and style. The differences between them lie in the following areas:

o The location of the conditional test; if the conditional test appears at the top of the loop in the Do statement, the
loop's body may never execute. If the conditional test appears at the bottom of the loop in the Loop statement,
the body always executes at least once because Visual Basic does not perform the test until the bottom of the
loop.

« The nature of the conditional test; the Do loops can continue either while a condition is true or until a condition
is true. In the former case, the body of the loop keeps executing as long as the condition is true and in the latter
case, the loop keeps executing until the condition is met.

Figure 6.2 shows one Do loop and illustrates how the loop repeats. This code simply increases the value shown in a
label's caption property from 1 to 10 and then the loop stops repeating. In reality, the code would execute on today's
PCs so quickly that the label would be a blur and you couldn't see the numbers step up from 1 to 10, but remember that
the loop is important for study.

Figure 6.2. A loop repeats a body of statements.

" Section of code to
' demonstrate Do loops
Dim inCtr As Integer

intCtr = 1 'initialize counter
These statements Do
repeat until the 1blOut.Caption = intCtr
condition being tested intCtr = intCtr + 1

becomes equal to True Loop Until (intCtr = 10)

Note
Figure 6.2's code demonstrates a special assignment in which the same variable name appears on each side of the equal

sign. When you see such an assignment, the statement is updating the value of the variable. In this case, the statement
intCtr = intCtr + 1 adds one to the variable intCtr each pass through the loop.

The body of Figure 6.2's code executes 10 times, and each time the code adds one to the variable named intCtr. This
Do loop uses the Do. . .Loop Unti I format so that the loop keeps repeating until intCtr is equal to 10. Listing 6.9
shows an identical loop that uses the Do While. . .Loop format.

Listing 6.9 Use any Do loop form that you prefer.

1 Do While intCtr <= 10

2 " This loop does the same thing as
3: " the one in Figure 6.2

4: IblOut.Caption = intCtr

5 intCtr = intCtr + 1

6 Loop

Caution

You must somehow change the loop-testing condition inside the loop's body; otherwise, the loop never ends. If you
accidentally write an endless loop, your application freezes until you click Visual Basic's toolbar's End button or close
the application's window. Something inside a loop's body must allow for the condition being tested to change, or the
loop keeps executing.

Some loops, especially loops that perform user input, require that the body of the loop execute at least once, so that fact
dictates the kind of loop you use. When you want a loop to execute at least once, you need to use a loop that tests the
condition at the bottom of the loop, such as the loop shown in Listing 6.10.

Caution

The following code examples are not complete. They use remarks in place of statements that accept user input and
display error messages. Concentrate on learning how loops work now, and tomorrow's lesson will explain how to code
the user's input and output.

Listing 6.10 Your user may require several tries before entering valid data.
- Dim strAns As String

" Ask the user a yes or no question
IbIPrompt.Caption = ""Do you want to continue (yes or no)?"
" Get input into the string variable
named strAns
Check the answer and keep asking
if the user fails to enter yes or no
10: Do While (strAns <> "Yes" And strAns <> "No'")
11: Beep *Warning

OCoO~NOOUTAWNPR

12: IblError._Caption = "You need to answer yes or no')
13: " Get input into the string variable

14: " named strAns once again

15: Loop

16: " Erase the error message
17: IblError.Caption = Null

Line 10 begins the Do loop. If the user typed Yes or No in lines 6 and 7 (remember, remarks are used here for the input),
the loop warns the user with an error label in line 12. The remarked lines 13 and 14 simulate getting the user's input all
over again, and line 15 sends the loop right back up to line 10 to test that input again. How many times does this loop
execute? Either never (if the user types Yes or No) or as long as the user fails to type one of the two required answers.

Note

Of course, the user's Caps Lock key may be on or off, and the user could type YES or yes or NO or no. In that case, line
10 would fail because the two strings would not match in case. You'll learn how to test strings that differ only in case in
Day 8's lesson.

If you ever need to exit a loop before its normal termination, you can use the Exit Do statement to do so. For example,
you may be processing a series of customer payments inside a loop that loops until the final customer account number
is reached. If, however, a bad customer number appears, tested with an 1 statement inside the loop, you can display an
error message and exit the loop with Exit Do.

For LOOPS

Visual Basic supports another kind of loop called the For loop. For loops execute a series of one or more statements a
fixed number of times or until a condition is reached. The For loop is a multiline statement (just as the Do loops are)
because of the For loop's body. Here is the format of the For statement:

For intCounter = intStart To intEnd [Step intlncrement]
Block of one or more Visual Basic statements
Next [intCounter]

intCounter must be a numeric variable that controls the body of the loop. Visual Basic initializes the intCounter
variable to the initial value in intStart before the first iteration of the loop. The intStart value is typically 1 but can
be any numeric value (or variable or control value) that you specify. Every time the body of the loop repeats, the
intCounter variable changes (increments or decrements) by the value of intincrement. If you don't specify a Step
value (notice that the Step clause is optional because it appears within brackets in the statement's format), the For
statement assumes an intincrement of 1.

An iteration is one loop cycle. If a loop repeats three times, three iterations of that loop occurred.

IntEnd is a number (or variable or control value) that controls when the loop ends. When intCounter is greater than
intEnd, Visual Basic does not repeat the loop but continues at the statement that follows Next. Next is Visual Basic's
way of ending the loop. If intCounter is less than intEnd, Visual Basic increments intCounter by the value of
intincrement, and the body of the loop repeats again. (Notice that you don't have to repeat intCounter after Next as
it's optional and serves only as a reminder to which For loop the Next statement is terminating.)

Despite this long introduction to For, the For loop in most forms is simple and does nothing more than automatically
count up or down for you as the loop repeats. A For loop counts up if the Step value is positive, and a For loop counts
down if the Step value is negative.

Listing 6.11's For loop repeats one shown earlier in Listing 6.9 as a Do loop. The For increments the label's counter
variable automatically.

Listing 6.11 Use a For loop if you want Visual Basic to increment a counting variable.

1: For intCtr = 1 to 10
2: IblOut.Caption = intCtr
3: Next

Isn't that simple? This loop repeats 10 times. The first time that line 1 executes, intCtr, is assigned 1 (the intStart
value). The body of the loop, line 2, executes using that value. Line 3 sends the loop to repeat again by incrementing
intCtr by 1 (the implied Step value if you don't specify one) as long as intCtr is not more than 10 (the intEnd

value).
Note

The following statement is identical to line 3 in Listing 6.11 because the Next statement's variable is optional:

Next intCtr

Modifying the step Value
Listing 6.12's For loop begins at 10 and increments by five until the loop variable reaches 100.

Listing 6.12 Change the increment to make the loop behave differently.

1: For intCtr = 10 to 100 Step 5
2: IbIOut.Caption = intCtr
3: Next

Listing 6.13's For loop begins at 1000 and decrements by 100 until the loop variable reaches zero.

Listing 6.13 A negative Step value counts down.

1: For intCtr = 1000 to O Step -100
2: IbIOut.Caption = intCtr
3: Next

You can see from these short examples how the intStart, intEnd, and intincrement values affect the loop. (If you
use a negative Step value, the intStart value must be more than the intEnd value; otherwise, the loop's body never
executes.)

Caution

Don't confuse loops with the 1 f statement. Both loops and the 1f statements rely on conditional values, but loops can
repeat their bodies as many times as necessary. The I statement's body, however, executes at most one time.

Tip

Use the Exit For statement if you want to terminate a loop before its normal termination.

Nesting For Loops

As with all other Visual Basic statements, you can nest two or more For loops inside one another. Anytime your
program needs to repeat a loop more than once, use a nested loop. Figure 6.3 shows an outline of a nested For loop.
Think of the inside loop as looping "faster" than the outside loop. The inside loop iterates faster because the variable In
goes from 1 to 10 in the inside loop before the outside loop's first iteration has completed. Because the outside loop
does not repeat until the Next Out statement, the inside For loop has a chance to finish in its entirety. When the outside
loop finally does iterate a second time, the inside loop starts all over again.

Figure 6.3. The outside loop determines how many times the inside loop executes.

» For Out = 1 To 4

For In = 1 to 1@

Outer Inner
loop loop ' Block of code goes here
Next In
Next Out

" Program continues when outer loop end

Figure 6.3's inner loop executes a total of 40 times. The outside loop iterates four times, and the inside loop executes 10
times for each of the outer loop's iterations.

Figure 6.4 shows two loops nested within an outer loop. Both loops execute completely before the outside loop finishes
its first iteration. When the outside loop starts its second iteration, the two inside loops repeat all over again.

Figure 6.4. Two or more loops can nest within another loop.

—— For Out =1 To 4

. For In = 1 to 10
First
Inner " Block of code goes here
loop
Next In
Quter
loop
For In2 =1 to 10
Second
Inner " Block of code goes here
loop
Next In2
Mext Out

" Program continues when outer loop ends

The blocks of code inside Figure 6.4's innermost loops execute a total of 40 times each. The outside loop iterates four
times, and each inner loop executes, first the top and then the bottom, in their entirety each time the outer loop iterates
once again.

Do Don't

DO match Next with For statements when you nest loops. Each Next must go with the most recent For before
it in the code. Visual Basic issues an error if you write a program whose inside loop's Next statement appears
after the outside loop's Next statement. If you omit the Next variable, Visual Basic aligns each Next with the
most recent For for you, but adding the Next statement's variable often helps to document the loops and more
clearly show where a loop begins and ends.

Summary

Today's lesson taught you how to control your programs. By adding conditional operators to your Visual Basic
language repertoire, you can now make Visual Basic analyze data and respond according to the values inside variables
and controls. Using the If statement, you can now write a program in which Visual Basic tests a variable or control's
value and decides on an appropriate course of action based on the data.

In addition to the If statement, Visual Basic supports the Select Case statement, which makes nested 1 situations
much simpler to understand. Select Case comes in three formats, depending on how you want to compare the various
conditions.

If you want sections of your code to repeat more than once, you can use one of the looping statements taught in today's
lesson. The Do loops loop as long as a condition is met or until a condition is met, depending on the format that you
use. The For loop continues for a certain number of iterations or until a condition is met. Unlike Do, the For loop
automatically changes its controlling variables by adding or subtracting to or from the controlling variable each time
the loop iterates.

Tomorrow's lesson shows you how to ask the user for input using input boxes. You will also learn how to display
answers for the user with message boxes. Input and message boxes offer simple ways to interact with your user when a
form's control for such input is unnecessary.

Q&A

Q: Why should I avoid the Notoperator?

A: Do not use Not because not using Not makes things not as complicated as using Not. Get the picture?
Positive statements are clearer to understand.

Consider the following expression: Not(A <= B). Wouldn't such an expression be clearer if you wrote it this
way: (A > B)? You don't have to avoid Not altogether because using Not for Boolean data types often is
clear, such as the statement that begins 1f Not(bInClearedScreen) . This I statement says this: If the
screen is not yet cleared, then do what follows the 1. Generally, however, you can almost always reverse
expressions that use Not to simplify them and make them easier to maintain.

Q: If I can write equivalent boand Forstatements, does it matter which | select when I'm programming?

A: Which loop you use is up to you. The choice is not just between the For and Do loops, but between several
formats of each loop. Generally, For loops are useful when you must count values or iterate the loop's body
for a specified number of times. The Do loop is useful for iterating until or while a certain condition is met. If
you are counting up or down, the For loop is easier to write and is slightly more efficient than an equivalent
Do loop.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next day's lesson. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: What logical operator returns a True result if either expression is True?

2: What is the difference between a conditional operator and a logical operator?

3: Whatis a loop?

4: Describe the following assignment statement's action:

intTotal = intTotal - 10

5: How many times does the following code execute the Beep statement?

inth = 0

Do Whille (intN > 0)
intN = IintN + 3
Beep

Loop

6: Why should Exit For be part of an If statement instead of appearing by itself in the body of a For _loop?

7: True/False. Both blocks of an If. . .Else_might execute .

8: True/False. A For loop may never execute, depending on the start and ending values .

9: Why would you nest a For loop?

10: What is the difference between a decision statement and a looping statement?

Exercises

1: Write an 1If statement that compares three numbers for equality .

2: Bug Buster: Larry is not able to loop. What, if anything, is wrong with Larry's code that follows?

intN = 10
Do
Beep
Loop Until (intN > 100)

3: True/False. The clock in a football game counts down 15 minutes to zero. It does this four times. Think
through the four iterations, and describe the kind of Visual Basic equivalent statements such an event

imitates.

Visual Basic lets you combine each Select Case format in a single Select Case statement. Therefore, you
can use a reqular matching Case combined with a conditional Case combined with a range Case. Rewrite
the nested payroll example shown earlier in today's lesson as a Select Case that utilizes at least two kinds

of case bodies for the three payroll possibilities .

Day 7. Advanced Keyboard and Screen Support

Today's lesson shows you how to get the user's input and send information to the screen as output. You've already seen
ways to get the user's input using text boxes, and you've already displayed information on the screen with labels.
Nevertheless, controls like these don't always lend themselves well to asking the user questions and getting answers,
interactively, as the program runs. Text boxes are great for forms and placeholders that hold the user's text, but
sometimes a more immediate response is needed from the user. Today's lesson shows you how to get such a response
with very little programming required.

Today, you learn the following:

« Internal functions

e The MsgBox() function

« How to handle optional function parameters

e The InputBox() function

o Keyboard event-handling

e About check boxes

e About option buttons

e How to combine option button groups in Frame controls

Introduction to Internal Functions

Functions are a kind of procedure, not unlike the subroutine procedures you learned about in Day 3, "Managing
Controls.” The difference between them is that functions, after they finish their job by executing the code in them, send
a value to another part of the program. You'll learn how to write functions and how they work in detail in tomorrow's

lesson.

For now, you must understand what an internal function is because you'll use internal functions to perform 1/0O
throughout the rest of today's lesson. An internal function operates like a magic box that takes values you send to it and
sends back, or returns, a single value to your program. Figure 7.1 shows what a function does.

Figure 7.1. Functions accept zero, one, or more values and sends back a single value.

Zero, one, or more

Arguments
Value 2
Value 4
ValuE 1 Value 3
Manipulate, analyze,
and calculate...
— One
—}.
[— Result

The Function

An internal function, sometimes called an intrinsic function, is a function supplied with the Visual Basic language that
does a job such as a calculation or 1/0. You must know the name of an internal function and its requirements before
you can use one. Although you won't see the code in an internal function (internal functions are as much a part of the
Visual Basic language as the For command is), you will be able to use the internal functions in your programs.

1/0 stands for input/output. Programmers use the term I/O generically to refer to any form of getting input from a
device (such as the keyboard) and sending output to a device (such as the screen).

You'll use functions for many things and the more you learn about them in this and especially tomorrow's lesson, the
better you'll understand them. For now, keep in mind the following:

e You typically pass one or more values to a function; rarely will a function require nothing to be passed to it.
These values that you pass are called arguments.

An argument is a value you pass to a function.

« The function name always has parentheses following it (with the rare exception of those functions that require
no arguments).

e You place the function's arguments, separated by commas if you pass multiple arguments, inside the function's
parentheses.

You've used an internal function already (the rest of today's lesson simply refers to functions rather than internal
functions) in Day 2's lesson when you loaded an image into the Image control that you placed on the form. Here is the
line of code you used, with the argument shortened somewhat to make things easier to describe:

imgHappy.Picture = LoadPicture('"\Happy.bmp™)

The function's name is LoadPicture() . (As is often done, this book keeps the empty parentheses after the function
name when discussing the function so that you can distinguish between functions, variables, and control names.) This
function has only one argument, a string.

Note

Many functions require one or more arguments but make some of the arguments optional. LoadPicture() requires an
initial single string argument but the remaining arguments are optional.

Caution

You must match the argument data type and order that the function requires. For example, if a function requires two
arguments, an integer followed by a string, enter those arguments in that order.

What does this code send LoadPicture()? A string with a filename. What does LoadPicture() return? The graphic
image located at that file. This assignment that you entered in Day 2's lesson then assigns that picture to the image
control's Picture property. Without the LoadPicture() function, the Image control could not display the image. An
Image control requires a graphic image for the Picture property, not a pathname (unless you're specifying an initial
picture at designtime in which you can select a path from the Properties window and Visual Basic will assign the
graphic to that control).

Visual Basic has to do a lot of work for you when you use the LoadPicture() function. Visual Basic must analyze
your argument list to make sure you've complied with the required arguments in number and data types; then Visual
Basic must make sure the path you supply for the image is correct; then Visual Basic must see if you have network
access rights to the file (if you are networked); and finally, Visual Basic must load the image from the file into the
graphic image. Thankfully, Visual Basic supplies LoadPicture() so you don't have to do all this yourself through
tedious code! That's the beauty of functions: they save you work. Functions let you concentrate on the important stuff
(your application's specifics) and take care of routine details for you.

Note
Functions exist to work with graphics, calculate common mathematical formulas, and manipulate disk files. The

functions you learn about in today's lesson are some of the easiest to work with and perhaps the best introduction to
using functions. You'll study many more functions that Visual Basic provides in tomorrow's lesson.

Let the User Respond with wsgeox0

Now that you better understand how functions work, you can examine the MsgBox() function closely. MsgBox() is a
function that produces a pop-up message box. Figure 7.2 shows a message box. As you can see, a message box displays
an icon and a message along with at least one command button. The command button gives the user a chance to read
the message in the message box and click the command button when done.

Figure 7.2. The MsgBox() function displays a message and lets the user respond when finished
reading the message.

About to print %]

Please prepare the printer

Icon
Message

PSS S S S Y,

............................

A message box is a small dialog box used for output during a program'’s execution. The user can close the message box
by clicking a command button and can move the message box but the user cannot resize the message box.

The arguments that you supply to the MsgBox() function determine which icon the MsgBox () function displays, the
message, and the number of command buttons. Therefore, the programmer controls exactly how the message box
appears to the user. When the MsgBox() completes, its return value specifies which command button the user clicked.
Therefore, your program will always test the MsgBox () function's return value if the MsgBox() function displayed two

command buttons. The program can then use an 1 statement to determine the best course of action based on the user's
command button selection.

Caution
Previous versions of Visual Basic included a MsgBox statement. Unlike the MsgBox (), the MsgBox statement could not

interpret the user's button click. The MsgBox statement is considered obsolete although Visual Basic 6 still supports it
for backwards compatibility.

The following is the format of the MsgBox() function:

intResponse = MsgBox(strPrompt[, intStyle][, strTitle])

Note

This format shows two optional arguments, intStyle and strTitle. Although the format uses italicized placeholders
to show where you place literal, variable, or control arguments, the format uses variable name prefixes so you know the
argument's required data types. As you can see, a MsgBox() function always requires a string argument, and the second
and third arguments are both optional depending on how you want the message box to appear.

intResponse holds the function's integer return data type. The first argument is a string (or variable or control that
holds a string) that displays as the message box's message. The second argument determines the style of the buttons
that appear. The last argument determines the title that appears in the message box's title bar.

All message boxes display a command button. Your executing program must know when your user is finished reading
the message box. The program'’s execution temporarily halts until the user clicks one of the message box's command
buttons. As soon as the user clicks the command button, the program continues executing at the statement that follows
the command button.

Tip

If you display a message string that's too long to fit on one line of a message box, Visual Basic breaks the line into two
or more lines. Visual Basic breaks properly between words.

Suppose you need to wait for the user before printing a report. You could issue the following very simple message box:

intResponse = MsgBox("'Click when you are ready for the report'™)

You would have had to declare the variable named intResponse somewhere in the Declarations section of the
procedure (or possibly in the module's Declarations section although you already know not to declare too
manyglobal variables). If you don't specify otherwise, in the second function argument that was omitted here, Visual
Basic displays one command button with the word 0K that the user can click when she or he is done viewing the
message box. Given that this statement contains a MsgBox() function that displays only one command button, the
integer assignment does not help you much—although you must do something with the function’s return value so you
might as well assign it to something. Figure 7.3 shows this simple message box.

Figure 7.3. All MsgBox() functions display a message with at least one command button.

Project name

Pioject1

Click when you are ready for the report

OK

Notice something else that Visual Basic does if you don't specify all the MsgBox() arguments: Visual Basic uses the
project's title for the message box's title bar. Therefore, you almost always want to assign a better name to the title bar,
which you can do after you learn about the first optional argument.

If you want more control of the buttons, you can use an integer value (or a variable or control) for the first optional
argument to specify the style of the buttons. With only one button, the return value, although required in all cases,
makes little difference. With more than one command button, the return value holds a value that corresponds to the
command button clicked. You can use this information in an 1f statement or a Select Case to execute one of two sets
of code that handles either button.

Table 7.1 lists the integer button style values you can use for the MsgBox() function's first optional argument.

Table 7.1. Use integer values to determine the buttons inside message boxes.

Value Named Constant Description
0 vbOKOnly OK button

Table 7.1. Use integer values to determine the buttons inside message boxes.

Value Named Constant Description

1 vbOKCancel OK and Cancel buttons

2 vbAbortRetrylgnore Abort, Retry, and Cancel buttons
3 vbYesNoCancel Yes, No, and Cancel buttons

4 vbYesNo Yes and No buttons

5 vbRetryCancel Retry and Cancel buttons

Figure 7.4 shows the message box that appears in response to the following statement:

Figure 7.4. The user's button selection determines what happens next.

Ready to print?

[0k

Cancel |

intResponse = MsgBox("’'Ready to print?", 1)

The 1 specifies that two command buttons, the OK and Cancel buttons, appear on the message box. This combination is
useful for processes that your program is about to do, such as getting ready to print, because the user can either click
OK to indicate the print is ready or click Cancel to stop the printing process and return to an earlier part of the program.

Table 7.2 lists the return values that are possible from the MsgBox () function. Therefore, the following might be the 1 ¥
statement that handles the previous message box (with the details remarked out to simplify the 1f):

IT (intResponse = 1) Then
" Code goes here that handles
" the OK button click

Else
* Code goes here that handles
" the Cancel click

End If

Caution

Of course, if the message box displayed other message buttons, the 1f statement would have to check for additional
values, or possibly you would write a Select Case statement to handle multiple return values.

Table 7.2. Test these return values to determine which command button the user clicked.

Value Named Constant Description

1 vbOK The user clicked OK

2 vbCancel The user clicked Cancel
3 vbAbort The user clicked Abort
4 vbRetry The user clicked Retry
5 vblgnore The user clicked Ignore
6 vbYes The user clicked Yes

7 vbNo The user clicked No
Note

If the user presses Esc at the message box, Visual Basic responds as if the user clicked the Cancel button and returns
the appropriate value.

No matter how many command buttons you display in a message box, the user can click only one button. As soon as
the user clicks any of the message box's buttons, the message box disappears and the return value is filled with the
clicked button's value.

Using Named Constants

Look back at Tables 7.1 and 7.2 and you'll notice the column labeled Named Constants. Visual Basic supports
hundreds of named constants that you can use in any procedure in place of using literals in their place.

A named constant is a name that Visual Basic applies to an internal list of values. Visual Basic's named constants
usually begin with the Visual Basic prefix. You cannot change the value of the named constants (that's why they are
constant) as you can change the value of variables that you declare, but you can use the named constants in function
argument lists and anywhere else that a literal can go.

Named constants make your programs more readable and understandable. For example, each of the following
statements are identical but, in the second statement, the command button that appears is obvious:

intResponse
intResponse

MsgBox(*'‘Ready to print?", 1)
MsgBox("*Ready to print?*, vbOK)

When you write a program, you can use the named constants without referring to a reference manual or the online help
and without memorizing all the named constants. Visual Basic's editor pops up a list of named constants from which
you can select as you type a function that can use them, such as MsgBox() . Later, when you maintain the program and
make changes, you'll have no trouble understanding how the message box will look. If, instead of named constants, you
used literal values, you would have to look up the value before you would know how to change the message box to
something else.

Do Don't

DO use named constants everywhere you can. They require no extra typing because you can select them from
the Visual Basic editor's pop-up list as you enter function arguments.

Triggering Default Buttons

The first command button on a message box is always the default command button. Visual Basic selects the first (the
leftmost) command button and, if the user presses Enter without clicking a command button, the selected command
button is triggered.

You can change the button that appears as the default button when the message box first appears by adding one of the
values in Table 7.3 to the command button argument.

Table 7.3. Add one of these values to the command button argument to specify the initial default

button.
Value Named Constant Description
0 vbDefaultButtonl First button is default
256 vbDefaul tButton2 Second button is default
512 vbDefaultButton3 Third button is default

Despite their length, the named constants are easier to maintain than the integer literals so use the named constants as
done in the next statement:

intResponse = MsgBox(*'ls the printer on?', vbYesNoCancel +
vbDefaultButtonl)

Tip
If you are displaying a message box that controls a critical process, such as the deletion of a data file, make the Cancel

button the default. If the user accidentally presses Enter, the Cancel button is triggered and the most critical process is
not accidentally performed, as would be the case if you left the OK button selected.

Specifying the Icon
Adding an additional value to the second argument specifies the icon used to the left of the message inside the message
box. Until now, the message box code has not specified this part of the argument in this lesson so the resulting message
boxes have had no icons.

Note

The MsgBox () function actually supports a few additional and optional arguments but they do not apply to this
discussion and are rarely used for simple programs.

Table 7.4 contains the named constant values and the icons they produce.

Table 7.4. These values produce an icon in your message box.

Value Named Constant Description Icon
16 vbCritical Critical Message icon e
32 vbQuestion Question mark icon \rpf)
48 vbExclamation Warning Message ﬁ
64 vbInformation Information Message -
. ‘fr)

The following statement produces a complete message box, building on what you've seen, that displays all the elements
because all of the arguments are specified. Figure 7.5 shows the resulting message box.

Figure 7.5. The user's button selection determines what happens next.

Question Box x|
':\?‘) 5 the printer on?
Yes | . No I Cancel I

intResponse = MsgBox(*'ls the printer on?', vbYesNoCancel + vbQuestion +
vbDefaultButton2, 'Question Box')

Getting Input with inputsoxo

The MsgBox () function exists to display messages to your users but gives users a way to respond with the command
buttons that appear in the message boxes. The command button they click guides the next course of action. Of course,
if the message is for information only, you might display the message box with the single command button so the user
can close the message box when finished reading the message and the program can continue.

If you need to ask the user a question, and need a quick answer that a text box control would make too cumbersome,
you can use another function that is the MsgBox () function's cousin: InputBox() . The InputBox() function displays a
message box but also allows the user to enter a value that your program can respond to. This combination message box
and input field is called an input box. Figure 7.6 shows what an input box looks like.

Figure 7.6. The input box provides a title and a field for data entry.

What is the customer's name? 0K

Cancel

An input box is a message box with a field in which the user can type a value, such as a word or phrase that might
answer a question you ask in the input box's title. As with a message box, the user can move or close an input box but
not resize it. Unlike message boxes, you cannot control which command buttons appear in input boxes. The OK and
Cancel command buttons are the only buttons that input boxes display.

Input boxes don't offer a way to supply an icon as does the MsgBox() function. Here is the format for the 1nputBox()
function:

strAnswer = InputBox(strPrompt[, strTitle][, strDefault][, intXpos]
[, intYpos])

The 1nputBox () function returns a Variant data typed value that you can always interpret as a string; so you can assign
the InputBox() function to a string or use it anywhere you can use a string value. (The Variant return data type allows
you to assign the return value to a control property if you want to do so.) The returned string is the user's typed
response at the input box. Only the first argument is required. Here are all the arguments described:

e strPrompt —The message, such as the question you ask, that appears in the input box. StrPrompt can be as
long as 1,024 characters. Always phrase the prompt as a question so the user will know how to respond to the
input box.

e strTitle —The text that appears in the input box window's title bar. In the absence of a title, Visual Basic uses
the project name.

o strDefault —A default value that appears in the input box’s input field. Your user can accept your default
answer, which is returned when the user closes the message box, change the answer, or type a completely new
answer. Use default answers for predictable answers to which the user generally only has to press OK to accept.

e intXpos, intYpos—The twip coordinate where you want the input box to appear in the form window. You
might want to position the input box out of the way of another form or dialog box you've displayed if the input
box is asking a question about the other window. If you don't specify twip coordinates, Visual Basic places the
input box in the center of the screen.

Note

A twip is 1/1440 of an inch and 1/567 of a centimeter.

The following statement generated the previous input box:

strAnswer = InputBox(*'What is the customer®s name?", "Get name')

If you want to supply a default value and position the input box at an exact screen location, you do so like this:

strAnswer = InputBox(*'What is the customer®s name?", "Get name"™, "Jane
Doe™, 500, 750)

You must have a way to know if the user clicked the OK button (or pressed Enter to select OK because OK is the
default button) or clicked Cancel. The InputBox() function returns a zero-length string, equal to *** if the user clicks
Cancel instead of entering a value or selecting OK to accept the default value. Therefore, your testing code might
follow something like this format:

IT (strAnswer <>""") Then

" Code that handles the user®s input
Else

" Code that handles the user®s Cancel click
End If

Note

Remember that Visual Basic supports a special value named Empty that you can use in place of **. The Empty
keyword makes your code clearer. You can rewrite the previous If like this:

IT (strAnswer <> Empty) Then

Suppose a user indicates that he wants to compute totals for a specific department's data. You could, with an input box,
ask the user for the department name. If the user enters the name, you would then calculate the needed totals. If,
however, the user selects Cancel, the program would assume that the user changed his mind.

Handling the Keyboard

Your programs cannot handle all keyboard activity with controls and input boxes. Sometimes, you need to respond to
specific keystrokes as the user types them. Windows passes special keyboard events to your applications so they can
monitor the keyboard's input. These events are the KeyPress, KeyDown, and the KeyUp events. These events respond
to combination keystrokes such as Alt+G and Shift+P, as well as individual keys. You can test for these combination
keystrokes when a keyboard event occurs.

After your application receives keyboard input, the application can then modify the input or ignore the pressed key if it
isn't an expected keystroke. Keystroke testing is useful for triggering a splash screen's closing, validating input, and
even playing some types of games.

Keyboard-Triggered Events
The KeyPress event occurs when users press any key that corresponds with one of these characters:

o Uppercase and lowercase letters
e Numeric digits

e Punctuation

o Enter, Tab, and Backspace

The KeyPress event tests for most ASCII characters. KeyPress doesn't test for all ASCII characters (such as the
horizontal tab, arrow keys, and other special control-related ASCII characters that appear between ASCII values 0 and
31), but KeyPress certainly does test for most ASCII characters. Use KeyPress to determine exactly which key users
pressed. For example, KeyPress returns a letter A if users press that key.

Note

The KeyPress event occurs on the downstroke. If the user holds down the key, the event occurs when the keyboard
auto-repeats characters.

An event, as you know, is always associated with an object, such as a command button or the form. The KeyPress
event always associates with whatever object now has the focus when users press the key. If no object has the focus,
the KeyPress event associates with the form. (An exception can occur, depending on the KeyPreview property
explained in the section "Prioritizing Responses" later in today's lesson.)

Caution

Don't use a keystroke event to test for a menu shortcut key. The Menu Editor supports shortcut keys for you and sets up
the response automatically by triggering the menu item's Click() event procedure. If you test for keystroke events,
your program cannot respond to menu selections.

The KeyPress event procedure always contains an integer argument. Therefore, if you were to write a KeyPress event
for a TextBox control, the event procedure might begin and end like this:

Private Sub Textl KeyPress (KeyAscii As Integer)

" Code goes here to test and respond to keystroke

End Sub

The KeyAsci i argument is an integer that represents the ASCII code of the character the user pressed. You can use If
or a Select Case Statement to see whether the character is an expected keystroke.

One of the most important tasks you can perform with KeyPress is to change users'’keystrokes. The KeyPress event
occurs as soon as users press the key and before a control gets the keystroke. Normally, for example, a TextBox control
immediately displays whatever key users pressed when the TextBox control has the focus. If, however, you write a
KeyPress event procedure for a TextBox control, the KeyPress event procedure can change the key, as is done in the
following code:

Private Sub txtTrylt KeyPress(KeyAscii As Integer)
" Change any uppercase A to an uppercase B
IT KeyAscii = 65 Then "65 is ASCII for A
KeyAscii = 66 "66 is ASCII for B
End If
End Sub

If the text box named txtTrylt has the focus, the text box accepts and displays any keystroke the user presses until the
user presses an uppercase A with an ASCII code value of 65. The If statement changes the keystroke's KeyAscii value
to a letter B (ASCII 66), and the TextBox control shows the B and not the A because the KeyPress event gets the
keystroke before the text box gets the KeyAscii value.

Tip

Search VB's online help for Key Code Constants. The online help displays named literals that you can use in keyboard
testing. For example, you can test for a Backspace press by checking KeyAsci i for vbKeyBack, test for an Enter press
by checking for vbKeyReturn, and test for Tab press by checking for vbkeyTab. (Remember that KeyPress tests for
only these three keys, in addition to letters, numbers, and punctuation.) Although the text box respects the other
keystroke controls (such as Home and End), KeyPress reliably responds only to Enter, Tab, and Backspace.

Whereas KeyPress tests for a wide range of keystrokes, the KeyDown event is more specific. KeyDown occurs when
users press a key down just as KeyPress does, but KeyDown gives you a more detailed—albeit slightly more
complicated—status of your keyboard. For example, KeyPress returns a different ASCII value for the uppercase T and
the lowercase t keypresses. KeyDown returns the same value, as well as another value called the state argument that
describes the state of the Shift key.

Note

The KeyDown event occurs whenever users press a key. Therefore, both the KeyDown and KeyPress events can occur at
the same time (assuming that users press an ASCII key).

Tip

Use KeyPress if you want to test for an ASCII keystroke, because KeyPress is simpler to program than KeybDown .

The following are the opening and closing statements of a KeyDown event procedure:

Private Sub txtTrylt KeyDown(KeyCode As Integer, Shift As Integer)

" Keyboard code handler goes here

End Sub

KeyCode contains the keystroke, and the shift argument determines the state of the control keys such as Shift, Ctrl,
and Alt. The KeyCode matches the uppercase equivalent of the key pressed. Therefore, if users press a lowercase t, the
KeyCode argument contains 84 (the ASCII value for an uppercase T).

Caution

Be careful because KeyDown's ignorance of the lowercase keys can cause confusion if you're not careful. If you receive
a number keypress, you must check the shift argument. If shift indicates that users pressed Shift at the same time as
the number, users actually wanted the corresponding character above the number (such as the caret [*] above the 6).

The primary advantage of KeyDown over KeyPress is that, despite KeyDown's Shift problems, you can check for
virtually any keystroke, including the arrow keys, Home, End, and so on. Again, check online help for the key-code
constants that VB uses to test these special keystrokes.

The shift state is the key—either Shift, Ctrl, Alt, or none—that users press with the other key. The internal binary
pattern of the shift argument determines the kind of shift state. To check the shift state, you must perform an And
against a number 7. (This special kind of And is called a bitwise And, as opposed to the more common logical And that
works as a compound comparison operator.) The code in Listing 7.1 is the shell that performs he common shift state
test.

Listing 7.1 You can write code that tests for the shift state.

Private Sub Textl KeyDown(KeyCode As Integer, Shift As Integer)
Dim intShiftState As Integer
intShiftState = Shift And 7 ~ Special bitwise And
Select Case iIntShiftState
Case 1
" Code for Shift combinations
Case 2
* Code for Ctrl combinations

O~NO O~ WNPE

9: Case 3
10: " Code for Alt combinations

11: Case 4

12: " Code for Shift+Ctrl combinations

13: Case 5

14: " Code for Shift+Alt combinations

15: Case 6

16: " Code for Ctrl+Alt combinations

17: Case 7

18: " Code for Shift+Ctrl+Alt combinations
19: End Select

20: End Sub

The KeyUp event occurs whenever users release a pressed key. You can test for the specific key released (such as the A
if the user releases half of a Shift+A keystroke) by analyzing the argument passed to KeyUp() - Therefore, KeyUp
occurs after both KeyDown and KeyPress events.

The following code shows an event procedure for a text box. The code converts any lowercase letters the user types
into the TextBox control to uppercase:

Private Sub txtTry KeyPress(KeyAscii As Integer)
" Convert any lowercase letters to uppercase
IT (KeyAscii >= 97) And (KeyAscii <= 122) Then

KeyAscii = KeyAscii - 32 " Adjust to upper
End IFf
End Sub

OO WNE

The ASCII value range for lowercase letters, as you can verify from Appendix C, "ASCII Code Table," is 97 (for a) to
122 (for z). The ASCII value difference between the uppercase letters and their lowercase counterparts is 32. Therefore,
if the KeyPress event procedure successfully gets a lowercase letter ASCII value, the procedure subtracts 32 from the
value to convert the value to its uppercase equivalent.

Caution

Don't use the keyboard events to write your own masked edit routine. Press Ctrl+T and add the Microsoft Masked Edit
Control 6.0 to the toolbox. (Day 9's lesson explains in more detail how you add tools to the Toolbox window.) The
Masked Edit control lets you set up input fields, such as phone numbers with area codes and automatic parentheses and
hyphens. If you were to write your own routines, you would be reinventing the wheel and wasting time that you could
spend at the beach.

Sending Keystrokes from Your Program
The sendkeys statement sends keystrokes to your application as though the user were typing those keystrokes.

SendKeys is useful for controlling the placement of the text cursor because you can send keystrokes such as the Home
and End keys to position the text cursor in a text box or other data-entry control. Here is the syntax of Sendkeys:

SendKeys strKeystrokes[, bInWait]

strKeystrokes is often a string literal, such as "Widgets, Inc.,” if you want to type the value for users. The Boolean
bInwait option is usually omitted and, if False (the default if you omit bInwait), control returns to the executing
procedure as soon as the keystrokes are sent. If binwait is True, the system processes the keystrokes before the code
continues, meaning that the keystroke events are active during the keystroke entry.

You must enclose the following special characters inside braces ({}) if you send them with SendKeys: caret ("), plus

sign (+), percent sign (%), tilde (~), and parentheses. Therefore, to simulate typing 7 + 6, the SendKeys statement
must embed the plus sign in braces, like this:

SendKeys "7 {+} 6"

Several special keystroke characters, such as the Home and function keys, require a SendKeys code and the braces. For
example, to send the Home keypress to an application, you must use the {Home} literal as follows:

SendKeys "*{Home}""

All these special keys have code equivalents you can use. You can look up Sendkeys in online help to learn which
keystroke codes are defined for the special keys.

Note

You can't send the Print Screen keystroke to an application with Sendkeys.

Prioritizing Responses

When users press a key, either the form or the control with the active focus gets the keystroke. If no control currently
has the focus, the form gets the keystroke event. If, however, a control has the focus, either the control or the form gets
the focus, depending on the result of the form's KeyPreview property.

If the form's KeyPreview property is True, the form receives the keystroke event. Therefore, if you had coded two
event procedures named frmAcct_KeyDown() and txtEntry_ KeyDown(), and if the form's KeyPreview property
contains True, the frmAcct_KeyDown() event procedure executes when users press a key. If the form's KeyPreview
property contains False, the txtEntry_KeyDown() control executes (assuming that the text box has the current focus).

Additional Controls

Input boxes and message boxes offer a convenient way for you to display information and get input using pop-up
windows that come and go as needed. The message and input boxes are a great addition to labels and text boxes
because they display output and accept user input differently from those controls.

Other controls accept input and offer the user choices that you've yet to learn. The rest of today's lesson introduces you
to those other controls. By the time you finish today, you will know how to add several kinds of new controls to your
Visual Basic applications.

Check Boxes

A check box offers an option for the user. A check box might appear by itself or perhaps along with several other check
boxes. The check box, when clicked, displays a check mark (meaning the user has selected the check box option) and
the check mark goes away when the user clicks the check box once again.

A check box is an option on a form that is checked when selected and unchecked when not selected. Use CheckBox
controls when you want to offer the user two-value choices, such as whether something is true or false or possibly on or
off.

Remember that a CheckBox control is either checked or not. The check box property value that determines the current
state of the check box resides in the value property. If the value property is 1, the check box is selected and the check
mark appears; but if value holds 0, the check box is not selected and no check mark appears.

Caution

A single check box offers the True or False value selection as indicated by its value property of 1 or 0. If you just
want a yes or no answer to a prompt, don't supply two check box options but supply only one. Actually, check boxes
are better suited for indicating selected options than for answering yes or no questions. Figure 7.7 shows a form with
three Check-Box controls. Each of the controls might be checked or unchecked depending on the user and depending
on the value the programmer stored in each check box's value property at design time.

Figure 7.7. Your users can select various options with check boxes.

wi, Check Box Example A=l E

| zample lext
o Bold Select the Bold or Italic check
boxes bo e their affect on the
I Itac ahaove bext,
W Undering
— LClose

Check box controls

Control with the focus

Tip

If you add an accelerator key to the check box's Caption property value, the user can check and uncheck the check box
by pressing the accelerator keystroke, such as Alt+B.

Check whether or not a check box is checked with an 1 statement that takes the following format:

IT (chkUnder.Value = 1) Then

" Code to handle checked conditions
Else

" Code to handle unchecked conditions
End If

Remember that your form might contain one, two, or more check boxes. Although you can, through tedious coding,
ensure that one and only one check box is selected at any one time, Visual Basic supplies a better way to provide
mutually-exclusive options than check boxes. You'll learn about the Option button control in the next section.

Option Buttons

Option buttons let the user select from one of several choices. Unlike check boxes, however, Visual Basic lets the user
select one and only one option button at a time. Figure 7.8 shows three option buttons with only one selected. If the
user clicks another, Visual Basic takes care of unselecting the first option button and selecting the one the user clicked.

Figure 7.8. Your users can select one and only one option button at a time.

&, Option Button Demo M= E

Option Buttons

- Cold

& Lukewarm: Selected option

~ Hot

An option button offers the user a choice of one and only one selected item on a form. Option buttons are sometimes
called radio buttons because they mimic the way old car radio pushbuttons used to work. One and only one pushbutton
can be pushed at once; as soon as you push in another, the first one resets by popping out.

When you place option buttons on the form, you can set the option button's Value properties all to False at runtime in

the Form_Load () event procedure. The form appears with none of the option buttons selected. After the user selects an
option, that option is selected until the user selects another option button. When you add accelerator keys to the option

button's Caption property value, the user can select an option by pressing that accelerator keystroke instead of clicking
the option button on the form.

Caution

Never place just one option button on a form because the user can select that option button but cannot deselect it.

Group Options with the Frame Control

Technically, the user can select more than one option button at a time as long as the two option buttons reside in
separate frames. You can use frames to hold groups of option buttons so that the user can select one of multiple option
button groups.

A frame, sometimes known as a container control, holds controls on a plane that differs from the form itself. Although
you can only provide one set of option buttons on a form, you can provide multiple option button sets on the screen as
long as one or more sets reside on one or more frames. Frames can hold more than option buttons. A frame can hold
any kind of control that you want to visually group with other controls.

Figure 7.9 shows an application with two option buttons selected. Visual Basic allows this because the application
contains option buttons on the form as well as set on the frame. Without the frame, only one of the five options buttons
can be selected at a time.

Figure 7.9. If you place a group of option buttons on a frame, the user can select one from the frame
as well as one from the form.

. Options - [O) X]

[Y'ou selected a 486 running Windows 95

G .ﬂ'ﬂiﬁ Operating System

& Windows 95 —— Fra me
" Pentium

 Windows NT
" Pentium Pro

Select a processor and
operaling system Close

Do Don't

DO use as many frames as you need to provide multiple option button sets on a form

Frames require very little effort to add. The following properties are useful when setting frames on your
applications'forms:

e BorderStyle —Either 0-None or 1-Fixed single. As with any property with such values, you can assign the
BorderStyle property a 0 or 1 at runtime using Visual Basic assignment statements or you can select the
proper initial value from the Properties window at design time. When you select no border, the frame is
invisible and has no caption or line to differentiate the frame from the form. An unbordered frame can still
group option buttons but your user will have a difficult time knowing that the options are a group separate from
another group that might appear on the form.

e Caption —The text that appears at the top of the frame.

e Font —Determines the font values for the value in the Caption property.

The Bonus Project that appears between today's and tomorrow's lessons, "Variables and Expressions,” builds a
complete project that uses a frame to hold option buttons. You will learn how to place controls on the frame properly
by drawing the form's Option button control on top of the frame that you place on the form. You must place option

buttons on the frame in this manner for Visual Basic to recognize that the option button is no longer part of the form's
group of buttons but is now part of the frame's separate group of options.

Summary

Today's lesson introduced you to internal functions. As you progress through these 21 days, you'll learn more internal
functions. Visual Basic supplies these functions so that you can call the functions by name, passing them arguments,
and use the return values without having to write the function's tedious code yourself to accomplish the same purpose.

The MsgBox() function displays messages to your users in pop-up windows. The user can respond by clicking a
command button. If you are prompting the user to continue with a selected process, you will want to give the user a
combination of command buttons that lets the user continue or cancel the process. Whereas the MsgBox() function
displays messages, you'll use the InputBox() function to ask the user questions and get responses that you can use in
your program.

Other controls, such as check boxes, option buttons, and grouped option buttons on frames, also give your users a way
to inform your program. The selected controls let your program know choices the user is making.

Tomorrow's lesson teaches more about the structure of a Visual Basic application. You'll gain more insight into local
and global variables. In addition, tomorrow's lesson teaches almost all the remaining internal functions that you'll ever
need.

Q&A

Q: Why can't an internal function return more than one value?

A: An internal function is said to become its return value. In other words, an internal function works just like an
expression works in that a single value is produced. Often, you'll pass an internal function a value or set of
values that you want the internal function to manipulate or combine in some way. The return value is the
result of that manipulation or combination. For example, the LoadPicture() function accepts a string
argument that specifies a pathname to an image, and the return value is the actual picture at that location that
you can assign to a graphic property of a control.

The nature of internal functions are such that you can use them anywhere you can use the function's return
value. Therefore, instead of displaying a string literal or variable in a message box, you can use an
InputBox() function in place of the message box's string prompt value. In this way, you nest a function
within a function. The innermost function, the InputBox(), executes first and gets a string from the user.
The MsgBox () function then displays that string in a message box as follows:

intResp = MsgBox(InputBox(*'What is your name?'))

How often will you embed an 1nputBox() function in a MsgBox() function? Possibly never, but this

assignment statement clearly shows that an internal function, in this case the InputBox()'s, becomes its
return value so that other code can then immediately use the return value.

Q: What other internal functions are available?

A: Internal functions exist that work with numbers, strings, and the other kinds data. You'll learn many of these
in tomorrow's lesson, "The Nature of VB Programs."

Workshop

The Workshop provides quiz questions to help solidify your understanding on the material covered and exercises to
provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next chapter. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: What is the difference between an argument and an internal function?

2: True/False. You can specify the default button on a message box.

3: What is an equivalent keyword for the empty string literal, '**?

4: True/False. Tables 7.1, 7.2, and 7.3 describe three different arguments that you can use in MsgBox()
functions .

5: What does Visual Basic use in the title bar of message and input boxes when you don't specify a title
argument?

6: What's the primary difference between a check box and an option button?

7: True/False. You can display a set of option buttons on a form without any being selected.

8: Which property value determines if a check box is selected or not?

9: Which property value determines if an option button is selected or not?

10: Why is a frame sometimes necessary when placing option buttons on a form?

Exercises

1: Describe how your code can determine if the user entered an input box value (or perhaps accepted the default
value you supplied) or clicked the Cancel button?

2. Write the MsgBox () function needed to produce the message box shown in Figure 7.10 .

Figure 7.10. How would you produce this message box?

For Printer |
! E You are out of paper
Abort | . Rety I lgnore I

3: Write a command button event procedure that asks the user for a city, then for a state name, in two separate
input boxes. Then, concatenate the names after placing a comma and space between them and display the
merged city and state string in a message box.

4: Write an application with a long form that contains five option buttons that simulate radio buttons across the
top of the form. Label each of the buttons with your city's top five radio stations. Create an event procedure
for each option button that displays the type o music or talk that station plays. Display this information in a

message box.

Bonus Project 3: User Input and Conditional Logic

This Bonus Project's code demonstrates the use of check boxes, option buttons, and frames so that you can practice
handling the user's responses using the controls you now know.

Handling so many controls and responding to them will require some Visual Basic programming, and this Bonus
Project contains the most code of any you've seen so far. Here are the goals of this application:

« Todisplay a series of check boxes for the user to select one or more countries to see their respective flags
displayed next to their names.

o To display that same series of country names with option buttons so the user can select one and only one
country at a time.

o Toissue a message box—based error if the user fails to respond correctly to the required input.

o To add a second set of option buttons, along with the country option buttons, that determines if the selected flag
displays in a small or large image box control.

In addition to teaching you about these controls, this application introduces you to a new concept: multiple forms in a
single project. This application uses a total of three forms. You'll learn how to load and display the proper form when

needed at runtime.

Note

As is the case with many applications in this 21-day tutorial, this application requires the use of graphics files that come
with Visual Basic. Depending on your installation choices, you might not have the Graphics folder on your disk in your
Visual Basic directory. If so, you'll have to change the pathname to your CD-ROM drive and insert your first VB6

installation CD-ROM pathname in place of this application's pathname. To add the graphics, insert your first Visual
Basic CD-ROM in the drive and select Add/Change Options from the screen to add the graphics to your hard disk.

Creating the Initial Form

Figure BP3.1 shows the first form you'll create.

Figure BP3.1. This form lets the user select the type of flag display desired.

w. Flag Selection =] E3

Flags

" Check Boxes FChick when]
i _Ready !

{ Option Buttons
Exit

Table BP3.1 lists the properties for the elements of the form.

Table BP3.1. Set these controls and properties on the form.

Control Property Name Property Value

Table BP3.1. Set these controls and properties on the form.

Control Property Name
Form Caption

Form Height

Form width

Label Name

Label BorderStyle
Label caption

Label Font

Label Font Size

Label Font Style
Label Height

Label Left

Label Top

Label width

Option button #1 Name
Option button #1 Caption
Option button #1 Left
Option button #1 Top
Option button #1 width
Option button #2 Name
Option button #2 caption
Option button #2 Left
Option button #2 Top
Option button #2 width

Command button #1 Name

Command button #1 Caption

Command button #1 Left

Command button #1 Top

Property Value

Flag Selection
4035

6390

IblFlags
1-Fixed Single
Flags

MS Sans Serif
24

Bold

615

2400

600

1335

optCheck
&Check Boxes
2280

1920

1575

optOption
&Option Buttons
2280

2520

1695

cmdSelect
Click when &Ready
4560

2040

Table BP3.1. Set these controls and properties on the form.

Control Property Name Property Value
Command button #2 Name cmdExit
Command button #2 Caption E&xit
Command button #2 Left 4560
Command button #2 Top 2760

Although the code needed for this form is simple, it does introduce a new concept. The code, shown in Listing BP3.1,
demonstrates how to load a different form than the one currently onscreen.

Listing BP3.1 Getting the user's request from the option button selection.

1 Private Sub cmdSelect Click()

2 " Perform error-checking then

3 " Display the proper form according to the user®s selection

4: Dim strMsg As String " Holds message box return value

5: IT ((optCheck.Value = False) And (optOption.Value = False)) Then

6 strMsg = MsgBox(*'You need to select an option, try again', _
vbCritical, "Error!")

7: Elself (optCheck.Value = True) Then

8: frmFlagsCheck.Show " Flags with Check boxes
9: Else

10: frmFlagsOpt. Show " Flags with Option buttons
11: End IFf

12: End Sub

13:

14: Private Sub Form Load()

15: " Clear each of the option buttons
16: optCheck.Value = False

17: optOption.Value = False

18: End Sub

19: Private Sub cmdexit_Click()

20: " Stop the program

21: End

22: End Sub

The Startup Form's Analysis

Lines 14 through 18 determine what happens when the application first starts and the initial form loads. (The Project,
Properties dialog box should show the form named frmSelect as the startup form.) Lines 16 and 17 set the option
buttons to False. This forces the user to select one of them.

If the user clicks the command button without selecting an option button, line 5's compound conditional statement finds
out. If both option button value properties are still False once the user clicks the command button, line 6 displays a
message box that warns the user he or she must make a selection.

If the user has selected one of the option buttons, lines 7 through 9 determine which option button is selected and show
the proper form. Notice that the line actually shows the form with the command frmFlagsCheck.Show. Actually, this
does not look like a command but rather like some kind of property value named Show. However, there is no property
value named show for forms. Show is a method, and a method is a command that is not a Visual Basic command (such
as Next), but rather a command you apply only to a specific object. In this case, that object is the form
frmFlagsCheck. The show method displays whatever form you apply it to. Therefore, as soon as line 8 or 10 executes,
the user will see the appropriate form on the screen sitting atop the selection form.

Creating the Check Box Form

Figure BP3.2 shows the next form you'll design.

Figure BP3.2. The user can display the flag from any country.

. Flags [_ (O] x|
[+ England %

[Dby

[Spain

[v Mexico

Retum to
selection

The form contains six country names, and six possible flags can appear next to the country names. You'll have to create
a new form and add it to the current project. To do this, follow these steps:

1. Right-click inside the Project window.

2. Select Add, Form from the pop-up menu. Visual Basic displays a tabbed dialog box from which you can select
a new form or an existing one.

3. Double-click the icon labeled Form because you're going to create a new form for this application. The form
will appear on your screen inside the form editing area.

Table BP3.2 lists the properties for the elements of the form. Remember that you need to change the pathname for the
images'Picture properties to your PC's path for those files (and possibly to your Visual Basic CD-ROM if you did not
install the Graphics folder).

Table BP3.2. Set these controls and properties on the flag selection.

Control Property Name Property Value

Form Name frmFlagsCheck
Form Caption Flags

Form Height 7035

Form width 7710

Check box #1 Name chkEngland
Check box #1 caption &England
Check box #1 Left 2835

Check box #1 Top 420

Check box #2 Name chkltaly

Check box #2 caption <aly

Check box #2 Height 495

Check box #2 Left 2835
Check box #2 Top 1155
Check box #2 width 1215
Check box #3 Name chkSpain

Check box #3 caption &Spain
Check box #3 Height 495
Check box #3 Left 2835
Check box #3 Top 1905

Check box #3 width 1215

Table BP3.2. Set these controls and properties on the flag selection.

Control Property Name
Check box #4 Name
Check box #4 caption
Check box #4 Height
Check box #4 Left
Check box #4 Top
Check box #4 width
Check box #5 Name
Check box #5 caption
Check box #5 Height
Check box #5 Left
Check box #5 Top
Check box #5 width
Check box #7 Name
Check box #7 caption
Check box #7 Height
Check box #7 Left
Check box #7 Top
Check box #7 width
Image #1 Name

Image #1 Height
Image #1 Left

Image #1 Picture
Image #1 Top

Image #1 Visible
Image #2 Name

Image #2 Height

Image #2 Left

Property Value

chkMexico
&Mexico
495

2835

2595

1215
chkFrance
&France
495

2835

3375

1215
chkUSA
&USA

495

2865

4140

1215
imgEngland
480

4440
\Program Files\Microsoft Visual Studio\Common\Graphics\lcons\Flags\Flaguk
480

False
imgltaly
480

4440

Table BP3.2. Set these controls and properties on the flag selection.

Control Property Name Property Value

Image #2 Picture \Program Files\Microsoft Visual)
Studio\Common\Graphics\lcons\Flags\Flgitaly

Image #2 Top 1155

Image #2 Visible False

Image #3 Name imgSpain

Image #3 Height 480

Image #3 Left 4440

Image #3 Picture \Program Files\Microsoft Visual]
Studio\Common\Graphics\lcons\Flags\Flgspain

Image #3 Top 1890

Image #3 Visible False

Image #4 Name imgMexico

Image #4 Height 480

Image #4 Left 4440

Image #4 Picture \Program Files\Microsoft Visual Studio\Common\Graphics\Icons\Flags\Flgmex

Image #4 Top 2520

Image #4 Visible False

Image #5 Name imgFrance

Image #5 Height 480

Image #5 Left 4440

Image #5 Picture \Program Files\Microsoft Visual
Studio\Common\Graphics\Icons\Flags\Flgfran

Image #5 Top 3315

Image #5 Visible False

Image #6 Name imgUSA

Image #6 Height 480

Image #6 Left 4440

Image #6 Picture \Program Files\Microsoft Visual

Studio\Common\Graphics\lcons\Flags\Flgusa02

Table BP3.2. Set these controls and properties on the flag selection.

Control Property Name Property Value
Image #6 Top 4080
Image #6 Visible False

Command button Name cmdReturn

Command button &Return to selection
Caption

Command button Left 5520

Command button Top 5040

You now must add the code to the form. Double-click the form named frmFlagsCheck and add the code in Listing
BP3.2. The goal of this application's form is to display a picture of a country's flag when the user clicks a check box.
Therefore, you need to associate a procedure with the Click event for each check box.

Listing BP3.2 Displaying a flag when the user clicks a check box control.

1: Private Sub chkEngland_Click()
2: " Displays the flag if checked
3: IT chkEngland.Value = 1 Then
4: imgEngland.Visible = True

5: Else

6: imgeEngland.Visible = False
7: End If

8: End Sub

9:

Private Sub chkltaly_Click()
10: " Displays the flag if checked
11: IT chkltaly.Value = 1 Then

12: imgltaly._Visible = True
13: Else

14: imgltaly._Visible = False
15: End If

16: End Sub

17: Private Sub chkSpain_Click()
18: " Displays the flag if checked
19: IT chkSpain.Value = 1 Then

20: imgSpain._Visible = True
21: Else

22: imgSpain._Visible = False
23: End If

24: End Sub

25: Private Sub chkMexico_Click()
26: " Displays the flag if checked
27: IT chkMexico.Value = 1 Then
28: imgMexico.Visible = True

29: Else

30: imgMexico.Visible = False

31: End If

32: End Sub

33: Private Sub chkFrance_Click()
34: " Displays the flag if checked
35: IT chkFrance.Value = 1 Then

36: imgFrance.Visible = True
37: Else

38: imgFrance._Visible = False
39: End If

40: End Sub

41: Private Sub chkUSA_Click()
42: " Displays the flag if checked
43: IT chkUSA_Value = 1 Then

44: imgUSA_Visible = True

45: Else

46: imgUSA_Visible = False

47: End IFf

48: End Sub

49: Private Sub cmdReturn_Click()
50: " Return to the selection form

51: frmFlagsCheck.Hide
52: frmSelect.Show
53: End Sub

The Check Box Form's Analysis

The six check box event procedures are similar. You already filled in each image control's Picture property when you
designed the form and placed the controls. Therefore, the event procedure only needs to set the vVisible property to
True to shows the picture. However, a problem exists: What if the user clicks the check box once again to clear the
check mark? The code must turn off the picture's display.

Lines 43 through 46 show how the code works in each event procedure. Line 43 looks at the check box's Value
property. If the value property holds a 1, the user clicked the box to turn on the check mark, and the code, therefore,
turns on the picture's display. If value holds a 0, the user unchecked the box; therefore, the code must turn off the
picture's display, as is done in line 46.

Finally, the command button's Click event procedure performs two tasks in lines 51 and 52. Line 51 shows a new

method called the Hide method that hides the form you apply this method to. (Hide is the opposite of Show.) Line 51
hides the check box form, and line 52 displays the startup form once again so the user can select another option.

Creating the Option Button Form

Figure BP3.3 shows the next form you'll design. The flag may be small or large, depending on which option the user
chooses.

Figure BP3.3. This form lets the user display one flag at a time and select the flag's display size.

i, Flaga Hi=1E

= Englerd
« el
™ Span
I Haico
¥ — Notice large flag
~ UsA
Sizm the Rag
7 Limge Besam b
* Seal velection

The form contains six option buttons next to the six country names, and one of six possible flags can appear next to the
country name. In addition, a frame holds two more option buttons that determine the size of the flag displayed.

Caution

To add option buttons to a frame control, you must draw the option buttons on the frame. In other words, if you double-
click the option button tool and an option button appears in the center of the form, Visual Basic does not assume that
the option button resides on the frame. Therefore, to separate a frame's option buttons from the rest on the form's option
buttons, you must draw the option button by clicking the toolbar's option button control once and dragging the new
option button on top of the form's frame. That option button, and all others you place on the frame this way, will be
considered part of the frame and distinct from the other option buttons.

As before, you have to create a new form and add it to the current project. Once you add the form (the third form in the
project), assign the controls and properties shown in Table BP3.3 to it.

Table BP3.3. Option buttons change the way the flags display on the form.
Control Property Name Property Value
Form Name frmFlagsOpt
Form Caption Flags

Form Height 7335

Table BP3.3. Option buttons change the way the flags display on the form.

Control Property Name Property Value

Form width 8955
Option button #1 Name ~ ©ptEngland
Option button #1 &England
Caption

Option button #1 Height 49
Option button #1 Left 2760
Option button #1 Top 360
Option button #1 value True
Option button #1 width 1215
Option button #2 Name ~ optltaly

Option button #2 <aly
Caption

Option button #2 Height 495
Option button #2 Left 2760
Option button #2 Top 1080
Option button #2 width 1215
Option button #3 Name ~ OPtSpain

Option button #3 &Spain
Caption

Option button #3 Height 495
Option button #3 Left 2760
Option button #3 Top 1800
Option button #3 width 1215
Option button #4 Name optMexico

Option button #4 &Mexico
Caption

Option button #4 Height 495
Option button #4 Left ~ 2760

Option button #4 Top 2520

Table BP3.3. Option buttons change the way the flags display on the form.

Control Property Name Property Value
Option button #4 width 1215
Option button #5 Name optFrance

Option button #5 &France
Caption

Option button #5 Height 49
Option button #5 Left 2760
Option button #5 Top 3240
Option button #5 width 1215
Option button #6 Name ~ OPTUSA

Option button #6 &USA
Caption

Option button #6 Height 495
Option button #6 Left 2760
Option button #6 Top 3960

Option button #6 width 1215

Frame Name fraSize

Frame Caption Size the flag
Frame Height 1215

Frame Left 1320

Frame Top 5040

Frame width 1575

Frame option #1 Name optLarge

Frame option #1 &Large
Caption

Frame option #1 Height 25
Frame option #1 Left 360
Frame option #1 Top 360

Frame option #1 width ~ 1095

Table BP3.3. Option buttons change the way the flags display on the form.

Control Property Name

Frame option #2 Name

Frame option #2
Caption

Frame option #2 Height
Frame option #2 Left
Frame option #2 Top

Frame option #2 Width

Image #1 Name
Image #1 Height
Image #1 Left
Image #1 Picture
Image #1 Stretch
Image #1 Top
Image #1 Visible
Image #2 Name
Image #2 Height
Image #2 Left

Image #2 Picture

Image #2 Stretch
Image #2 Top
Image #2 Visible
Image #3 Name
Image #3 Height
Image #3 Left

Image #3 Picture

Image #3 Stretch

Property Value
optSmall

Smaé&ll

255

360

720

1095
imgEngland
480

5280
\Program Files\Microsoft Visual Studio\Common\Graphics\Icons\Flags\FIlguk
True

2160

True
imgltaly
480

5280

\Program Files\Microsoft Visual
Studio\Common\Graphics\lcons\Flags\Flgitaly

True
2160
False
imgSpain
480

5280

\Program Files\Microsoft Visual
Studio\Common\Graphics\lcons\Flags\Flgspain

True

Table BP3.3. Option buttons change the way the flags display on the form.

Control Property Name

Image #3 Top
Image #3 Visible
Image #4 Name
Image #4 Height
Image #4 Left

Image #4 Picture

Image #4 Stretch
Image #4 Top
Image #4 Visible
Image #5 Name
Image #5 Height
Image #5 Left
Image #5 Picture
Image #5 Stretch
Image #5 Top
Image #5 Visible
Image #6 Name
Image #6 Height
Image #6 Left

Image #6 Picture

Image #6 Stretch
Image #6 Top

Image #6 Visible

Command button Name

Command button
Caption

Property Value
2160

False
imgMexico
480

5280

\Program Files\Microsoft Visual
Studio\Common\Graphics\Icons\Flags\FIg\FIgmex

True

2160
False
imgFrance
480

5280
\Program Filles\Microsoft Visual Studio\Common\Graphics\lcons\Flags\FIlgfran
True

2160
False
imgUSA
480

5280

\Program Files\Microsoft Visual
Studio\Common\Graphics\lcons\Flags\Flgusa02

True

2160
False
cmdReturn

&Return to selection

Table BP3.3. Option buttons change the way the flags display on the form.

Control Property Name Property Value

Command button 495
Height

Command button Left 4920
Command button Top 5400

Command button width 1215

Listing BP3.3 contains the code for the option buttons form module. Get ready as it gets lengthy! You'll see, however,
that the code is repetitive and primarily consists of six similar routines that go with each of the six option buttons.

Listing BP3.3 Add code that controls the flag's display using option buttons.

1: Private Sub optEngland_Click()
2: " Displays the flag if checked
3: IT optSmall.Value = True Then
4: imgEngland.Height = 480

5: imgEngland.Width = 480

6: Else " Large image

7: imgEngland.Height = 2800

8: imgEngland.Width = 2800

9: End If

10: imgeEngland.Visible = True

11: " Turn off display of all other flags
12: imgltaly._Visible = False

13: imgSpain.Visible = False

14: imgMexico.Visible = False

15: imgFrance.Visible = False

16: imgUSA_Visible = False

17: End Sub

18: Private Sub optltaly Click()
19: " Displays the flag if checked
20: IT optSmall.Value = True Then
21: imgltaly._Height = 480

22: imgltaly._Width = 480

23: Else " Large image

24: imgltaly_Height = 2800

25: imgltaly.Width = 2800

26: End If

27: imgltaly._Visible = True

28: " Turn off display of all other flags
29: imgEngland.Visible = False
30: imgSpain.Visible = False

31: imgMexico.Visible = False

32: imgFrance._Visible = False

33: imgUSA_Visible = False

34: End Sub

35: Private Sub optSpain_Click(Q)

36: " Displays the flag if checked

37: IT optSmall.Value = True Then
38: imgSpain.Height = 480

39: imgSpain._Width = 480

40: Else " Large image

41: imgSpain.Height = 2800

42: imgSpain.Width = 2800

43: End If

44: imgSpain._Visible = True

45: " Turn off display of all other flags
46: imgltaly.Visible = False

47: imgEngland.Visible = False
48: imgMexico.Visible = False

49: imgFrance.Visible = False

50: imgUSA.Visible = False

51: End Sub

52: Private Sub optMexico Click()
53: " Displays the flag if checked
54: IT optSmall_Value = True Then
55: imgMexico.Height = 480

56: imgMexico.Width = 480

57: Else " Large image

58: imgMexico.Height = 2800
59: imgMexico.Width = 2800

60: End If

61: imgMexico.Visible = True

62: " Turn off display of all other flags
63: imgltaly._Visible = False

64: imgSpain.Visible = False

65: imgeEngland.Visible = False
66: imgFrance.Visible = False

67: imgUSA.Visible = False

68: End Sub

69: Private Sub optFrance Click()
70: " Displays the flag if checked

71: IT optSmall.Value = True Then
72: imgFrance.Height = 480

73: imgFrance.Width = 480

74: Else " Large image

75: imgFrance.Height = 2800
76: imgFrance.Width = 2800

77: End If

78: imgFrance.Visible = True

79: " Turn off display of all other flags
80: imgltaly._Visible = False

81: imgSpain.Visible = False

82: imgMexico.Visible = False

83: imgEngland._Visible = False
84: imgUSA.Visible = False

85: End Sub

86: Private Sub optUSA Click(Q
87: " Displays the flag if checked

88: IT optSmall._Value = True Then
89: imgUSA.Height = 480

90: imgUSA.Width = 480

91: Else " Large image

92: imgUSA_Height = 2800

93: imgUSA.Width = 2800

94: End IFf

95: imgUSA_Visible = True

96: " Turn off display of all other flags
97: imgltaly._Visible = False

98: imgSpain._Visible = False

99: imgMexico.Visible = False

100: imgFrance._Visible = False

101: imgEngland.Visible = False

102: End Sub

103: Private Sub cmdReturn_Click()
104: ~ Return to the selection form
105: frmFlagsOpt.-Hide

106: frmSelect.Show

107: End Sub

108: Private Sub optSmall_Click()
109: * Hide all flags shown

110: * Subsequent flags will be small

111: imgEngland.Visible = False
112: imgltaly_Visible = False
113: imgSpain._Visible = False
114: imgMexico.Visible = False
115: imgFrance._Visible = False
116: imgUSA_Visible = False
117: " Reset option buttons
118: optEngland.Value = False
119: optltaly.Vvalue = False
120: optSpain.Value = False
121: optMexico.Value = False
122: optFrance.Value = False
123: OoptUSA_Value = False

124: End Sub

125: Private Sub optLarge_Click()
126: * Hide all flags shown

127: * Subsequent flags will be large

128: imgEngland.Visible = False
129: imgltaly.Visible = False
130: imgSpain._Visible = False
131: imgMexico.Visible = False
132: imgFrance._Visible = False
133: imgUSA_Visible = False
134: " Reset option buttons
135: optEngland.Value = False
136: optltaly._Value = False
137: optSpain.Value = False
138: optMexico.Value = False
139: optFrance.Value = False
140: optUSA.Value = False

141: End Sub

The Option Button Form's Analysis

Most of the event procedures consist of virtually the same code, except that the primary country name is different.
Taking the first set (lines 1 through 17), you can see that the code first checks to see if the small or large option button

is selected in line 3. If the small option button is selected, the control's Height and Width properties are set to 480
twips in lines 4 and 5. If the large option button is selected, the code sets the flag's Height and Width properties to
2800 twips.

The rest of the event procedure simply makes the selected country's flag visible by setting the Visible property to
True in line 10 and turning off the display of the other flags in lines 12 through 16. Again, the subsequent six event
procedures that appear in lines 17 through 102 mimic the first event procedure, except that a different country's flag is
the target.

Line 103 begins a short event procedure that works just like the one in the check box form module. It hides the option
button form and displays the selection form once again so the user can select a different form or quit the program.

Lines 108 and 125 both start virtually identical event procedures that turn off the visibility of all flags on the screen. Of
course, only one flag is visible, but instead of looking for the one that's displayed and turning its Visible property to
False, the code turns all the image controls'visible properties to False. Although five of the six are already False,
this code ensures that no flag will be visible.

The reason that clicking the large or small option buttons turns off the flag display is so the next flag the user clicks can
appear in the large or small size. The application could be rewritten to change the size of the displayed flag, but that
would have made this project even longer, and you have enough to type as it is!

Tip

Without a doubt, this application is tedious! Its code is repetitive—the same section of code is repeated twice for each
of the six option buttons and check boxes. Before you finish this 21-day tutorial, you'll learn a way to streamline such
code. When several similar controls appear on a form and the controls mimic each other almost identically, you'll learn
to use a control array, which shortens the code and makes it easier to maintain.

Week 1 In Review

Now that you've finished your first week, you can be proud of yourself because you are on your way to becoming a
full-fledged, official Visual Basic programmer!

As you now realize, Visual Basic programming involves much more than learning a programming language. In a way,
the programming language itself is secondary to Visual Basic's visual programming. Much of creating a Windows
application requires placing graphic elements on a form. Once you place the visual objects, you must set properties to
make those properties look and behave in a certain way.

Your Week's Worth

In this week, you have mastered the following:

e Visual Basic's history— How Visual Basic got its roots from the BASIC language (Day 1).
e Program maintenance— Why clear and concise programming makes subsequent changes and bug fixes much

easier (Day 1).

Program structure— The visual elements, known as controls, have properties that you must set. These
controls interact with the user at runtime by responding to Windows events (Day 1).

Application Wizard— Visual Basic creates a program skeleton for you. You must fill in the details to
customize the skeleton and hone your application (Day 1).

Visual Basic's environment— Visual Basic's environment includes all the windows and toolbars you need to
work within the Windows visual programming mode (Day 2).

Form Layout window— Adjust the form's location on your screen by clicking and dragging with your mouse
(Day 2).

Visual Basic Online Help— Visual Basic offers all the online help that you'll ever need. From within Visual
Basic, you can access the MSDN (assuming you install MSDN) books online and read complete reference
books on the Visual Basic language and programming environment (Day 2).

Creating applications— You don't have to use the Application Wizard to create applications. Instead, you can
control every aspect of your program's creation by starting with a blank slate (actually, a blank Form window)
and adding all the controls and code yourself (Day 2).

Property values— Understanding and setting control properties is simple, especially with help from the
Properties window (Day 3).

Label controls— The Label control holds the text that you want to appear on your forms (Day 3).

Text box controls— Let your users enter text into your application in text boxes that your provide (Day 3).
Command button controls— Your users will trigger actions and indicate when they are ready by using the
command buttons you place on your forms (Day 3).

Menus— Windows applications that require menus use a standard menu bar with pull-down menu options that
you can add to your own Visual Basic applications (Day 4).

The Menu Editor— The Menu Editor is a dialog box that enables you to create menus quickly and easily (Day
4).

Menu response— Menu options trigger Click events that are easy to program (Day 4).

The Code window— Use the editing tool inside Visual Basic's Code window to create the most accurate code

possible (Day 5).
Visual Basic data— Numeric, string, and special kinds of data exist and Visual Basic supports all kinds (Day
5).

Variables— Store temporary values and results in named storage locations called variables (Day 5).
Operators— Perform math and data-manipulation with Visual Basic's extensive collection of operators (Day
9).

Operator hierarchy— Visual Basic computes mathematical expressions in a pre-defined order (Day 5).
Conditional operators— Visual Basic makes decisions, at runtime, based on data by using the conditional
operators to analyze results (Day 6).

The selection statements— The If and Select Case programming statements take advantage of the
conditional operators and execute certain lines of code based on the data (Day 6).

Loops— Visual Basic has as many or more kinds of loops available as any computer language in existence
(Day 6).

Keyboard control— The Toolbox window's controls are not the only way your users interact with your
applications. You can take control of the keyboard (Day 7).

Check box controls— When your users need to select from among several choices, check box controls enable
them to select options simply by clicking the mouse (Day 7).

Option buttons— Use option buttons when your users have to choose one, and only one, option from a set of

options (Day 7).

o Frame control— By placing several frames on a form, you can group option buttons together to offer your
users a more complete set of choices (Day 7).

Part 2: At a Glance

Congratulations on finishing your first week of Visual Basic programming! As you have seen, Visual Basic
programming is fun. In addition, Visual Basic makes programming simple. Whereas programmers before Visual Basic
had to write code that drew controls and made the controls respond to the user, Visual Basic programmers can leave
those trivial details to Visual Basic and concentrate on the application's specific requirements. The fun has just begun
because this week you spice up your applications even more.

Where You're Going

The next week continues to hone your Visual Basic skills. Over the next few days, you'll master virtually all of the
Visual Basic programming language that you'll ever use. In Day 9, "The Dialog Box Control," you learn how to access
the many internal functions that Visual Basic supplies so that you can get more done with less code. When you tap into
Visual Basic's internal routines, you let Visual Basic handle common details such as calculations and data
manipulations.

This week is not just about coding, however. You learn how to place dialog boxes inside your applications so that your
users see a familiar interface when they open a file or send something to the printer. By using standard dialog boxes,
your applications will be more familiar to users and they will adapt to your programs more quickly.

In your first week, you learned how to interact with the user through controls on the screen. This week teaches
additional ways you can interact with the user. You learn how to trap and analyze keystrokes so that you can provide
more control over the user's entered responses. In addition, you will learn how to respond to mouse clicks, double-
clicks, and movements so that your programs interact with the user in every way possible. If you want to offer a drag-
and-drop operation for a control, you will see in Day 10, "Adding Power with the Mouse and Controls," that Visual
Basic's methods make quick work of drag-and-drop operations.

Data input is not the only skill that will improve this week. Your programs will become more flexible and usable as you
add printing capabilities to your applications. You will be able to produce reports from the data that you process. On
Day 14, "Introducing VB Graphics and Multimedia,” you learn to liven your screens with graphics and even
multimedia presentations. Visual Basic includes controls that provide the graphics and multimedia support. With these
controls'properties, events, and methods, your applications will seem to come alive.

Mastering Program Structure

You already have a good idea of how Visual Basic programs operate. When the user interacts with controls, events take
place. If the application contains event procedures that match the control and event combination, that event procedure
executes. The Visual Basic program code is, for the most part, one long set of event procedures with a Declarations
section at the beginning of the code.

Note

Remember that each form has a set of code, located in the Form module, for the controls on that form. Therefore, when
you display a form inside the Form window editing area, the code is available for that form when you click the Project

window's View Code button.

It's time to turn your attention to other program content that a Visual Basic application might hold. Event procedures
are not the only procedures that can appear in code. Figure 8.1 reviews the code that can appear in a Form module. In
addition to declarations and event procedures, the Form module might contain general procedures and class

procedures.

Figure 8.1. A Form module can contain several kinds of code.

The Form Module

Declarations

Private Sub Gen _ Proc1 []
' Body of 1st general procedure
End Sub

Private Sub Gen _ Proc2]
' Body of 2nd general procedure
End Sub

Private Sub Event _ Proc1 []
' Body of 1st event procedure
End Sub

Private Sub Event _ Proc2]
' Body of 2nd event procedure
End Sub

Private Sub Class_ Proc1 []
' Body of 1st class procedure
End Sub

A general procedure is a procedure that is not linked to a control event but performs general calculations and routine
processing.

A class procedure defines a special object in Visual Basic that you create. In a way, a class defines a new data type or
variable that you can use.

You might recall the two drop-down list boxes in the Code window that determine the object and procedure that you
are viewing in the Code window. When you select the Object drop-down list box, you'll see an entry for each control
on the current form (the form whose Form module you are viewing). In addition, you'll see, at the top of the list, a
special object listed as (General) . (The parentheses around the name indicates that the entry is not a control named
General but a special section.) The general section holds both the declarations code that appears at the top of a Code
window and general procedures you write.

Calling General Procedures

General procedures can be function or subroutine procedures. Why would you need a general procedure? In Bonus
Project 2 ("Variables and Expressions™), the following code appeared in two event procedures (optLarge_Click() and
optSmall_ClickQ)):

imgEngland.Visible = False
imgltaly_Visible = False
imgSpain.Visible False
imgMexico.Visible = False
imgFrance._Visible = False
imgUSA_Visible = False
"Reset option buttons
optEngland.Value = False
optltaly._Value = False
optSpain.Value = False
optMexico.Value = False
optFrance.Value = False
optUSA.Value = False

That's a lot of typing to have to repeat. Of course, you can use copy and paste commands inside the Code window to
keep from typing the code twice but there's a problem with doing that. What if you must make a change to the code? If
so, you must remember to make the change everywhere the code appears. Repetitive code is not just a bad thing
because of extra typing but because of subsequent maintenance hassles that arise.

When you have this situation, you can place the code in its own general procedure, similar to that in the following code.
Notice that you give general procedures a name.

(Procedure names follow the same rules as variable names.) In addition, a general procedure can be a function or a
subroutine procedure:

1: Private Sub Clear_Flags(Q
2: “"Hide all flags shown
3: “Subsequent flags will be small

4 imgEngland.Visible = False
5 imgltaly.Visible = False
6: imgSpain._Visible = False
7: imgMexico.Visible = False
8: imgFrance._Visible = False
9 imgUSA_Visible = False

10: "Reset option buttons

11: optEngland.Value = False
12: optltaly._Value = False
13: optSpain.Value = False
14: optMexico.Value = False
15: optFrance.Value = False
16: optUSA.Value = False

17: End Sub

When you get to the place in another procedure that needs to execute this code, you can call the general procedure like
this:

Call Clear_Flags(Q

To call a procedure means to execute one procedure from inside another procedure.

The cal I statement tells Visual Basic to temporarily put on hold the currently running procedure (whether it's an event
procedure or general procedure does not matter) and execute the code inside the called procedure. After the called
procedure is through, the calling procedure's code continues executing from the line that follows the cal I statement.

Private and Public Procedures

Using cal I can be a time-saver and make your programs much more maintainable because you put common code in a
procedure and call that procedure from anywhere in the program when you need the code to execute. You might even
write a routine in one application that you will want to use elsewhere in another application. For example, perhaps you
write a report title that includes your company's name and address, and you want to place that title at the top of other
reports generated in other applications.

If the procedure is located in the general section of a Form module, no other application can use that procedure without
that Form module. Therefore, you can place that procedure inside a Code module. Over time, you might fill a particular
reporting Code module with several routines that you will use for reporting. Then, any application that produces reports
can use those procedures without your having to rewrite them for each application. All you must do is right-click over
the application's Project window and select Add, Module from the pop-up menu to bring your general procedure
module into whatever application that can use the code.

Tip

In a way, after you write general procedures and bring them into other applications, you build your own library of
internal functions. They aren't actually internal (or, more accurately, they are not called intrinsic functions) because

they are not part of the Visual Basic system; but you have added them to whatever applications you load the procedures
into. You never have to write code again to perform those same procedures. To use them, you only need to call those
procedures from the application.

Code inside a Form module can use the code inside an added Code module. All you need to do is call the procedure
from the Form module code with one exception: You can call public procedures from outside the current module, not
private procedures. Consider the following procedure declaration statement:

Private Sub Reportlt()

This procedure can only be called from the module in which it resides. If you wrote the procedure as a public
procedure, by defining it as follows, any procedure from any module in that application can call the procedure:

Public Sub Reportlt()

Therefore, the general-purpose procedures that you write should all be public if you want those procedures to be
callable from other modules.

Therefore, you now can understand these rules:

e A procedure declared as Private can be used only within its own module.
e A procedure declared as Public can be used by any procedure within its application.

Variable Scope

Not only can code be public or private, but variables also can also have public and private scope, although
programmers usually refer to them as global and local. The difference is based on how available the variables are from
surrounding code.

A local variable can be used only by code to which it is visible.

A global variable can be used by code outside its declared area.

The term scope refers to the availability of a variable from within the application's code.

Note

All controls are always visible and public to all code within the application. Controls on the form are never hidden
from view.

Suppose you are a contract programmer for a local video store. You might write a general-purpose procedure that
computes sales tax using your state, county, and city percentages. The code computes sales tax on the current total sale.
You then decide that the sales tax computation will be rather common because you'll compute sales tax on video
purchases, as well as other kinds of sales made such as soft drink purchases which are handled from a different module.
Instead of putting the same calculations twice in the application, you place the sales tax calculation in a Code module
file you have created for the video applications you write. The sales tax procedure will be public so that any procedure
in any application that you add the module to can call it and compute sales tax.

One problem exists, however. Procedures cannot always share data. Consider the following code fragment:

Private Sub GetSalesTotal()
" Subroutine that adds each item"s

price text box and computes a
" total amount for the sale
Dim curTotal As Currency

" Rest of procedure continues here

The GetSalesTotal () procedure adds together all text boxes on a sales form and stores them in the variable named
curTotal . You then want to use a sales tax procedure to compute the sales tax on this procedure's curTotal amount.
You cannot do so with the tools you know so far because curTotal is a local variable!

Note

Only code within a procedure can use a local variable you declare within that procedure. The variable is visible only
within the procedure that declared it.

The term visible refers to a variable's usage. A variable is visible only to procedures that have access to that variable.
For example, a local variable is visible only within the procedure that declared it, and a global variable is visible within
the module in which you declare it.

You can declare curTotal as a variable that's global to the module, however, by pulling out the Dim statement from the
procedure and declaring the variable in theForm module's Declarations section like this:

Option Explicit
" All public variable declarations go here
Dim curTotal As Currency

Any code within the Form module can now access the variable named curTotal . Has that helped you at all? The
answer might surprise you. You have made the situation even worse. You might recall from Day 5 that local variables
are almost always preferred over global variables because procedures should have access only to data they need. If you
make the variable global, as you do when you declare the variable in a module's Declarations section (in the (General)
section of the Code window), you have made that variable visible to all procedures in the module, even to many that
don't need the variable, but the variable is still not visible to other modules!

Note

With Visual Basic applications containing more than one module, the terms local and global actually do not properly
define all situations. Therefore, you might more accurately define a variable as being local if it is visible to a procedure
in which you declare it, a module-level variable if the variable is visible from the module in which you declare it, and
global—or public—if the variable is visible from anywhere in the entire application.

To make a variable truly global to an entire project, you must use the Public keyword instead of Dim to declare the
variable. Also, you must place the Public declaration in a module's Declarations section for the variable to be public,
and hence global, to the entire application.

Caution

Two public variables can have the same name. You can declare them with Publ ic in two separate modules. To ensure
that you are using the proper public variable, if you ever use a public variable, qualify the variable name with the
module's name. Therefore, MyLibrary.curSales refers specifically to a variable named curSales in the Code module
named MyLibrary. If a public variable named cursSales exists in any other module, MyLibrary.curSales guarantees
that Visual Basic will use the correct one.

As a review of the concepts discussed so far, study Figure 8.2 to see how public, module-level, and local variables
relate to one another and within applications. Each rectangular box within the two modules represents a procedure. The
callouts show which variables are available to which procedures.

Figure 8.2. A variable's scope affects which procedures can use that variable.

Module #1 Module #2

Publics P1 As Integer Can use P2, b Publics P2 As Integer
Dim a As Integer P1.and L2a \ Dirm b As String
Public Sub PM1a [] Can use P1. & \ Public Sub PM2a []

Dim L1 As Variant |t P2 and L1

Dim L2a As Single

Canuse F1, a
P2, and L2. This
Public Sub PM1b [] procedure can Publi PM2

K.-"" be called only ublic Sub b (]
Dim L2 As Integer from within the Dim L2b As Single

Module #1 /
Canuse P2, b /

P1, and L2k
Public Sub PM1e] Public Sub PM2e (]

Dim L3 As Integer .4 Dim L2c As Single

Canuse P2, b /
P1, and L2c

All this talk about public variables really saddens the die-hard programmers who want maintainable code. They have a
point when they say something like, "If module-level variables are not good, then publicly declared variables available

to an entire application are even worse because they are visible from all procedures within all modules within the
application.”

You might see the dilemma here. Except in rare cases when the same variable must be used in almost every procedure
within a module, you should declare only local variables using Dim inside their procedures. However, other procedures
often have need of those variables, especially general procedures located in outside Code modules. There must exist a

means for the sharing of local data, and Visual Basic gives you the means as you'll see in the next section.

Passing Data

When two procedures need to share data values, the calling procedure can send its local variables to any called
procedure. To pass the variables, you need to list the variables within the procedure’s parentheses. You've already
passed arguments to procedures, for example, when you used InputBox() . The prompt string inside the InputBox()

parentheses was local data to the procedure that called InputBox(), and InputBox() received the data and worked
with the data you passed it.

The requirement of the called procedure is that it must declare, inside the receiving parentheses, all passed arguments.
A simple example will clarify everything. Listing 8.1 contains two procedures. One sends two values, a total and a
discount amount, to the second procedure which computes sales tax of the total less the discount. The sales tax
procedure uses the data passed to it from the first procedure and displays a message box with the total tax.

Listing 8.1 The first procedure sends arguments to the second.

1: Private Sub GetTotal()
2: " This procedure collects totals from a form
3: " and sends the grand total and a discount
4: " percentage to a sales tax procedure
: Dim curTotal As Currency
: Dim sngDisc As Single "Special tax discount

7:

8: " Collect the totals from the form"s text boxes

9: curTotal = txtSalel.Text + txtSale2.Text + txtSale3.txt
10: "

11: " Send the total to a sales tax procedure

12: Call SalesTax(curTotal, sngDisc)

13: End Sub

14:

15: Public Sub SalesTax(curTotal As Currency, sngRateDisc As Single)
16: * Compute sales tax and deduct percentage discount

17: Dim curSalesTax As Currency

18: Dim intMsg As Integer ~ For MsgBox()
19: "

20: " The following computes a tax based

21: " on 3% plus a millage of 1/2 percent
22: curSalesTax = (curTotal * .03) + (curTotal * .005)

23: "

24: " Now, deduct percentage discount

25: curSalesTax = curSalesTax - (sngRateDisc * curTotal)
26: -

27: " Display Tax

28: intMsg = MsgBox("'The sales tax is " & curSalesTax)
29: "

30: " Procedures automatically return to their

31: * calling procedure when finished

32: End Sub

Note

Notice that the passed variable and the receiving argument's names do not have to match (as in sngDisc in line 12 and
sngRateDisc in line 15) but the number of arguments and data types must match in both the sending and receiving
argument lists. The called procedure refers to the arguments by whatever names it received them as.

The salesTax() procedure might reside in a different Code module from the GetTotal () procedure which could
reside in a Form module's general section. Line 12 calls the sales tax computing procedure that begins in line 15.
Notice that the two variables passed are local to GetTotal () and yet GetTotal () makes them available to SalesTax()

by passing the variables as arguments. The arguments are required because SalesTax() must receive two arguments of
the data type specified.

After the two values get to SalesTax(), the SalesTax() procedure can treat them as if they were local variables to
SalesTax(). Computations are performed with the values, and line 28 displays the computed sales tax in a message
box.

Figure 8.3 shows how GetTotal () sends its values to SalesTax().
Figure 8.3. GetTotal () sends two arguments to SalesTax() for further computations.

Private Sub Get _ Total []
" Initial code
' goes here

Call Sales Tax [curTotal, sngDisc]

End Sub

Public Sub Sales Tax [curTotal As Currency, sngRateDisc As Single]

Body of the Sales Tax
procedure goes here

End Sub

Note

Line 28 seems to mismatch data types but Visual Basic handles such a mismatch accurately. Although MsgBox()
requires an initial string argument, and although the & operator concatenates strings, if you concatenate a string to a
number (or vice versa), Visual Basic converts the number to a string to make the proper concatenation.

Do Don't

DO use Exit Sub if you ever need to terminate a subroutine earlier than its normal End Sub statement. (End
Function works the same for function procedures.) Always use Exit Sub inside an I¥ or other conditional
statement because you would not want the procedure to end there every time or the code that follows Exit Sub
would never execute.

Visual Basic supports a secondary way to call subroutines. You can omit both the cal I statement and the parentheses.
The following two statements are equivalent:

Call PrintTitle (Title)
PrintTitle Title

By Reference and By Value

Listing 8.1 passes its variables using a method called by reference, meaning that the called procedure can change the
arguments in the calling procedure. If, however, you precede the arguments in the receiving function's argument list
with the Byval keyword, Visual Basic receives arguments by value, meaning that the called procedure cannot change
the arguments in the calling procedure. (ByRef is an optional argument qualifier because all arguments are passed by
reference by default.)

For example, if the SalesTax() procedure in Listing 8.1 modified the value in either the curTotal or the
sngRateDisc argument, that same variable in GetTotal () would also be modified. The default method for passing
arguments, by reference, means that the calling procedure's arguments are unprotected from change by the called
procedure.

If line 15 in Listing 8.1 were written like the following line, however, the calling procedure GetTotal ()'s variables are
safe because nothing that SalesTax() can do will harm the original argument values after the program control resumes
in the GetTotal () procedure:

Public Sub SalesTax(ByVal curTotal As Currency, ByVal sngRateDisc As _
Single)

Therefore, unless it is a procedure's goal to modify one of the arguments in the calling procedure, pass all arguments by
value to help protect them. Although the called procedure can use the modified values, those values don't stay modified
when control returns to the calling procedure.
Tip

You can use the Byval keyword before all, one, or some of a receiving function's argument list variables.

How Function Procedures Differ

A function differs from a subroutine, not only by its first and last statement (the wrapper statements) but also by the
way that a function returns a single value back to the calling procedure. In the previous section, you saw code that
called a subroutine procedure. Calling a function procedure differs only slightly. You call a function procedure just as
you call an internal function—that is, you use the function name and arguments but you don't use the cal I statement.
The function call becomes its return value, and you use that value in an expression or statement.

A function procedure's first line, known as the function declaration, must follow this format:

Public|Private Function FuncName([Arg As dataType][, ---1) As dataType

The vertical bar between Public and Private indicates that a function can be either private to its module or public to
the whole application. A function does not have to have arguments, and if it does not, you can omit the parentheses, but
most functions receive at least one argument. The As dataType clause, not found on subroutine procedures, declares
the data type of the function's return value. A function can return one and only one value, and that value's data type is
determined by the data type you specify for the dataType.

The previous SalesTax() procedure, if rewritten to be a function that returns the computed sales tax, might have the
following declaration line:

Public Sub SalesTax(curTotal As Currency, sngRateDisc As Single) As _
Currency

Note

As with subroutine procedures, you can pass arguments by value or by reference depending on how much protection
you want to provide for the calling function's arguments.

Somewhere in the function, you must assign the return value to a variable that has the same name as the function name.
You don't declare this variable but you can use it. Therefore, if the final statement in SalesTax() assigned a value to a
variable named salesTax, that would be the return value of the function. When the function ends, either at the End
Function or by an Exit Function statement, whatever value is in the return variable is the function's return value.

The calling procedure must therefore supply a place for the return value. Generally, you assign the returned value to a
variable. In a calling procedure, it's not unusual to see a statement such as the following:

curDailyNet = CalcNetAdj(curGrSls, sngTaxRt, curGrRate, curStrExp)

CalcNetAdj () is a function; the four values are passed to it, computed, and a variable named CalcNetAdj is assigned a
value somewhere inside CalcNetAdj () . That value is assigned to this calling procedure's variable named
curDai lyNet as soon as the function ends.

The exercise section at the end of today's lesson gives you the opportunity to change Listing 8.1's CalcTax() procedure
from a subroutine procedure to a function procedure. For study, take a moment to look at Listing 8.2 to help seal your
understanding of the way functions work.

Listing 8.2 Functions return a single value back to the calling procedure.

1: = Calling procedure is next

2: Private Sub CPQ

3: Dim varR As Variant " Local variables that help produce
4: Dim varV As Variant " the function®s return value

5: Dim intl As Integer " Holds the return value

6:

7: varR = 32 " Initial values

8: varV = 64

9:

10: intl = RF(varR, varV) ~ Call the function and pass varR
11: " and varV. intl gets return value
12: MsgBox("*After return, intl holds " & intl)

13: MsgBox("*After return, varR holds " & varR)

14: MsgBox("*After return, varV holds " & varV)

15:

16: End Sub

17: * Receiving function is next
18: Public Function RF (varR As Variant, ByVal varV As Variant) As Integer
19: * Received one by reference and one by value

20: varR = 81 " Change both arguments
21: varV = varV + 10

22: " Set the return value

23: RF = varR + varV

24: End Function

Line 10 passes varRr and varV (32 and 64) to the function. The function immediately changes the arguments to hold 81
and 74 in lines 20 and 21. Due to the fact that varR was passed by reference, varR will now be 81 in the calling
procedure (CP()) as well. Line 23 adds the function's arguments of 81 and 74 together and assigns the sum to the
function name setting up the function's return value. When the End Function executes, the calling procedure's line 10's
assignment completes assigning 155 to intl. Line 12 displays the value. Line 13 shows that varR was changed by the
called function by displaying 81 in a message box. Line 14 displays 64 in the message box because it was protected
from change by the called function.

Passing Controls as Arguments

Variables aren't the only kind of data you can pass between procedures. You can pass control values as well. You might
write a procedure that works with the value of a control but you need to know which kind of control was passed.
Perhaps the procedure is called from several different modules and different kinds of controls might be passed
depending on the processing requirements. You can use the 1f TypeOf statement set to check for an argument's data
control type.

Here's the format of the typical If statement that uses TypeOf:

IT TypeOf object Is objectType Then

Block of one or more Visual Basic statements
Else

Block of one or more Visual Basic statements
End If

The object can be any control variable or argument and objectType can be any one of the following values:

CheckBox Image OptionButton Rectangle
ComboBox Label OptionGroup Shape

CommandButton Line PageBreak TextBox
Graph ListBox PictureBox ToggleButton

A control variable, sometimes known as an object variable, is a variable declared as a control. Not only can variables
take on the data type of integers, strings, and currency amounts, but you can also declare a variable to be Object that
can be any possible object in Visual Basic, including controls. The following variable declarations declare control
variables:

Dim objCmdFirst As CommandButton
Dim objNameList As ListBox
Dim objPhoto As Image

In addition, a receiving argument list might receive a control variable like this:

Public Function FixControls (objlncoming As Object)

If a function receives an argument declared as the object data type, you can test the kind of control the argument holds
with code such as this:

IT TypeOF objlncoming Is CommandButton Then
MsgBox("'You sent a command button')

Elself TypeOf objlncoming Is CheckBox Then
MsgBox("*You sent a check box™)

ElselT TypeOf objlncoming Is TextBox Then
MsgBox(*'You sent a text box'™)

End If

Internal Functions

You've seen these three internal functions: LoadPicture(), MsgBox(), and InputBox() . Visual Basic supplies
scores of other internal functions. In the rest of today's lesson, you'll learn the most important internal functions so that
you can use them to build more powerful programs. After you complete today's lesson, you will not only know how to
write your own subroutines and procedures but you'll also understand most of Visual Basic's internal functions as well.
The tools you are developing today strengthen your Visual Basic programming skills considerably. Starting tomorrow,
you can begin to put these new language skills to work by building more advanced applications than were possible
before you mastered the Visual Basic language.

Note

After you finish today's lesson, you will understand about as much of the Visual Basic programming language as you'll
need for a while. Although subsequent lessons teach additional commands, you've already learned the bulk of the
language that you need as a beginning and intermediate programmer. That's good news because you'll think the rest of
Visual Basic is a snap! Much of the next several lessons describe more controls and properties that you can use on your
applications'forms.

The Numeric Functions

The simplest place to begin learning the internal functions is with the integer conversion functions. The format for the
two most common appear here:

Int(numericValue)
Fix(numericValue)

The numericVvalue can be any numeric literal, variable, or expression, including another embedded function that
returns a number. Whatever numeric data type you pass, both functions return that data type, but you can use the return
value as an integer.

Do Don't

DON'T pass a non-numeric argument to Int() or Fix() or Visual Basic displays a runtime error when you
execute your application.

Both functions appear to round their arguments down to the nearest integer. The difference lies in how they treat
negative values. In the following statements, the remark shows each function's return value:

intAnsl = Int(6.8) "6
intAns2 = Fix(6.8) "6
intAns3 = Int(-6.8) " -7
intAns4 = Fix(-6.8) " -6
Caution

Notice that neither 1nt() nor Fix() rounds values up. Int() returns the next- lowest integer portion of its argument.
Therefore, negative numbers round down to the next lowest negative number. Fix() returns the truncated integer
portion of the argument and keeps whatever whole number portion exists in the argument.

To truncate means to remove. Fix() truncates the decimal portion from its argument. A truncated 5.23 would become 5
and a truncated —5.23 would become 5.

The absolute value function is useful when you want to compute the differences between values such as distances and
temperatures.

Absolute value is the positive value of any number. The absolute value of 19 is 19 and the absolute value of —19 is also
19.

The Abs () function is the internal function that computes absolute value. Suppose you need to know how many years
two employees differ in age. You can compute the absolute value of their age difference to find out as shown here:

intAgeDiff = Abs(intEmpAgel - intEmpAge2)

No matter which employee is older, this statement ensures that the positive age difference is stored in the variable
named intAgeDiff. Without the Abs() function, the calculation would produce a negative number if the first
employee were younger than the second.

The sqr() function returns the square root of any positive number. The remarks in the following statements describe
the results of each sqr() function call:

intvall = Sqr(4) "2
intval2 = Sqr(64) "8
intval3 = Sqr(4096) " 16
Note

Sqr() returns the approximate square root of decimal values as well.

Visual Basic supports several advanced scientific and trigonometric functions. Here is a partial list:

e Exp() returns the base of a natural logarithm (a value known as e which is approximately 2.718282) raised to
the power found in the argument.

e Log() returns the natural logarithm of the argument.

e Atn() returns the arctangent of its argument in radians.

e Cos() returns the cosine of its argument in radians.

e Sin() returns the sine of its argument in radians.

e Tan() returns the tangent of its argument in radians.

Tip

If you need to use trigonometric functions that use an argument valued in degrees and not radians, multiply the
argument by (pi / 180). pi is approximately equal to 3.14159.

Data Type Functions

Visual Basic supports several functions that work with the data type of their arguments instead of the argument values:
e The data-inspecting functions Isbate(), IsNull (), and IsNumeric(), and VarType()
e The 11¥() and Choose() shortcut functions
o The data type conversion functions

The Data-Inspection Functions

The data-inspection functions inspect data types and special contents of variables. Your programs work with many

different kinds of data, and you sometimes don't know in advance what kind of data you have to work with. Before you
make a calculation, for example, you want to make sure that the data is numeric.

Table 8.1 lists the 1s() data inspection functions and provides a description of what they do. Each function receives
one argument of the variant data type.

Table 8.1. The 1s() data-inspection functions test for variable and control contents.

Function Description

Name

IsDate() Determines whether its argument is a date data type (or whether the data can be converted to a valid
date)

IsEmpty () Determines whether its argument has been initialized

IsNullQ) Determines whether its argument holds a Nul I value

IsNumeric() Determines whether its argument holds a number (or whether the data can be converted to a valid
number)

Note

Each Is. .. () function accepts the variant data type because they must be able to inspect any data and determine
what type it is.

The code section shown in Listing 8.3 is rather simple but demonstrates what happens when you apply the 1sEmpty ()
function to variables that have and haven't been initialized. You can use 1sempty() to determine if the user has entered
a value into a field.

Listing 8.3 Testing for empty variables.

" Code that tests the Is() functions

Dim varl As Variant, var2 As Variant,

Dim var3 As Variant, var4d As Variant

Dim intMsg As Integer " MsgBox return

" Fill variables with sample values to test
varl = 0 " Zero value

var2 = Null " Null value

var3 = """ " Null string

" Call each Is() function

10: IFf IsEmpty(varl) Then

11: intMsg = MsgBox("'varl is empty', vbOKOnly)
12: End IT

13: 1T IsEmpty(var2) Then

14: intMsg = MsgBox(*'var2 is empty', vbOKOnly)
15: End IF

16: IT IsEmpty(var3) Then

17: intMsg = MsgBox(*'var3 is empty', vbOKOnly)
18: End If

19: 1T IskEmpty(var4) Then

OCoO~NOOTA~AWNPE

20: intMsg = MsgBox(*'var4 is empty', vbOKOnly)
21: End If

The only output from this code is a message box that displays the following:

var4d is empty

You receive this response because all the other variables have some kind of data (they've been initialized).
Tip

Use 1sNul 1 () to see whether a control or field on a report or form contains data. Use 1sEmpty() just for variables.

IsNul 1 ()checks its argument and returns true if the argument contains a Nul I value. The value Nul I is a special value
that you can assign to variables to indicate either that no data exists or that there's an error. (The way your program
interprets a Nul I value depends on how you code the program.)

Caution

Given that you can assign a Nul I value to a variable (as in varA = Null), you might be tempted to test for a Nul 1
value like this:

IT (varA = Null) Then

Be warned that such an 1f always fails. Using 1sNul 1() is the only way to check for a Nul I value in a variable.

Checking for data is simple. If your Visual Basic procedure needs to know whether a form's text box named
txtHoursWorked has data, the procedure can check it with an 1 ¥ statement, as follows:

IT IsNull(txtHoursWorked) Then

intMsg = MsgBox("'You didn"t enter hours worked!", vbOKOnly)
Else " Thank them for the good hours

intMsg = MsgBox(*'Thanks for entering hours worked!", vbOKOnly)
End If

This 1¥ statement checks to ensure that users typed something in the field before the program continues.

IsNumeric()checks its argument for a number. Any vVariant value that can be converted to a number returns a true
result in the 1sNumeric() function and a false result otherwise. The following data types can be converted to numbers:

« Empty (converts to zero)

o Integer

e Long integer

e Single-precision

e Double-precision

e Currency

o Date (returns false always)

o String, if the string "looks" like a valid number

The following code asks users for their age by using a Variant variable. The program displays an error message if a
user enters a non-numeric number:

1: Dim varAge As Variant

2: Dim intMsg As Integer " MsgBox() return

3: varAge = InputBox("'How old are you?', "Get Your Age'’)

4: 1f IsNumeric(varAge) Then

5: intMsg = MsgBox("'Thanks!"", vbOKOnly)

6: Else

7: intMsg = MsgBox(“'What are you trying to hide?", _
vbOKOnly+vbQuestion)

8: End If

Line 4 ensures that the user entered a numeric age and did not type a word or phrase for the answer.

If you need to know what data type a variable is, use the varType() function. Table 8.2 lists the return values from the
varType() function, and vVarType () returns no other values than the 16 listed in the table.

Table 8.2. varType() return values determine data types.

This Value
Returned... Named Literal If the Variant Contains This Data Type...
0 VbEmpty Empty

vbNul | Null

vbinteger Integer

1

2

3 vbLong Long

4 vbSingle Single

This
Retu

5
6
7
8
9

10
11
12
13
14
17
8192

Value
rned...

Table 8.2. varType() return values determine data types.

Named Literal
vbDouble

vbCurrency
vbDate
vbString
vbObject
VbError
vbBoolean
vbvariant
vbDataObject
vbDecimal
vbByte

VbArray

If the Variant Contains This Data Type...
Double

Currency

Date

String

Object

An error value

Boolean

variant (for variant arrays, see Day 10's lesson)

A data-access object

Decimal
Byte

An array (VB adds 8192 to the data type to indicate an array so 8194 indicates
an integer array)

The procedure in Listing 8.4 uses aSelect Case Statement to print the data type of whatever data is passed to it.

Listing 8.4 Use varType() to determine the data type passed.
Private Sub PrntType(varA)
Dim intMsg As Integer

Select Case VarType(varA) " VarType() returns an integer

Case O
intMsg
Case 1
intMsg
Case 2
intMsg
Case 3
intMsg
Case 4
intMsg
Case 5
intMsg
Case 6
intMsg
Case 7
intMsg
Case 8

" Variant if you don"t specify otherwise
" MsgBox() return

MsgBox(*'The argument is Empty'™)

MsgBox(*'The argument is Null')

MsgBox(*'The argument is Integer'™)

MsgBox(*'The argument is Long')

MsgBox(**'The argument is Single'™)

MsgBox(**'The argument is Double'™)

MsgBox(*'The argument is Currency')

MsgBox(*'The argument is Date')

21: intMsg = MsgBox('The argument is String')

22: Case 9

23: intMsg = MsgBox("'The argument is an Object')

24: Case 10

25: intMsg = MsgBox("'The argument is an Error')

26: Case 11

27: intMsg = MsgBox(*'The argument is Boolean™)

28: Case 12

29: intMsg = MsgBox(*'The argument is a Variant array')
30: Case 13

31: intMsg = MsgBox(*'The argument is a Data Access Object')
32: Case 14

33: intMsg = MsgBox("'The argument is Decimal')

34: Case 17

35: intMsg = MsgBox("'The argument is Byte')

36: Case Else

37: intMsg = MsgBox(*'The argument is an Array'’)

38: End Select

39: End Sub

The 11¥() and Choose() Shortcut Functions

A kinder, gentler 1f. . _Else statement equivalent exists in the form of a function that you can always substitute for
single-body 1. . .Else statements. The 11¥() function works a lot like the @1¥() function in popular worksheet
programs. The format for 11¥() follows:

I1f(condition, TrueBody, FalseBody)

11 £ works well only for short If. . .Else statements such as the following:

IT (curSales < 5000.00) Then
curBonus = 0.00

Else
curBonus = 75.00

End If

Each of the two bodies of this 1f. . _Else is a single line long so you can rewrite the I1f. . .Else like this using a
shorter 11¥() function and assigning the return value to curBonus:

curBonus = 1If(curSales < 5000.00, 0.00, 75.00)

Figure 8.4 shows how this 11F() operates.

Figure 8.4. One of two values is assigned to the value at the left of 11F().

curBonus is assigned this

curBonus = If [curSales < 5000.00, 0.00, 75.00]

or curBonus is assigned this

Tip
Although 11F¥(Q) is shorter than an equivalent multi-line 1f. . .Else, 11F() isnot as clear as the multi-line
IT.. _Else. Inaddition, if you ever have to add to the body of either the true or false side of the 11¥(), you have to

convert the function to a multi-line 1f. . _Else at that time. Therefore, in most cases, you are better off using the multi-
line format of the If. . _Else statement.

You can't divide by zero (division by zero is undefined in mathematics). Therefore, the following 11F() function
returns an average sale price or a Nul I value if division by zero results:

curAveSales = 11f(intQty > 0, curTotalSales /7 intQty, Null)

Tip

Visual Basic interprets zero values as false results in all situations. Knowing this, you can rewrite the preceding
statement as follows:

curAveSales = 11f(intQty, curTotalSales / intQty, Null)

The choose () function provides a shortcut for some Select Case statements. Choose() can have many arguments—
more arguments than any other built-in function. Depending on the value of the first argument, Choose () returns only
one of the remaining arguments. Here's the format of Choose():

Choose(intlndexNum, expression[, expression] ...)

After the second argument (expression), you can have as many expression arguments as needed. intIndexNum must
be a variable or field that equates to a number from 1 to the number of expressions in the function.

If, for example, you need to generate a small table of price codes, abbreviations, or product codes, using Choose() is
more succinct than using an I or Select Case Statement. Choose(), however, is more limited in scope than If
because Choose () selects on an integer value only, not on a more complete comparison.

Caution

Choose() returns Nul I if intIndexNum isn't between 1 and the number of expressions inclusive.

The first argument of Choose () can be an expression. Therefore, you have to adjust the first argument so that it falls
within the range of the number of arguments that follow. If the values possible for the index go from O to 4, for
example, add 1 to the index so that the range goes from 1 to 5 and selects from the Choose) list properly.

Suppose that a form contains a Price Code label. When users enter a new product, they should also enter a price code
from 1 to 5, which corresponds to the following codes:

Full markup
5% discount

10% discount

Special order

g B~ W N P

Mail order

The following Choose () function assigns to a description field the correct description based on the price code:

Descript = Choose(lblProdCode, "Full markup', "5% discount', '"10% discount",
“Special order™, "Mail order™)

The Data Type Conversion Functions

Table 8.3 describes the data type conversion functions, denoted by their initial letter C (for convert). Each function
converts its argument from one data type to another.

Table 8.3. The data type conversion functions convert one data type to another.

Function Name Description

CBool) Converts its argument to the Boolean data type
CByte() Converts its argument to the Byte data type
CCurQ Converts its argument to the Currency data type
CDhate() Converts its argument to the Date data type
CDbI O Converts its argument to the Double data type
CDec() Converts its argument to the Decimal data type
CintQ) Converts its argument to the Integer data type
CLngQO Converts its argument to the Long data type
CSngQO Converts its argument to the Single data type
CcstrQ) Converts its argument to the String data type
Cvar(Q) Converts its argument to the variant data type
Caution

You must be able to convert the argument to the target data type. You can't convert the number 123456789 to a Byte
data type with cByte(), for example, because the Byte data type can't hold a number that large.

Unlike Int() and Fix(), CInt() returns the closest rounded integer to the argument. For negative numbers, Cint()
also rounds to the closest whole integer. Look at the remarks to the right of each of the following statements to see
what's stored in each variable:

intAl
intA2

CInt(8.5) " Stores an 8 in IntAl
CInt(8.5001) " Stores a 9 in IntA2

The following code converts each argument to different data types. Remember that you also can pass these functions
expressions that produce numeric results so that you can control the data types of your calculated results before storing
them in a field or variable:

curVarl = CCur(123) " Converts 123 to currency data type

dblVar2 = CDbl(123) " Converts 123 to double-precision data type
sngVar3 = CSng(123) " Converts 123 to single-precision data type
varVar4d = CVar(123) " Converts 123 to the variant data type

The String-Related String Functions

The string-related functions manipulate and analyze string data. One of Visual Basic's greatest strengths over other
programming languages, thanks to Visual Basic's BASIC background, is the strong support for string data.

Len() Determines Length
Len() is one of the few functions that can take either a numeric variable or a string for its argument—although you'll

use Len() primarily for string data. Len() returns the number of memory bytes needed to hold its argument. Here's the
format of Len():

Len(Expression)

Note

Len() accepts any string value (variable, literal, or expression). However, only numeric variables, not numeric literals
or expressions, work as Len() arguments.

Len() returns the length (number of characters) of the string variable, string constant, or string expression inside its
parentheses. The following MsgBox() function displays a 6 as its output:

intMsg = MsgBox(Len(*'abcdef'))

Tip

If the string contains Null, Len() returns a value of 0. Testing for a null string lets you test to see whether a user
entered data in response to an InputBox() function or a control value.

Converting Strings

Several conversion functions work with string data. Table 8.4 describes each string- conversion function used in the
following examples.

Table 8.4. The string-conversion functions convert to and from the String data type.

Function Description

Name

CsStr Changes its argument to a string

StrQ Converts its numeric argument to a string (actually, to a variant data type that you can use as a
string)

valQ) Converts its string argument to a number, assuming that you pass val () a string-like number

cstr() and str() convert their arguments to string values. The only difference is that cstr() doesn't add a leading
blank before positive numbers converted to strings; str() does. Listing 8.5 demonstrates the difference between
cstr() and str().

Listing 8.5 str() adds a leading blank before positive numbers that cstr() does not add.

1 Private Sub convStr

2 Dim strl As String, s2 As String

3 Dim intMsg As Integer " For button clicked
4: strl = CStr(12345)

5: str2 = Str(12345)

6: intMsg = MsgBox("'***" & strl & '"***')

7 intMsg = MsgBox(""***" & str2 & "'***')

8: End Sub

Line 6 produces a message box that displays ***12345*** and Line 7 displays *** 12345***_ Notice the blank
before the number that str() added.

The ASCII Functions

Use chr(Qand Asc() to convert strings to and from their numeric ASCII values. The ASCII table lists every possible
character available on the PC and assigns a sequential number (an ASCII code) to each character.

By putting a number inside the chr () parentheses, you can produce the character that corresponds to that number in the
ASCII table. By using chr(), you can generate characters for variables and controls that don't appear on your
computer's keyboard but that do appear in the ASCII table.

The Asc() function is a mirror image of Chr() . Whereas Chr() takes a numeric argument and returns a string
character, Asc() requires a string argument and converts that argument to its corresponding ASCII table number.

Therefore, an A is stored in strvar in the following assignment statement because the ASCII value of A is 65:

strVar = Chr(65) " Stores an A in aVar

Of course, it makes more sense to store an A directly in the strvar variable in the preceding example's statement. But
what if you want to ask a Spanish question inside a message box? Spanish questions always begin with an upside-down
question mark, and no upside-down question mark appears on your keyboard. Therefore, you can resort to using Chr()
as follows:

" Chr(241) produces an n with a tilde over it
strMyQuest = Chr(164) & "Se"™ & Chr(169) & 'or, como esta?"
intMsg = MsgBox(strMyQuest)

Figure 8.5 shows the message box displayed from this code.

Figure 8.5. Use ASCII characters to display characters not on the keyboard.

ASCII testing %

{Sefior. como esta?

Asc() returns the ASCII number of the character argument you give it. You can find the ASCII numbers by searching
Visual Basic's online help. The argument must be a string of one or more. If you pass Asc() a string of more than one
character, it returns the ASCII number of the first character in the string.

The following code demonstrates a good use for Asc():

strAns = InputBox(''Do you want to see the name')

IT ((Asc(strAns) = 89) Or (Asc(strAns) = 121)) Then
b = MsgBox(*'The name is ' + aName)

End If

The user can answer the prompt with 'y, Y, Yes, or YES. The If. . .Then test works for any of those input values
because 89 is the ASCII value for Y, and 121 is the ASCII value of y. Asc() returns the ASCII value of its string
argument's first letter.

The Substring Functions
The substring functions return parts of strings. Right() returns characters from the right side of a string. Right()'s
cousin, Left(), returns characters from the left side of a string. Mid() takes up where Right() and Left() fail—

Mid() lets you pick characters from the middle of a string.

Here are the formats of the substring functions:

Left(stringvValue, numericValue)
Right(stringValue, numericValue)
Mid(stringVvValue, startPosition[, length])

The following section of code demonstrates Left():

strA = "abcdefg"

partStl = Left(strA, 1) " Stores a
partSt2 = Left(strA, 3) " Stores abc
partSt3 = Left(strA, 20) " Stores abcdefg

Note

If you try to return more characters from the left of the string than exist, Left() returns the entire string.

Right() works in the same manner as Left(), except that it returns the rightmost characters from a string:

strA = "abcdefg"

partStl = Right(strA, 1) " Stores ¢
partSt2 = Right(strA, 3) " Stores efg
partSt3 = Right(strA, 20) ° Stores abcdefg

Mid() accomplishes what Left() and Right() can't—it returns characters from the middle of a string. Mid() uses
three arguments: a string followed by two integers. The first integer determines where Mid() begins stripping
characters from the string (the position, starting at 1), and the second integer determines how many characters from that
position to return. If you don't specify two integers, Mid() uses 1 as the starting position.

Mid() can pull any number of characters from anywhere in the string. The following example shows how the vid()
function works:

strA = "Visual Basic FORTRAN COBOL C Pascal"

langl = Mid(strA, 1, 12) ~ Stores Visual Basic
lang2 = Mid(strA, 14, 7) = Stores FORTRAN
lang3 = Mid(strA, 22, 5) ~ Stores COBOL

lang4 = Mid(strA, 28, 1) " Stores C

lang5 = Mid(strA, 30, 6) " Stores Pascal

If you don't specify the Iength argument, VB returns all the characters to the right of the starting position. If the length
is longer than the rest of the string, VB ignores the 1ength argument.

Note

Mid() works both as a command and a function. It works as a command when it appears on the left side of an
assignment statement's equal sign; it's a function when it appears anywhere else. Following is its format:

Mid(string, start[, length])

When you use the Mid() statement, Mid() changes the contents of the string used inside the statement's parentheses.
The following code initializes a string with three words and then changes the middle word with Mid() :

strSentence = "Rain in Spain"

" Change the middle word

Mid(strSentence, 6, 2) = *on"

" After the change

intMsg = MsgBox("'After change: " & strSentence)
" Prints Rain on Spain

Converting to Uppercase and Lowercase

The ucase () function returns its string argument in all uppercase letters. Lcase () returns its string argument in all
lowercase letters. The following MsgBox() function displays VISUAL BASIC:

intMsg = MsgBox(UCase(**'Visual Basic'™))

Justifying and Trimming Strings

LTrim() and RTrim() trim spaces from the beginning or end of a string. LTrim() returns the argument's string without
any leading spaces. RTrim() returns the argument'’s string without any trailing spaces. The Trim() function trims
leading and trailing spaces.

Here are the formats of the string-trimming functions:

LTrim(stringExpression)
RTrim(stringExpression)
Trim(stringExpression)

The following statements trim spaces from the beginning, end, or both sides of strings:

stl = LTrim(" Hello™) " Stores Hello
st2 = RTrim(*'Hello ') " Stores Hello
st3 = Trim(" Hello ') * Stores Hello

Without the trimming functions, the spaces are copied into the target variables as well as the word Hello.

str() always converts positive numbers to strings with a leading blank (where the imaginary plus sign appears);
therefore, you can combine LTrim() with str() to eliminate the leading blank. The first of the following two
statements stores the leading blank in str1. The second uses LTrim() to get rid of the blank before storing the string
into str2:

strl
str2

Str(234) " Stores " 234"
LTrim(Str(234)) " Stores '"'234"

The following Reverselt() function includes several of the string functions described in today's lesson. This function,
shown in Listing 8.6, reverses a certain number of characters within a string.

Listing 8.6 This function reverses a string by using the string functions.

1: Public Function Reverselt (strS As String, ByVal n As Integer) As _ String
2: " Accepts: a string and an integer indicating the number of
3: ° characters to reverse

4: " Purpose: reverses the specified number of characters in the
5: ° specified string

6: " Returns: the modified string

7:

8: " Reverses the first n characters in s.

9:

10: Dim strTemp As String, intl As Integer

11:

12: IT n > Len(strS) Then n = Len(strS)

13: For intl = n To 1 Step -1

14: strTemp = strTemp + Mid(strS, intl, 1)

15: Next intl

16: Reverselt = strTemp + Right(strS, Len(strS) - n)

17: End Function

Suppose that the Reverselt() function is called with the following statement:

newStr = Reverselt ('Visual Basic"™, 6)

If all goes well, the string named newStr will hold the characters lausiV Basic (the first six characters are reversed).
Line 10 declares two local variables, the first of which, a string variable named strTemp, holds the reversed string as
it's being built. The second variable, intl, is used in the For loop.

Tip

Starting with version 6, Visual Basic now includes a string function named StrReverse() that returns the reversed
string of its single string argument. Listing 8.6, although certainly not as efficient as using StrReverse(), does help
demonstrate the Mid() function.

Line 12's 1f statement ensures that the integer passed to Reverselt() isn't larger than the length of the string passed.
It's impossible to reverse more charactersthan exist in the string. If more characters are passed, the If statement ensures
that the entire string is reversed by changing the length to reverse to the exact length of the string via the Len()
function.

In line 13, the For loop then counts down, from the position to reverse (stored in n) to 1. By using the Mmid() function
in line 14, Visual Basic concatenates one character from the string, at position n, to the new string being built. As n
reaches 1, the reversed characters are sent to the new string in line 14. After all the characters that need to be reversed
are reversed, the rightmost portion of the passed string is concatenated as is to the reversed characters.

Special Functions

Visual Basic offers date and time functions that help you analyze and manipulate date and time values. Such functions
are critical for recording exactly when a field was edited for security or verification purposes. Also, all printed reports
should have the date and time (often called date- and time-stamping) printed on the report, showing exactly when the
report was produced. In a stack of like reports, the date and time stamps show when the latest report was printed.

In addition to the date and time functions, Visual Basic supports a special data- formatting function that you can use to
display formatted strings.

Working with Dates and Times

Your Windows settings determine the format of the Date and Time return values. For example, on many systems the
Date function returns the system date in the variant data type in the following format:

mm-dd-yyyy

where mm is a month number (from 01 to 12), dd is a day number (from 01 to 31), and yyyy is a year number (from
1980 to 2099). The Date requires no parentheses because Date is one of the few functions that accepts no arguments.

Time returns the system time in the variant data type in the following format:

hh:mm:ss

where hh is the hour (from 00 to 23), mm is the minute (from 00 to 59), and ss is the second (from 00 to 59).

Time uses a 24-hour clock. Therefore, all hours before 1:00:00 in the afternoon equate to a.m. time values, and all times
from 1:00:00 until midnight have 12 added to them so 14:30 is 2:30 in the afternoon.

Now combines the Date and Time functions. Now returns a variant data type in the following format (if you were to
print the Variant return value of Now in a message box, you'd see this format):

mm/dd/yy hh:mm:ss AM|PM

where the placeholder letters correspond to those of the bate and Time functions, with the exception that a 12-hour
clock is used and either AM or PM appears next to the time. The vertical line in the format indicates that either Am or Pm
appears, but not both at once.

The most important thing to remember about all three date and time retrieval functions is that they return date and time
values that are stored internally as double-precision values (with enough precision to ensure that the date and time
values are stored accurately). The best way to format date and time values is to use Format(), which you learn about
in today's final section.

Assuming that it's exactly 9:45 in the morning, the statement

currentTime = Time

stores 9:45:00 in the variable currentTime. If the date is 2/23/99, the statement

currentDate = Date

stores 2/23/99 in the variable currentDate. The statement

currentDateTime = Now

stores 2/23/99 9:45:00 AM in the variable currentDateTime.
Note

When you enter date and time values, you must enclose them between pound signs such as the following:

#11/21/1993#

Because there are several date formats, just about any way you're used to specifying the date is recognized by Visual
Basic. As long as you enclose the date between pound signs, you can use any of the following formats when specifying
a date:

mm-dd-yy

mm-dd-yyyy
mm/dd/yy

mm/dd/yyyy

monthName dd, yyyy

mmm dd, yyyy (where mmm is an abbreviated month name, _ as in Dec)
dd monthName yy

dd-mmm-yy (where mmm is an abbreviated month name, as in Dec)

Here are some of the ways you can express the time:

hh
hh-mm
hh:mm:ss

You must use a 24-hour clock with Time.

Computing the Time Between Events

The Timer function returns the number of seconds since your computer's internal clock struck midnight. The format of
Timer is simple:

Timer

As you can see, Timer is a function that accepts no arguments and is one of the rare times that you don't specify the
parentheses after a function. Timer is perfect for timing an event. For example, you can ask users a question and
determine how long it took them to answer. First, save the value of Timer before you ask users; then subtract that value
from the value of Timer after they answer. The difference of the two Timer values is the number of seconds users took
to answer. Listing 8.7 shows a procedure that does just that.

Listing 8.7 You can time the user's response.

1: Public Sub CompTime (O
2: " Procedure that times the user®s response
: Dim intMsg As Integer " MsgBox() return

4: Dim varBefore, varAfter, varTimeDiff As Variant
: Dim intMathAns As Integer
6: varBefore = Timer " Save the time before asking
7: intMathAns = Inputbox(**What is 150 + 2357?7')
8: varAfter = Timer " Save the time after answering
9: " The difference between the time values
10: " Is how many seconds the user took to answer
11: varTimeDiff = varAfter - varBefore

12: intMsg = MsgBox(*'That took you only'™ + Str(varTimeDiff) & ' seconds!™)

13: End Sub

Line 6 stores the number of seconds since midnight before asking for an answer. Line 7 asks for an answer and, as soon
as the user types an answer, line 8 immediately stores the number of seconds since midnight at that point. The
difference, computed in line 11, determines how long the user took to answer.

Timer finds the number of seconds between time values, but only for those time values that fall on the same day.

DateAdd(), DateDiff(), and DatePart() take up where Timer leaves off. Table 8.4 lists these three date arithmetic
functions and their descriptions.

Table 8.4. The date arithmetic functions compare date values.

Function Name Description

DateAdd() Returns a new date after you add a value to a date
DateDiff() Returns the difference between two dates
DatePart() Returns part (an element) from a given date

All three date arithmetic functions can work with the parts of dates listed in Table 8.5. Table 8.5 contains the parts of
dates these functions work with, as well as their interval values that label each part. You use the interval values inside
the date arithmetic functions to get to a piece of a date or time.

Table 8.5. The date arithmetic functions work with these time period values.

Interval Value Time Period

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday (Sunday is 1, Monday is 2, and so on for Day(), Month(), Year(), and DateDiff())
ww Week

h Hour

n Minute (note that it's not m)

S Second

Despite its name, bateAdd() works with both dates and times (as do all the date functions) because the date passed to
DateAdd() must appear in a Date data type format. Here's the format of DateAdd () :

DateAdd(interval, number, oldDate)

The interval must be a value (in string form) from Table 8.5. The interval you specify determines what time period is
added or subtracted (a second value, minute value, or whatever). The number value specifies how many of the interval
values you want to add. Make interval positive if you want to add to a date; make interval negative if you want to
subtract from a date. The oldDate is the date or time from which you want to work (the date or time you're adding to or
subtracting from). The oldDate doesn't change. The bateAdd() function then returns the new date.

Suppose that you buy something today with a credit card that has a 25-day grace period. The following statement adds
25 days to today's date and stores the result in intStarts:

intStarts = DateAdd('y', 25, Now)

The date stored in intStarts is the date 25 days from today.
Note

You can use either "'y*, "d", or "w'" for the interval if you're adding days to a date.

Suppose that you work for a company that requires 10 years before you're vested in the retirement program. The
following statement adds 10 years to your start date and stores the vested date in vested:

vested = DateAdd(yyyy', 10, hired)

Notice that the interval string value determines what's added to the date.
Tip

For any of the date arithmetic functions, if you don't specify a year, the current year (the year set on the system's clock)
IS returned.

DateDiFFreturns the difference between two dates. Embed DateDi () inside Abs() if you want to ensure a positive
value. The difference is expressed in the interval that you specify. Here's the format of DateDi ff():

DateDiff(interval, datel, date2)

The following statement determines how many years an employee has worked for a company:

beenWith = Abs(DateDiff("yyyy', hireDate, Now))

DatePart() returns a part of a date (the part specified by the interval). With batePart(), you can find what day,
month, week, or hour (or whatever other interval you specify) that a date falls on. Here's the format of batePart():

DatePart(interval, date)

The following statement stores the day number that an employee started working:

DatePart("'w", hireDate)

The date and time functions you've been reading about work with serial values. These values actually are stored as
double-precision values to ensure the full storage of date and time and that accurate date arithmetic can be performed.

A serial value is the internal representation of a date or time, stored in a VarType 7 (the Date data type) or a Variant
data type.

The following is the format of the DateSerial () function:

DateSerial (year, month, day)

year is an integer year number (either 00 to 99 for 1900 to 1999, or a four-digit year number) or expression; month is
an integer month number (1 to 12) or expression; and day is an integer day number (1 to 31) or expression. If you
include an expression for any of the integer arguments, you specify the number of years, months, or days from or since
a value. To clarify the serial argument expressions, you use the following two bateSerial () function calls, which
return the same value:

d = DateSerial (1998, 10, 6)

and

d = DateSerial (1988+10, 12-2, 1+5)

The DateSerial () functions ensure that your date arguments don't go out of bounds. For example, 1996 was a leap
year, so February 1996 had 29 days. However, the following bateSerial () function call appears to produce an invalid
date because February, even in leap years, can't have 30 days:

d = DateSerial (1996, 2, 29+1)

Nothing is wrong with this function call because DateSerial () adjusts the date evaluated so that d holds March 1,
1996, one day following the last day of February. The function in Listing 8.8 contains an interesting use of the
DateSerial () function.

Listing 8.8 This code calculates the next weekday value after a specified date.
1: Function DueDate (dteAnyDate) As Variant

2z " Accepts: a Date value

3: " Purpose: Calculates the First non-weekend day of the month

4: - following the specified date

5: *® Returns: the calculated date

: Dim varResult As Variant

8:

9: IT Not IsNull(dteAnyDate) Then

10: varResult = DateSerial(Year(dteAnyDate), Month(dteAnyDate) + 1, 1)
11: ElselT Weekday(varResult) = 7 Then = Saturday, so add two days.
14: DueDate = varResult + 2

15: Else

16: DueDate = varResult

17: IT Weekday(varResult) = 1 Then " Sunday, so add one day.
12: DueDate = Result + 1

13: End If

18: Else

19: varResult = Null

20: End If

21: End Function

When this function is called, it's passed a date value stored in the variant or VarType 7 Date data type. As the
remarks tell, the function computes the number of the first weekday (2 for Monday through 6 for Friday) of the next
month (the first business day of the month following the argument).

The Datevalue() function is similar to DateSerial (), except that Datevalue() accepts a string argument, as the
following format shows:

DateValue(stringDateExpression)

stringDateExpression must be a string that VB recognizes as a date (such as those for the Date statement described
earlier in this section). If you ask the user to enter a date a value at a time (asking for the year, then the month, and then
the day), you can use DateValue() to convert those values to an internal serial date. If you ask the user to enter a full
date (that you capture into a string variable) such as October 19, 1999, batevalue() converts that string to the serial
format needed for dates.

The TimeSerial () and Timevalue() functions work the same as their date counterparts. If you have three individual

values for a time of day, TimeSerial () converts those values to an internal time format(the variant or VarType 7).
Here's the format of TimeSerial ():

TimeSerial(hour, minute, second)
TimeSerial () accepts expressions for any of its arguments and adjusts those expressions as needed, just as
DateSerial () does.

If you have a string with a time value (maybe the user entered the time), Timevalue() converts that string to a time
value with this format:

TimeValue(stringTimeExpression)

Day(), Month(), and Year() each convert their date arguments (of Variant or VarType 7 data type) to a day
number, month number, or year number. These three functions are simple:

Day(dateArgument)
Month(dateArgument)
Year (dateArgument)

Also, weekday () returns the number of the day of the week (refer to Table 8.5) for the date argument passed to it.

Pass today's date (found with Now) to bay(), Month(), and Year() as shown here:

d = Day(Now)
m = Month(Now)
y = Year(Now)

The current date's day of month number (refer to Table 8.5), month number, and year are stored in the three variables.
The Format() Function

One of the most powerful and complex functions, Format(), returns its argument in a different format from how the
argument was passed. Here's the format of the Format() function:

Format(expression, format)

Format() returns a Variant data type that you'll almost always use as a string. The expression can be any numeric or
string expression. You can format all kinds of data—numbers, strings, dates, and times—to look differently. For
example, you might want to print check amounts with commas and a dollar sign.

The format is a string variable or expression that contains one or more of the display- format characters shown in
Tables 8.6 through 8.8. The table that you use depends on the kind of data (string, numeric, or date) that you want to
format. The tables are long, but after looking at a few examples, you'll learn how to use the display-format characters.

Table 8.6. These characters format string displays.

Symbol Description

@ A character appears in the output at the @ position. If there's no character at the @'s position in the string, a
blank appears. The @ fills (if there are more than one) from right to left.

& This character is just like @, except that nothing appears if no character at the &'s position appears in the string
being printed.

! The exclamation point forces all placeholder characters (the @ and &) to fill from left to right.
< Less-than forces all characters to lowercase.

> Greater-than forces all characters to uppercase.

Symbol

Null
string,

%

E-, E+,
e-, et

space

Symbol

dd
ddd

Table 8.7. These characters format numeric displays.

Description

This string displays the number without formatting.

A digit appears in the output at the 0 position if a digit appears in the number being formatted. If no digit is
at the 0's position, a 0 appears. If not as many zeros in the number are being formatted as there are zeros in
the format field, leading or trailing zeros print. If the number contains more numeric positions, the 0 forces
all digits to the right of the decimal point to round to the display-format's pattern and all digits to the left
print as is. You mostly use this display-format character to print leading or trailing zeros when you want
them.

The pound-sign character works like 0, except that nothing appears if the number being formatted doesn't
have as many digits as the display-format has #s.

The period specifies how many digits (by its placement within 0 or #s) are to appear to the left and right of
a decimal point.

The number being formatted is multiplied by 100, and the percent sign (%) is printed at its position inside
the display-format string.

If a comma appears among 0s or #s, the thousands are easier to read because the comma groups every three
places in the number (unless the number is below 1,000). If you put two commas together, you request that
the number be divided by 1,000 (to scale down the number).

The number is formatted into scientific notation if the format also contains at least one 0 or #.

The colon causes colons to appear between a time's hour, minute, and second values.
The slash ensures that slashes are printed between a date's day, month, and year values.

All these characters appear as is in their position within the formatted string.

Whatever character follows the backslash appears at its position in the formatted string.

Table 8.8. These characters format date displays.

Description

Displays either the date (just like the ddddd symbol if only a date appears), the time (just like ttttt if only a
time appears), or both if both values are present.

Displays the day number from 1 to 31.
Displays the day number with a leading zero from 01 to 31.

Displays an abbreviated three-character day from Sun to Sat.

Symbol
dddd

ddddd

dddddd

W, Ww

mm

mmm

mmmm

AMPM
ampm
AP

ap

Table 8.8. These characters format date displays.

Description
Displays the full day name from Sunday to Saturday -

Displays the date (month, day, year) according to your settings in the International section of your Control
Panel's Short Date format (usually m/7d/yy).

Displays the date (month, day, year) according to your settings in the International section of your Control
Panel's Long Date format (usually mmmm dd, yyyy).

Refer to Table 8.5.
Displays the month number from 1 to 12. The m also means minute if it follows an h or hh.

Displays the month number with a leading zero from 01 to 12. The mm also means minute if it follows an h or
hh.

Displays the abbreviated month name from Jan to Dec.

Displays the full month name from January to December .

Displays the quarter of the year.

Displays the year's day number from 1 to 366.

Displays the two-digit year from 00 to 99 (when the year 2000 hits, yy still returns only the 2-digit year).
Displays the full year number from 1000 to 9999.

Refer to Table 8.5.

Displays the time according to your settings in the International section of your Control Panel's Time format
(usually hznn:ss).

Uses the 12-hour clock time and displays Am or PM.

Uses the 12-hour clock time and displays am or pm.

Uses the 12-hour clock time and displays A or P.

Uses the 12-hour clock time and displays a or p.

The following statements demonstrate the string display-format characters. The remarks to the right of each statement
explain that the target variable (the variable on the left of the equal sign) is receiving formatted data:

strS
strS
strS

Format("*AbcDef™,">") " ABCDEF is assigned
Format("*AbcDef", "'<') " abcdef is assigned
Format(*'2325551212", "(00@) 0@@-0@@Q@'") " (232) 555-1212

As the last statement shows, you can put string data into the format you prefer. If the data to be formatted, such as the
phone number in the last line, is a string variable from a table's text field, the Format() statement works just the same.

Suppose that it's possible to leave out the area code of the phone number that you want to print. Format() fills from
right to left, so the statement

strS = Format(''5551212", "(@@@) @EG-GEEE')

stores the following in strsS:

() 555-1212

If you had included the area code, it would have printed inside the parentheses.

Only use the ' when you want the fill to take place from the other direction (when data at the end of the string being
formatted might be missing). The statement

strS = Format(’'5551212", "1(@@0@) @O@-QEEA'")

incorrectly stores the following in strs:

(555) 121-2

Listing 8.9 demonstrates how numeric formatting works. The remark to the right of each statement describes how the
data is formatted.

Listing 8.9 You can learn how Format() works by studying examples.

1: strS = Format(9146, |######|) "]9146] is stored

2: strS = Format(2652.2, "00000.00'") " 02652.20 is stored
3: strS = Format(2652.2, VCHHHHHE H##) T 2652.2 is stored

4: strS = Format(2652.216, "####H#H ##") " 2652.22 is stored
5: strS = Format(45, "+###'") " Stores a +45

6: strS = Format(45, "-###'") " Stores a -45

7: strS = Format(45, "###-'"") " Stores a 45-

8: strS = Format(2445, "S#### HH'") " Stores a $2445.

9: strS
10: strS

Format(2445, "$####.00") " Stores a $2445.00
Format(2445, "O0Hi00™) = Stores 24Hi45

Listing 8.10 demonstrates how date and time formatting works. The remark to the right of each statement describes
how the data is formatted.

Listing 8.10 Use Format() to format date and time values.

1: Dim varD As Variant

2: varD = Now " Assume the date and time is

3: " May 21, 1999 2:30 PM

4: strND = Format(varD, 'c') " Stores 5/21/99 2:30:02 PM
5: strND = Format(varD, "w'™) " Stores 6 (for Friday)

6: strND = Format(varD, "ww'')" Stores 22

7: strND = Format(varD, "dddd™) * Stores Friday

8: strND = Format(varD, Q") " Stores 2

9: strND = Format(varD, "hh') " Stores 14

10: strND = Format(varD, "h AM/PM') * Stores 2 PM

11: strND = Format(varD, "hh AM/PM™) * Stores 02 PM

12: strND = Format(varD, "d-mmmm h:nn:ss') " Stores 21-May 14:30:02
Summary

Today's lesson explained the overall Visual Basic program structure. When writing programs with several modules and
procedures, you must keep in mind the variable scope so that procedures have access to the data they need. In most
cases, a variable should be local, so you'll have to pass arguments between procedures that need access to one another's
data. In writing procedures, you'll write both subroutine and function procedures. In creating these procedures, you'll
create your own library of routines that you can load into other applications.

In addition to the procedures you write, Visual Basic contains an extensive collection of internal functions that analyze
and manipulate numbers, strings, and other data values. The internal functions are available from any module at any
time so you can use them when you want them.

Tomorrow's lesson returns to the visual nature of Visual Basic and shows you how to add standard dialog boxes to your
applications.

Q&A

Q: Why aren't there local and global controls?

A: All controls must be available to all code and therefore, in a sense, all controls are public to all code. The
controls are public because they truly are separate from code. Unless you create control variables and store
the contents of a control's properties in a control variable, you never have to worry about the scope of
controls.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next chapter. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: Which variable—scope-local, module-level, or public—has the broadest scope?

2: Which variable—scope-local, module-level, or public—has the narrowest scope?

3: True/False. The keyword ByRef is optional .

4: How many values can a subroutine procedure return?

5: Name two functions that act as shortcuts to the 1f statement .

6: What happens if the first argument of Choose()_is less than 1?

7: What does Abs() do?

8: What's stored in the variable named strS in each of the following statements?

a.strS = Format("'74135", "&&&&&-&&&&™)
b.strS = Format(d, "h ampm™)
c.strS = Format(12345.67, "‘HH##HHH . HHHT)

9: Without looking at an ASCII table, what does intN hold after the following assignment statement
completes?

intN = Asc(Chr(192))

10: What's the difference between the Now function and the Time function?

Exercises

1: Rewrite Listing 8.1 so that SalesTax() is a function procedure that returns the computed sales tax to the
calling procedure. Have the calling procedure, GetTotal (), use a MsgBox() function to print the sales tax
computed by salesTax().

2. Rewrite the following 1 ¥ statement as an 11f() function :

IT (intTotal >1000) Then
strTitle = "Good job!"
Else
strTitle = "Didn"t meet goal"
End If

3: Rewrite the following 1¥ statement as a Choose () function :

If (ID = 1) Then

intBonus = 50
Elself (ID = 2) Then
intBonux = 75
Elself (ID = 3) Then
intBonus = 100
End If

4: \What values are assigned in these statements?

intNh = Int(-5.6)
int0 = Fix(-5.6)
intP = CInt(-5.6)

Day 9. The Dialog Box Control

Today's lesson shows you how to add dialog boxes to your applications. You won't just randomly create dialog boxes,
however. Instead, you'll take advantage of a special control called the Common Dialog Box control that produces six
different common dialog boxes that you can use in your applications. When your user needs to select from a file list or
print a report from within your Visual Basic application, the Common Dialog Box control helps you display a standard
dialog box that the user will recognize.

Today, you learn the following:

e Why common dialog boxes are important for user acceptance

e How to place the Common Dialog Box control

e The Common Dialog Box control methods needed to produce dialog boxes

e Properties you assign that set up the proper dialog box options

e How to respond to a dialog box

e TheoOn Error Goto statement that lets you know when the user clicks the dialog box's Cancel button

The Need for a Common Dialog Box

The more your application matches the look and feel of popular Windows applications, such as Microsoft Word, the
more likely your users will adapt quickly to your application. If you write software to sell, you know the importance of
user acceptance, especially when it comes to convincing the user to purchase future upgrades. If you don't write
software to sell but you write programs for a company whom you work for, happy users means fewer maintenance calls
and more productivity points for you.

Therefore, when you write an application that opens a file or prints to the printer, you can do one of the following:

e Mimic the style of other applications'dialog boxes that perform the same tasks
e Write your own dialog boxes hoping to improve upon the style of standard dialog boxes

Although you can probably improve upon the style of a dialog box that appears when a user selects File, Open, it is not
prudent to do so. For one thing, your application will then not be standard! Your users will have a learning curve when
they must master a dialog box to do exactly what they already know how to do in most other Windows applications. In
addition, your programming requirements will be heavier because it will take you longer to write programs that don't
use standard dialog boxes for common tasks.

Do Don't

DO create standard applications that have the same menu and dialog box structure as most Windows
applications.

The reason you will take longer to create the application is because Visual Basic includes a Common Dialog Box
control with which you can add the following dialog boxes to your applications and you don't have to design the dialog
boxes yourself. These dialog boxes will look and behave exactly like the dialog boxes in standard Windows programs:

o Color selection— Displays a dialog box in which users can select a color from a palette of colors and even
customize colors.

o Font selection— Displays a dialog box in which users can select font styles and sizes.

e Open File— Displays a dialog box that lets users select a filename to open from folders, drives, and even from
network PCs.

e Print selection— Displays a dialog box that lets users select a printer and print settings for any Windows
printer.

o Save File— Displays a dialog box that lets users specify a filename to save to from folders, drives, and even
from network PCs.

e WinHelp— Starts the Windows help engine and displays an initial dialog box the user can select from to get
help you've provided for your application.

The Common Dialog Box control is a control you can add to your applications that produce one of several standard
dialog boxes with very little effort on your part.

Note

Without the Common Dialog Box control, you can create dialog boxes that mimic the standard dialog boxes, but you

are then responsible for placing all the text boxes, scroll bars, list boxes, and other dialog box elements exactly where
they go on a form. Writing dialog boxes can be tedious even though they are little more than controls on forms. If you
use the Common Dialog Box control, your time is better used elsewhere in the application.

The dialog boxes that the Common Dialog Box control produce are modal.

A modal dialog box is one that the user must close, by clicking OK or Cancel, before he or she can continue with any
other part of the application.

Adding the Common Dialog Box Control

If you look through the controls on the toolbox, you won't find the Common Dialog Box control. Visual Basic does not
place all possible controls on the toolbox because the Toolbox window would take up too much room and you just
don't need all the possible controls available at all times. Nevertheless, when you want to place a dialog box in an
application that matches one of the common dialog boxes, you'll have to add the Common Dialog Box control to your
Toolbox window.

To add the control, perform these steps:

1. Press Ctrl+T (the shortcut keystroke for Project, Components) to display the Components dialog box shown in
Figure 9.1.

Figure 9.1. The Components dialog box lists the available controls on your system that you
can add to your toolbox.

Components E

Contiols | Designers | Insertable Objects |

focrobat Control For ActiveX
| Actived Conference Control .
|br_auto OLE Control module — 24
| BR_MAIL OLE Control module = Boe
| br549 OLE Control module =
| C\PROGRA~11ONMSN|OCK| IKMENU,OCK
| CAWINDOWS\SYSTEMirefedit. di
| CAWINDOWS\SYSTEM\TDC, OCX i [
| Cache Preloader
| Chat Show

Directanimation Library
|EYEDOG OLE Control module =| RS |

41 | 2] [Selected Items Only

Acrobat Conkrol for ActiveX
Location: C:\Acrobat3\ReaderlActiverlpdf42,ocx

OF. Cancel

2. Scroll to the control labeled Microsoft Common Dialog Control 6.0.

3. Select the entry and click OK. The last control in your toolbox will now be the Common Dialog Box control.
Tip

Look through the items in the Project, Components menu option for other controls you can add. These are all ActiveX
controls. Most of them are named so that you recognize what the controls do from their names. For example, the
Microsoft Calendar Control 8.0 is a control that lets you add calendar operations to your application, such as you might
need if you were writing a personal information organizer or a time billing application. You can search through the
controls'properties after you add them to see which properties are available. Check the online documentation for more
help on the events and methods they support. You can find additional controls in programming magazines and on the
Internet that you can add to your projects to help speed up your application development. In Day 17's lesson, you'll
learn how to write your own ActiveX controls that you can add to your toolbox.

Working with the Common Dialog Box Control

Figure 9.2 shows a Common Dialog Box control placed in the center of a form. As you can see, the control doesn't look
like any of the dialog boxes listed earlier. Instead, the control looks too small to be any good at all. If you try to resize
the control, Visual Basic ignores your request, despite the eight sizing handles that appear around the control.

Figure 9.2. The Common Dialog Box control doesn't look like much on your form.

When you run the program, the Common Dialog Box control takes on the appearance on one of the dialog boxes listed
earlier. As a matter of fact, Visual Basic takes care of the dialog box display by putting the dialog box in the center of
the screen no matter where you place the Common Dialog Box control on the form. Therefore, you can place the
Common Dialog Box control out of the way from other controls so that you can concentrate on your form's regular
controls and their design. Know that, when the Common Dialog Box control is finally triggered, Visual Basic takes
care of placing the control in the center of the screen. Until the Common Dialog Box control is displayed, Visual Basic
hides the control so it does not appear on top of other controls on your running application's form.

When your program triggers one of the Common Dialog Box control's specific dialog boxes, the appropriate dialog box
appears on the screen because you'll write your Visual Basic application to display the correct dialog box.

The way you determine which form of the Common Dialog Box control displays is by setting appropriate properties
and executing the correct method that prompts the control to display the dialog box. As you might recall from earlier
lessons, a method is an internal procedure that you apply to a specific control. You must apply one of the following
methods to the Common Dialog Box control to display a specific dialog box:

e ShowColor displays the Color selection dialog box.
e ShowFont displays the Font selection dialog box.

e ShowHelp displays the Windows Help dialog box.
e ShowOpen displays the File Open dialog box.

e ShowPrinter displays the Print dialog box.

e ShowSave displays the File Save dialog box.

Therefore, if you named a Common Dialog Box control doFont, you can apply the showFont method to the control
like this in code to display the Font selection dialog box after setting some initial properties:

dbFont.ShowFont " Display the Font dialog box

If you later need to display a File Open dialog box, you could apply the Showopen method to the doFont control,
perhaps in response to a File, Open menu selection, like this:

dbFont.ShowOpen " Display the File Open dialog box

As you can see, you only need one Common Dialog Box control to produce one or more of the dialog boxes. The
method triggers the control, although you should set properties before activating any of the six dialog boxes as
described in the next few sections.

Note

When you need to display more than one of the common dialog boxes in an application, you can place one Common
Dialog Box control and apply the different methods to it, as shown here, or place multiple Common Dialog Box
controls and use them solely for one kind of dialog box each. Although one control is easier to manage than several,
you might want to place several so that you only set their property values once for each dialog box. With only one
control, you have to change its properties as you change the dialog boxes that you display.

None of the dialog boxes produced by the Common Dialog Box control do any actual work other than provide
selections for the user. In other words, if the user selects a font from the Font selection dialog box and then clicks OK,
the screen fonts don't change. If the user selects a file from the File Open dialog box and clicks OK, that file does not
then open. The goal of the Common Dialog Box control is only to provide a common interface for the common dialog
boxes and set properties in response to the user's selection. You will, through Visual Basic code, have to analyze the
Common Dialog Box control's property values when the user closes the dialog box and perform any action necessary.

Producing the Color Dialog Box

Due to the large numbers of colors that Windows can produce, a Color dialog box provides a simple way for your users
to specify color values. For example, if you were going to let your user change the background color for a form, you
would not be advised to ask the user for a color in an input box like this:

strAns = InputBox("'What color do you want the background? ')

Remember that the BackColor property requires a hexadecimal color code (as do all the other color-related properties
such as ForeColor). If your user typed Red in response to the InputBox(), you could not then assign the answer to the
BackColor property like this:

frmTitle.BackColor = strAns " Will NOT work!

Not only does the Color dialog box offer a standard way for your user to select a color, but the Color dialog box also
converts the user's selected color to its hexadecimal value. Therefore, after the user closes a Color selection dialog box,
you can assign one of the dialog box's properties to the form's BackColor property to change the form's background.

To turn a Common Dialog Box control into the Color selection dialog box and display the Color selection dialog box,
follow these steps:

1. Set the Common Dialog Box control's DialogTitle property to the title you want to appear in the Color
selection’'s title bar, such as Select a background color.

2. Set the Common Dialog Box control's Flags property to one of Table 9.1's values. The table describes the way
the Color selection dialog box first appears. If you want to set more than one of Table 9.1's flags, such as an
initial color as well as providing a Help button, you can add the flag values together.

3. Trigger the Font selection dialog box's display by applying the SshowFont method to the Common Dialog Box
control in code.

Table 9.1. You can combine one or more of these Flags property values to set up the Color selection

dialog box.
Named Literal Flags Value Description
cdICCRGBINit 1 Sets the initial color value
cdICCFull0pen 2 Displays the entire dialog box, including the Define Custom Colors

section

Table 9.1. You can combine one or more of these Flags property values to set up the Color selection

dialog box.
Named Literal Flags Value Description
cdICCPreventFullOpen 4 Prevents users from defining custom colors
cdICCHelpButton 8 Displays a Help button in the dialog box

Suppose you want to display the Color selection box, let the user select a custom color, if desired, and provide a help
button on the color selection dialog box. If you placed a Common Dialog Box control named cdbColor on the form,
you could produce the Color selection dialog box with the following code:

" Set the Color Flags property.

cdbColor.Flags = cdICCFullOpen + cdICCHelpButton " Display complete Color DB
" Display the Color dialog box.

cdbColor.ShowColor

Figure 9.3 shows the dialog box that appears.

Figure 9.3. The color selection dialog box appears from the ShowColor method.

Color

Basic colors:

1 -
Wl T T EEEN
N e
M N NENE
ENEEEENN
EEEEET .

Custom colors:

0 e e AL
Hue:[160 Red[0
S - gatf0 Green[0

[Ietine Eoston [Eolbre 5> | ColorlSglid LL.I'I‘:.ID_ Ehﬁ:lﬂ_

ok | cencel | Add to Custom Colors |

If you want to limit the user to an initial smaller set of colors, requiring the user to click the Define Custom Colors
button to customize colors, omit the cdIcCFul 10pen flag value. Figure 9.4's smaller Color dialog box appears.

Figure 9.4. You can limit the size of the Color selection dialog box that appears.

Color E E

Bazsic colors:

_ . || [
W FTrr EEN
W NN NN
HrEENEN~N
ENEEEENN
MEEEET .

Custom colors:

Y) el
FEFEENEEBR

Define Custom Colars »»

0K | Cancel | Hep

When the user closes the dialog box, the dialog box's properties are set according to the user's selection. The most
important property is the Color property which will then hold the hexadecimal value of the color the user selected or
created. You could write the following code that follows the dialog box's display:

" Set a form"s background color
" to the Color dialog box"s selected color
frmTitle.ForeColor = cdbColor.Color

Handling the Cancel Button

Your code needs to be able to determine if the user selected a color and clicked OK or if the user clicked the Cancel
button which means that the user does not want to change any color value. Not only do you need to be able to capture
the Cancel click on the Color dialog box but also on the other common dialog boxes as well.

To test to see whether users have clicked Cancel, you need to learn a new Visual Basic command—the Oon Error Goto
statement. This statement jumps the program execution down to a code label if an error occurs during subsequent
statements. Therefore, the statement

On Error Goto dbErrHandler

tells Visual Basic to jump to the code labeled dbErrHandler if an error occurs during any line that follows the on
Error Goto statement (until the end of the procedure).

A code label is a label inside your Code window's code that you name using the same naming rules used for variables.
A label, however, must end in a colon to distinguish it from a variable name. With the example just given, the
procedure must have the following code label somewhere after the On Error Goto statement (generally, programmers
put the error code label toward the bottom of the procedure) :

dbErrHandler:

The statements after the error-handling code label are executed if an error occurs in the procedure and an Exit
statement can terminate the procedure early. Visual Basic triggers an error condition if users click the Cancel button
and you've set the CancelError property to True. Although clicking Cancel isn't a real error, treating it like an error
condition lets you write code like that in Listing 9.1 to handle it.

Listing 9.1 You can control the user's Cancel selection.

1 Private Sub mnuViewColor Click()

2 cdbColor.CancelError = True " Forces an error if

3 " user clicks Cancel

4 On Error Goto dbErrHandler * Jump if an error occurs
5:

6 " Set the Color Flags property.

7 cdbColor.Flags = cdICCFullOpen + cdICCHelpButton " Display complete
8 Color DB

9: " Display the Color dialog box.

10: cdbColor.ShowColor

11:

12: " Set a form"s background color

13: " to the Color dialog box®s selected color

14: frmTitle_ForeColor = cdbColor.Color

15: Exit Sub " The regular procedure is done

16: dbErrHandler:

17: * The user clicked cancel so ignore
18: " the procedure and change no color
19: Exit Sub

20: End Sub

If the user selects a color and clicks OK, line 14 assigns the selected color to the form's background. Rather than end
the procedure if users click Cancel, you might choose to set default values (between lines 16 and 19) for the form's
background rather than retain the current values and exit the procedure.

Caution

The error-handler in line 16 will execute if any error takes place, not just the Cancel button click. In Day 16's lesson,
you learn how to check the Err system object to determine exactly which error occurred by the error number triggered.

Producing the Font Dialog Box

The Common Dialog Box control produces the Font dialog box that you've seen in your Windows applications. The
reason that you will want to use the Font dialog box, as opposed to writing your own, is not just because the dialog box
is standard. You don't know exactly which fonts your application's PC will contain. The Common Dialog Box control's
Font dialog box searches the user's system for all the fonts on the computer and displays those fonts inside the Font
dialog box.

Figure 9.5 shows the typical Font dialog box that appears when you apply the ShowFont method to the Common Dialog
Box control.

Figure 9.5. Users can select a font style and size from your application's Font dialog box.

Font Ei E3
Font: Font style: Size:
| |Heguhl |E 0K
T AbadiMT Condensed | [AEEEN - | al " Cancel
I AbadiMT Condensed Italic 9 anee
T AbadiMT Condensed Bold 10
T Aldine721 BT Bold Italic 1
g Algenan 12
Amazone BT 14
I American Uncial j J 16 =
— Effects Sample
[Shikeout
[~ Underline
Color:
[[EE ~| | Secript

As with the Color dialog box, you must set the Common Dialog Box control's Flags property to a certain value. The

Flags property values differ from those of the Color dialog box because the Font dialog box is actually more complex
than the Color dialog box.

Note

The Font dialog box's Flags values can get large. Therefore, Visual Basic programmers assign either named constants
or hexadecimal values to the Flags property. Table 9.2 contains the Flags property values you can set. As in most
areas of Visual Basic programming, program maintenance is simpler if you use the named constants because their
names suggest their purpose, whereas the hexadecimal values don't document their purpose well.

Table 9.2. Set these Font dialog box Flags values before calling the showFont method.

Flags
Named Literal Value Description
cdICFANSIONnly &H400

Ensures that the dialog box allows only fonts from the Windows character set and
not a symbol-based font

Table 9.2. Set these Font dialog box Flags values before calling the showFont method.

Named Literal
OcdICFApply

cdICFBoth

cdICFEffects
cdICFFixedPitchOnly

cdICFForceFontExist

cdICFHelpButton

cdICFLimitSize

cdICFNoFaceSel
cdICFNoSimulations
cdICFNoSizeSel
cdICFNoStyleSel
cdICFNoVectorFonts
cdICFPrinterFonts
cdICFScalableOnly
cdICFScreenFonts
cdICFTTONnly
cdICFWYSIWYG

Caution

Flags
Value

&H200
&H3

&H100
&H4000
&H10000

&H4
&H2000

&H80000
&H1000
&H200000
&H100000
&H800
&H2
&H20000
&H1
&H40000
&H8000

Description
Enables the dialog box's Apply button

Lists the available printer and screen fonts in the dialog box; the hdcC property
identifies the device context associated with the printer

Lets the dialog box enable strikethrough, underline, and color effects
Ensures that the dialog box selects only fixed-pitch fonts

Displays an error message box if users try to select a font or style that doesn't
exist

Displays the dialog box's Help button

Ensures that the dialog box selects only font sizes within the range specified by
the Min and Max properties

No font name is selected as the default

Disallows graphic device interface (GDI) font simulations

No font size is selected as the default

No font style is selected as the default

Disallows vector-font selections

Lists only the fonts supported by the printer, specified by the hDC property
Allows only the selection of scalable fonts

Lists only the screen fonts supported by the system

Allows only the selection of TrueType fonts

Specifies that the dialog box allows only the selection of fonts available on the
printer and onscreen (if you set this flag, you should also set cd1CFBoth and
cdICFScalableOnly)

You must at least set one of these three Flags property values before the Font dialog box will appear:
cdICFScreenFonts, cdICFPrinterFonts, and cdICFBoth. If you don't set one of these Flags values, Visual Basic
issues an error message when you apply the ShowFont method.

Listing 9.2 shows how you can set up, show, and respond to the Font dialog box.

Listing 9.2 Display the Font dialog box when your users must select from a list of font styles and
sizes.

" Set the Font Flags property.

CdbFont.Flags = cdICFBoth Or cdICFEffects
CdbFont.ShowFont * Display the Font DB

" Set a label"s properties to the

" user”s selected font information
LbIMessage.Font.Name = CdbFont.FontName
LbIMessage.-Font.Size CdbFont.FontSize
LbIMessage.Font.Bold = CdbFont.FontBold
LbIMessage.Font. Italic = CdbFont.Fontltalic

10: LbIMessage.Font.Underline = CdbFont.FontUnderline
11: LblIMessage.FontStrikethru = CdbFont.FontStrikethru
12: LblIMessage.ForeColor = CdbFont.Color

OCoO~NOOUTAWNPR

Pay attention to the multipart assignments in lines 6 through 10. You've not seen two periods separating property names
before now. Remember when you click the ellipses on the Font property inside a control's Properties window, the Font
dialog box appears in which you can set several values. Therefore, a Font property holds much more than a single
value and you must further qualify the Font property value that you want to set. There are several Font property
values, each of which indicates a different kind of font style, size, color, and so on. Read such multipart names from
right to left. Consider the following statement from line 8:

LbIMessage.Font.Bold = CdbFont.FontBold

Line 8 tells Visual Basic to assign the dialog box's FontBold property (which is either True or False provided by the
Font dialog box) to the Bold attribute of the Font property of the label named IbIMessage.

Help with Setting Controls

Although you can set all the common dialog box control properties at runtime, Visual Basic provides an ingenious way
to set many properties at design time.

The common dialog box control contains a property named Custom. When you click the ellipsis for this property
setting in the Properties window, Visual Basic displays the Property Pages dialog box. (Figure 9.6 shows the dialog
box's Font page.)

Figure 9.6. You can set properties at design time from the Property Pages dialog box.

FontM ame; | Style
™ Bold
FotSige: [B Mg [0 Max [0 [jalie
. ™ Underline
Flags: o ™ CanceErmor Stikethu

oK, | Cancel : Help

This Property Pages dialog box makes it easy for you to set some initial dialog box properties. Here you can review the
most important properties for each style of common dialog box. For example, if you want the Font dialog box's default
font to be 12-point Bold, type 12 in the FontSize text box and click to select the Bold check box.

Producing File Open Dialog Boxes

Table 9.3 shows the Flags property values that you can assign before applying the Showopen method. The File Open
dialog box, shown in Figure 9.7, offers a standard interface for your users when they must select a file to open. The
dialog box handles the folder and network selections if the user wants to make any before selecting a file.

Figure 9.7. The Common Dialog Box control can display the File Open dialog box.

File Dpen EE
Look e | = Hp_pavilion [C:) =l é‘ ﬂ |_E|
|1 ~“mssetup.t _JDos] Games
] Acrobat3] dosboot —J Howdy
|__] cdiom] Downdoad —JHp
|1 Collwin _JEapei —J Hp_audio
|_1CServe J Electionic Arts —J Hpcale
|1 Disk ord] Ezphoto —Jicu
I I I
Fiename: | Open
Fies of type: | ~] Cancel
™ Open as ead-only g

Tip

You'll also use Table 9.3 when setting the Flags property value for the File Save dialog box.

Table 9.3. The File Open and Save dialog box's Flags values.

Flags
Named Literal Value

cdIOFNATIlowMul tiselect &H200

cdlOFNCreatePrompt &H2000

cdlOFNExplorer &H80000

cdlIOFNExtensionDifferent &H400

cdIOFNFi leMustExist &H1000

Description

Lets the File Name list box accept multiple file selections. The FileName
property then returns a string that contains all the selected filenames (names
in the string are delimited by spaces).

Prompts users to create a file that doesn't currently exist. This flag
automatically sets the cd10FNPathMustExist and cd IOFNFi leMustExist
flags.

Uses the Explorer-like Open a File dialog box template.

Indicates that the extension of the returned filename is different from the
extension specified by the Defaul tExt property. This flag isn't set if the
Defaul tExt property contains Nul I, if the extensions match, or if the file
has no extension. You can inspect this flag's value after the dialog box is
closed.

Lets users enter only names of existing files. If this flag is set and users
enter an invalid filename, a warning is displayed. This flag automatically

Table 9.3. The File Open and Save dialog box's Flags values.

Flags
Named Literal Value Description
sets the cdl10FNPathMustExist flag.
cdIOFNHeIpButton &H10 Displays the dialog box's Help button.
cdlOFNHideReadOnly &H4 Hides the Read Only check box.
cdlIOFNLongNames &H200000 Allows long filenames.
cdI0FNNoChangeDir &H8 Forces the dialog box to set the current directory to what it was when the

dialog box was opened.

cdIOFNNoDereferenceLinks &H100000 Disallows dereferencing of shell links (also known as shortcuts). By
default, choosing a shell link causes it to be dereferenced by the shell.

cdIOFNNoLongNames &H40000 Disallows long filenames.

cdIOFNNoReadOnlyReturn &H8000 Specifies that the returned file won't have the Read Only attribute set and
won't be in a write-protected directory.

cdlOFNNovalidate &H100 Allows invalid characters in the returned filename.

cdl0FNOverwritePrompt &H2 Causes the Save As dialog box to generate a warning message box if the
selected file already exists. (Users then choose whether to overwrite the
existing file.)

cdIOFNPathMustEXist &H800 Lets users enter only valid paths. If this flag is set and the users enter an
invalid path, a warning message is displayed.

cdI0FNReadOnly &H1 Selects the Read Only check box when the dialog box is created. This flag
also indicates the state of the Read Only check box after the dialog box is
closed.

cdIOFNShareAware &H4000 Indicates that possible sharing violation errors will be ignored.

Often, when you see a File-related dialog box such as the File Open dialog box, a filter is applied to the filename
extensions so that the dialog box shows files of a certain extension only, such as all files that meet the *.doc wildcard
selection. Although the user can override the default filter by entering a different filter, or by typing *.* and showing all
files in the File dialog box, you can specify the initial filter if you assign theFi I'ter property a value that follows this
format:

“"FilterDescripl | extensionl | FilterDescrip2 | extension2 | _
FilterDescrip3 | extension3"

For example, the following statement assigns a filter that shows only Word and Excel documents when the Open dialog
box appears:

cdbFiles.Filter = "Word Docs (*.doc)|*.doc|Excel Docs (*.xIs)|*.xlIs"

Caution

Don't confuse the file extensions in the description with the actual extensions in the filter. In the example, Word Docs
(*.doc) is text to be displayed to users, and the *.doc following the first pipe symbol is the dialog box's first actual
filtering instruction.

You can supply multiple filters by including multiple strings for the Fi l'ter property. If you specify more than one
filter, you must set the Fi I'ter Index property to the filter you want to use for the current File Open dialog box. The
first filter has a Fil'terIndex of 1; this number is incremented if you supply additional filters.

The common dialog box control's Fi leName property holds the selected filename after users close the dialog box.

Producing the File Save Dialog Box

The File Save dialog box is virtually identical to the File Open dialog box except for the title and a few other options
such as the command button titles. For example, if an application is a Multiple-Document Interface (MDI) application,
you might allow the user to select multiple files to open from within a File Open dialog box because each data file will
be able to appear in its own document window. If you were to offer a File Save dialog box, however, your user can
select or enter only a single filename.

Figure 9.8 shows you that the File Save dialog box looks almost exactly like the File Open dialog box. Use Table 9.3's
Flags property values to set up the File Save dialog box just as you did the File Open, including the filter setting
procedure that you learned at the end of the previous section.

Figure 9.8. The Common Dialog Box control can display the File Save dialog box.

File Save EHE
Smh:l_pHp_pavinnll::] | gj Ql ﬁﬂl
) “mssetup.t 1 Dos —1 Games
|| Acrobat3 1 dosboot 1 Howedy
] cdiom —1 Download —JHp
|__1 Collvan _JEapci 1 Hp_audio
|_1CSeve] Electronic Arts I Hpcale
|1 Disk ard —1 Ezphata —Jicu
I I i
File name: | Save
Save as ype: | | Cancel

[Open as fead-only :
A

Producing the Print Dialog Box

Figure 9.9 shows the Print dialog box that the Common Dialog Box control produces when you apply the ShowPrinter
method to a Common Dialog Box control. Your users can select the printer type, number of copies, range of pages, and
several other printing options. Each printer setup for the users'system displays a different set of Print dialog box
options. When users enter the desired values, your application can use that information (taken from the Common
Dialog Box control's properties) to direct the print output properly.

Figure 9.9. The Print dialog box lets users select printer options.

N 1]

— Printer

[TECCI [HP [aserel Seies |

] Propeties |

Status: Default printer; Ready
Type: HP Lazer)et Senes |l

Where: LPT1:
Comment: ™ Print to file
— Print range 1 Copies
< Al Mumber of copies: |1 E
" Pages | .ri Ted []t I
1 2 3
" Selection —H‘ J‘l* —IJ*

oK

Cancel

Caution

Your Print dialog box will vary from Figure 9.9, depending on your printer type.

Listing 9.3 shows code that opens the Print dialog box in response to a menu selection.

Listing 9.3 Use the common dialog box to direct the printed output.

OCoO~NOOUTA~AWNPE

Private mnuFilePrint _Click()

Dim intBegin As Integer, intEnd As Integer
Dim intNumCopies As Integer, intl As Integer
" Assumes Cancel i1s set to True

On Error Goto dbErrHandler

" Display the Print dialog box
cbdPrint.ShowPrinter

" Get user-selected values from the dialog box
intBegin = cbdPrint.FromPage

intEnd = cbdPrint.ToPage

intNumCopies = cbdPrint.Copies

" Print as many copies as nheeded
For intl = 1 To intNumCopies

" Put code here to send data to your printer
Next intl

18: Exit Sub

19:

20: dbErrHandler:

21: " User pressed Cancel button
22: Exit Sub

23: End Sub

As Listing 9.3 shows, you don't have to set any properties before displaying the Print dialog box (except perhaps for a
DialogTitle property if you want a specific title to appear in the Print dialog box's title bar), but you can check the
dialog box's return values stored in properties such as Copies, FromPage, and ToPage to determine how the user
wants to print a report that you are about to print.

The Help Dialog Box

Day 20, "Providing Help," explains how to integrate the Windows Help dialog box, produced by the Common Dialog
Box control, into your applications.

Summary

Today's lesson explained how you can set up common dialog boxes to perform standard tasks. When you must display
a dialog box to open a file, for example, you'll want to use the standard dialog box so that your users will feel
comfortable with your application and have less of a learning curve.

The Common Dialog Box control requires that you set some property values and then apply the correct method to the
Common Dialog Box control. The Common Dialog Box control does no work except to set properties; your code must
ensure, when the user closes the dialog box, that you interpret the user's selections as well as handle the potential
Cancel click properly.

Tomorrow's lesson teaches you how to monitor the user's mouse movements so that your applications acquire yet
another way to interact with your users. In addition, you'll learn how to program the list box-related controls that let
you offer your users several choices to choose from.

Q&A

Q: Why doesn't the Common Dialog Box control support other dialog boxes | see in applications, such as the
View, Zoom dialog box in Word and Excel?

A: The Common Dialog Box control cannot do everything or the control would be unwieldy and consume too
many resources to be efficient. Nevertheless, you'll work with many dialog boxes in popular Windows
programs and, although you can create any dialog box in Visual Basic using forms and controls, not every
dialog box is common enough to be a Windows standard. For example, most Windows applications do not
have a View, Zoom menu option even though Word and Excel do.

Q: What kinds of controls can | add to my Toolbox window?

A:

You can add ActiveX controls to your collection of tools. These include ActiveX controls you write yourself
(as described in Day 17's lesson) and those you obtain elsewhere. You'll find such controls on Microsoft's
Web site as well as other places on the Internet. You'll find several good programming magazines and
journals on the computer magazine racks. These often have many advertisements that offer Visual Basic
controls that you can order and add to your system.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next chapter. Answers are provided in Appendix A, "Answers to Exercises."

Quiz
1: What must you do to the Toolbox window before you can place a Common Dialog Box control onto the
form?
2: Name the specific dialog boxes that the Common Dialog Box control displays.
3: What purpose does the Common Dialog Box control serve?
4. Why can't you adjust the size of the Common Dialog Box control on the form?
5: True/False. The Open dialog box doesn't really open any file.
6: What role does the Filter property play in the file-related dialog boxes?
7: What does the Flags_property do?
8: True/False. You must set a Flags value or Visual Basic won't display the Fonts dialog box .
9: True/False. You must set a Flags value or Visual Basic won't display the Print dialog box .
10: True/False. The show method displays a Common Dialog Box control .
Exercises
1: Change the code in Listing 9.2 to handle the Cancel command button selection. Make sure that the code
changes no properties if the user clicks Cancel .
2: Write a procedure that produces the File Open dialog box shown in Figure 9.10. Use the same *_txt filter

shown in the figure. Add code to ignore the dialog box settings if the user clicks the Cancel button .

Figure 9.10. Create this File Open dialog box.

Look i [= Hy_paviion (C) = & & g = =l
] “mssetup.t —1Dos] Games —JledTutor
__] Acrobat3] dosboot —J Howdy 1 Logos20
_1 cdiom 1 Download _JHp _ Lisystem
__| Collwin _JEapci I Hp_audio I Modem
1 CServe 1 Electronic Arts _J Hpcalc _ mouse
__1 Disk ord 1 Ezphoto Jicu I Mullimedia
< | 2
File nare: I Open
Files of type: | Text Files (*.tt) =] Cancel
[Open as 1ead-only
7

Day 10. Adding Power with the Mouse and
Controls

Today's lesson expands your Visual Basic knowledge by showing you how to write programs that respond to mouse
movements, clicks, and drags. The use of the mouse is vital to Windows programs and, depending on your program's
requirements, you'll want to add mouse support to give your users yet another way to interact with your form's controls.

The mouse discussion makes a good transition into a new set of controls that you'll learn about today—the list controls.
You've worked with list boxes in other applications, and today's lesson teaches you how to create and manage your
own application’s list controls. More than one kind of list control exists, and you'll master each one today.

The list controls provide your users with lists of items from which to choose. The controls have many similarities to
variable arrays, which you'll learn about today as well. By learning about arrays, you'll be able to make your programs
more efficient when they must process large data sets.

Today, you learn the following:

o About mouse events

e How to determine which mouse button the user clicked

e How to program drag-and-drop operations

e How to use the timer control

e About list and combo box controls

e How to initialize, add to, and delete items from the list controls
e How to declare and use arrays

e About control arrays

Responding to the Mouse

One of the foundations of Windows applications is that they respond to the mouse. Windows sends mouse events to
your program when the user works with the mouse while running your application. When you write your programs,
you'll want it to inspect for mouse events and respond to them if necessary. If your user uses the mouse to click an
option button or check box, your program doesn't need to respond to the mouse, of course, but the click will trigger an
event for those controls.Visual Basic also monitors mouse events when the user drags and drops an item on the screen
or copies and pastes information.

Note

Actually, you should write your Windows programs to respond to both the keyboard and the mouse. The Windows
standard states that all programs should be accessible from the keyboard alone, if necessary. This lets a user who
prefers the keyboard or whose mouse is broken to run Windows applications. Nevertheless, some programs by their
very nature do not function well without mouse support. For example, a drawing program would be quite hard to use
without a mouse.

Caution

Visual Basic includes no mouse control for your toolbox window because your application responds to a mouse only
through events, not control properties.

Mouse Events

You have full control over how your application responds to mouse events. A mouse event can be triggered by any of
the following actions:

o« Mouse movement

e A button click

e Adouble-click

e Arright-click

e A drag-and-drop operation

Adjusting the Mouse Cursor

As the user moves the mouse, the mouse cursor, sometimes called the mouse pointer (due to its default arrow shape),
travels across the screen to show the movement. Often, an application changes the mouse pointer during a drag-and-
drop operation, or perhaps when the user moves the mouse over an object on the screen that cannot be activa