

Sams Teach Yourself Visual Basic 6 in
21 Days

By Greg Perry

Ripped by: Lilmeanman.

About the Author
Greg Perry is a speaker and writer on both the programming and the application sides of computing. He is known for
his skills at bringing advanced computer topics down to the novice's level. Perry has been a programmer and trainer
since the early 1980s. He received his first degree in computer science and a master's degree in corporate finance. Perry
is the author or co-author of more than 50 books, including Sams Teach Yourself Windows 95 in 24 Hours, Absolute
Beginner's Guide to Programming, Sams Teach Yourself Office 97 in 24 Hours, Absolute Beginner's Guide to C, and
Moving from C to C++. He also writes about rental-property management and loves to travel.

Acknowledgments
My thanks go to Sharon Cox, Tony Amico, and the entire staff of Joe Wikert's group who continue to produce only the
best programming books on the market. Joe was with me on my first programming book years ago and I appreciate this
one just as much as the first. Sharon Cox goes to bat for me more than an Acquisitions Editor should and I want Sharon
to know how grateful that I am. In addition, if this book is good, it's more due to Tony's eagle-eye guidance than
anything I've done as an author.

Among the Sams editors and staff who produced this book, I want to send special thanks to the following people who
made this book a success: Jodi Jensen, Maureen McDaniel, Bart Reed, Charlotte Clapp. Special thanks go to the
technical editor, Bob Wasserman.

I just couldn't write a book for Sams Publishing without mentioning Dean Miller and Richard Swadley. In every book
I've written for Sams, they have had a direct influence, some way, in my motivation and gratefulness for being part of
the most outstanding programming book publisher in the business.

My lovely and gracious bride stands by my side day and night. Thank you once again. You, precious Jayne, are
everything that matters to me on earth. The best parents in the world, Glen and Bettye Perry, continue to encourage and
support me in every way. I am who I am because of both of them and I thank them for all that they've done for me.

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value your opinion and want to
know what we're doing right, what we could do better, what areas you'd like to see us publish in, and any other words
of wisdom you're willing to pass our way.

As the Executive Editor for the Visual Basic Programming team, I welcome your comments. You can fax, e-mail, or
write me directly to let me know what you did or didn't like about this book—as well as what we can do to make our
books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that due to the high
volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name and phone or fax number. I
will carefully review your comments and share them with the author and editors who worked on the book.

Fax: 317-817-7070

E-mail: vb@mcp.com

Mail: Executive Editor
Visual Basic Programming
Macmillan Computer Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

Introduction
For the next 21 days, you will learn how to write Windows programs using Visual Basic. You will also have fun along
the way! Visual Basic is an enjoyable language due to its visual environment. Much of building a Windows program in
Visual Basic requires dragging and dropping graphic objects onto the screen from a toolbox which houses those
objects. Your Windows program appears before your eyes as you add the objects. Visual Basic is one of the first
programming languages to incorporate a true WYSIWYG (What You See Is What You Get) environment. The program
that you build looks like the program your users see when they run the program from Windows.

If you've never written a program before, you will successfully learn to program with Visual Basic after you are
through with the next 21-day sessions. Each one-hour lesson covers Visual Basic, from start to finish, in a tutorial style
that includes questions and answers, exercises, and bonus projects that show specific Visual Basic commands and
features in use.

This 21-day tutorial teaches both theory and applies that theory in an easy-to-understand hands-on format. You begin
creating your very first Visual Basic program in the first day's lesson! The goal of teaching Visual Basic to a newcomer
at times is challenging due to today's broad range of computing skills. Some move to Visual Basic after programming
in more advanced (and more tedious) programming languages such as C++. Others come to Visual Basic with only a
QBasic background. QBasic is a language supplied with PCs for years, but QBasic offers only a slow, text-based MS-
DOS programming environment. Despite its archaic text-based mode, the QBasic language provides a wonderful
introduction to Visual Basic because Visual Basic's programming language is an extension of QBasic. Some people
want to program but have never programmed in any other language before, so not only is Visual Basic brand new but
so is the nature of programming.

Visual Basic is much more than just a programming language. The programming language forms the background of all
that takes place in a running Visual Basic program. Nevertheless, the language is a secondary consideration to the user
interface. A Windows program offers a high degree of user interaction using the graphical elements that form the
objects on the window the user sees. If the user interface is not correct, users will not like the program. The
programmer will get more support phone calls. The users will be hesitant to upgrade to future program enhancements.

Therefore, the user interface is stressed throughout these 21 days so that you know exactly how to define the best
interface for your users. Only after you build a usable interface should you then go to work on the program's mechanics
that make the program do the job you designed it to do.

In today's fast-changing world, program maintenance is more critical than ever before. Companies change, industries
consolidate, spin-offs happen. The computer programs of today must be fluid and maintainable so that programmers
can quickly change the program to meet the needs of a changing environment in which the programs are used. This
tutorial stresses the importance of proper program design, coding, testing, and maintenance every step of the way. A
program is written once but updates many times, and you can ease the burden of program maintenance by following a
few general guidelines when you write your program.

This 21-day tutorial strikes a balance between usability and theory, always showing you what you need and not wasting
your time with the tiny fragments of Visual Basic that the typical programmer may never have to know. Importance is
placed on building good programmers who can build good programs that are clear, concise, documented, and simple to
maintain.

In addition, these 21 days provide ample time to study Visual Basic in depth without getting bogged down in the minor
issues that don't concern the typical Visual Basic programmer. At the same time, you will learn about many aspects of
Visual Basic. The following is only a partial collection of the topics that this 21-day tutorial covers:

• Building a useful user interface
• Using the Application Wizard to generate a program shell instantly
• Writing Visual Basic code in clear constructs to make the code run smoothly
• Understanding the most common tools used in the Visual Basic environment
• Mastering the art of getting the errors out of a Visual Basic program
• Incorporated database technology into your Visual Basic programs
• Embedding Internet access in the heart of your programs to put your users online to the Web
• Providing external ActiveX controls so that Visual Basic can use tools from other languages and Windows

applications
• Using Visual Basic's ability to create brand new ActiveX controls so that you can increase Visual Basic's

programmability and the tools that your users interact with by making your own interface objects
• Accessing the online help engine in Visual Basic so that the programs that you write are accessible to your users

and offer the help services that your users require
• Creating graphics to add pizzazz to the screens that you design
• Using common dialog boxes so that your users can access the typical features they expect in a Windows

application
• Putting toolbars and coolbars in your programs so that your users have one-button access to the common

commands and tasks they require
• Mastering the art of programming the Windows API routines so that you can implement Windows features not

normally found inside Visual Basic
• Improving the enjoyment of the programs that you write by adding multimedia sound and graphics to your

Windows programs

Are you ready to make the move to Visual Basic? If you are, you will be pleased to have this copy of Sams Teach
Yourself Visual Basic 6 in 21 Days. From the first day to the last, you will improve your Visual Basic skill set so that
you can write virtually any Visual Basic program that you require.

Part 1: At A Glance

This week begins a rewarding experience for you. You will learn how to use Visual Basic to create your own computer
programs! This first week introduces you to the preliminaries of Visual Basic by showing you how to maneuver within
the Visual Basic environment, how to create the visual elements of a Windows program, and how to master the
fundamentals of the Visual Basic programming language.

Where You're Going
Despite this first week's introductory nature, you will be working with Visual Basic in a hands-on mode starting in Day
1, "Welcome to Visual Basic." In the opening lesson you create a working Visual Basic application that looks and acts
like other Windows programs you've used. Each succeeding lesson builds from there showing you how to add new
elements to your programs and how to make them more powerful. At the end of each day, you'll find a series of
questions and exercises that help focus your attention on the most important parts of the day's lesson so that you can
review trouble areas and practice additional hands-on program development.

Programming requires more than just a knowledge of a language. As you progress through this week and the two weeks
that follow, you will understand the importance of writing clear, well-documented programs. The environments in
which people use computer programs change and so must the programs. By following a few good programming
practices from the beginning, you create programs that will be easier to adapt for future updates.

Visual Basic creates Windows programs. In this first week, you learn a little about virtually every element of Visual
Basic programming. You'll learn how to place objects on a Windows screen, create and respond to pull-down menus,
and manage the interaction between your program and its user. You'll begin to master the heart of Visual Basic: the
programming language that ties everything together.

Visual Basic programming is one of the most enjoyable ways to program. Much of creating a Visual Basic program
requires placing graphic objects on the screen and setting attributes for those objects that determine how the objects are
to look and behave. Visual Basic is truly the only programming language today that beginning programmers can learn
easily. In addition, Visual Basic allows advanced programmers to create powerful Windows applications.

Set your sights high! If you've never programmed before, or if you've never programmed in Visual Basic, you'll enjoy
what Visual Basic can do for you and you'll be surprised what you can do with Visual Basic.

Day 1. Welcome to Visual Basic
Visual Basic 6 is Microsoft's latest and greatest version of the Visual Basic programming language. Although writing
programs can be a tedious chore at times, Visual Basic reduces the effort required on your part and makes
programming enjoyable. Visual Basic makes many aspects of programming as simple as dragging graphic objects onto
the screen with your mouse.

Today begins your 21-day Visual Basic tutorial. Before today ends, you will have created your very first Visual Basic
application. In the next three weeks, you will master Visual Basic 6, and you will be able to develop applications that
do work you need done.

Today, you learn the following:

• Visual Basic's history
• The programming design and authoring process
• How Visual Basic's visual interface makes programming easy and fun
• The Application wizard
• Why event-driven programming is so important to a Windows environment

Visual Basic's Background
By understanding the background of Visual Basic, you'll gain insight into Visual Basic 6 and you'll be better equipped
to use Visual Basic. Microsoft based Visual Basic on a programming language written for beginners called BASIC.
BASIC has been around for more than 35 years in one form or another. The original language designers wanted to
develop a programming language that beginners could use. With BASIC, new programmers could become proficient
right away. Other programming languages of the day, such as COBOL, FORTRAN, and Assembler, required much
more study than BASIC before one could use them effectively.

BASIC stands for Beginner's All-purpose Symbolic Instruction Code. That's some abbreviation!

A programming language is a set of commands and command options, called arguments, that you use to give
instructions to the computer. Computers cannot (yet) understand human languages because people deal well with
ambiguous commands, and a computer cannot understand such ambiguity. A programming language must be more
precise than a spoken language.

Note

Programming languages are easier to learn than foreign languages. Computer languages often have fewer than 300
commands, and many of those commands are words you already understand, such as Open and Next.

Although the BASIC language was designed for beginners, a BASIC program was still rather cryptic and required
study. Listing 1.1 shows a program written in BASIC. The program's goal is to print the mathematical squares for the
numbers 1 through 10. Although you can probably guess at many of the program's logic and commands, the program is
certainly not the clearest piece of literature in the world and requires that you understand BASIC before you can fully
comprehend the reason for all of its elements.

Programs are often comprised of several files that interact with one another, so you'll often see the term application
used as a synonym for all of a program's files. The program, or application written in a programming language, is a set
of instructions that directs the computer.

Listing 1.1 Early BASIC programs had line numbers and were somewhat cryptic.
10 REM This program computes and prints the first ten squares
20 CLS
30 PRINT "Squares from 1 to 10"
40 PRINT "Value", "Squared"
50 FOR N = 1 TO 10
60 PRINT N, (N*N)
70 NEXT N
80 PRINT
90 END

Do Don't

 DON'T fret over all this talk about squaring numbers from 1 to 10. Don't like math? No problem! Visual Basic

Do Don't

will do all the math you need done.

If you were to run the BASIC program, here is the output you would see:

 Squares from 1 to 10
 Value Squared
 1 1
 2 4
 3 9
 4 16
 5 25
 6 36
 7 49
 8 64
 9 81
 10 100

Notice that BASIC is strictly a text-based language. Both its program and output are textual and do not produce the
graphical, windowed output that today's programs produce.

Microsoft did not create Visual Basic directly from the original BASIC language. Although the BASIC language
evolved through several stages over its 35-plus year history, it kept its original structure in most of its incarnations.
When Microsoft decided to use BASIC as its primary programming language supplied with the original MS-DOS
operating system, however, it honed the BASIC language and added functionality to BASIC by creating several
incarnations of BASIC with names such as MBASIC (for Microsoft BASIC), GWBASIC (for, some say, Gee-Whiz
BASIC), BASICA (for BASIC Advanced), QuickBASIC, and QBasic (which is still supplied on Windows operating
system CD-ROMs).

Throughout BASIC's evolution, the BASIC language kept its simple nature while gaining powerful new commands
along the way. The text-based nature of languages such as QBasic helps new programmers get up to speed more
quickly than many nontext languages such as Visual C++ do. To maintain this ease of use, Microsoft wanted to keep all
its BASIC language versions interpreted in nature as opposed to compiled. A programmer can execute a program based
on an interpreted language immediately and see results and errors instantly. Such feedback is critical for beginners who
need a quick response when learning how to program. Compiled languages, although they run faster and are better
suited for commercial program development environments, require much more effort to work with.

An interpreted language, such as BASIC, lets you run programs as you write them. Interpreted languages make good
learning platforms because of their quick feedback. A compiled language requires extra steps, called compilation and
linking, before the programmer can run the program. The compiled program resides in the computer's own native
language and not in the programming language that the programmer originally used.

As Windows became more popular, Microsoft realized that the text-based QBasic would not work as a windowed
programming language. Microsoft developed Visual Basic, a language based on BASIC but one much more suited to
today's windowed environments. Whereas QBasic and all other BASIC incarnations were text-based, Visual Basic is

graphical. Although a Visual Basic program might contain code that looks somewhat like the program in Listing 1.1,
the majority of a Visual Basic program consists of graphical elements that have little resemblance to the text-based
code in Listing 1.1. Figure 1.1 shows a Visual Basic screen that contains many pieces from a Visual Basic program.

Figure 1.1. The Visual Basic programming screen can look busy, but it is simple to use.

Code is another name for a program's set of instructions.

Note

Well before you finish the book, you'll understand every item inside Figure 1.1. Although the screen looks busy and
overwhelming, Visual Basic is simple to understand.

In addition to being graphical and simple to use, Visual Basic has become one of today's most popular languages
because it is both interpreted and compiled! You can test a Visual Basic program that you write by running the program
interpretively until you get all the bugs out. Once you eliminate the bugs and thoroughly test your program, you then
can compile the program into a fast and secure (nobody can easily modify the program) executable program that you
can distribute to others to use. By making the compilation process a simple menu option, Visual Basic handles the more
difficult compilation steps (including something cryptic called link editing) that other languages used to require you to
go through.

A bug is a program error. If a program that you write does not work properly, you will need to debug the program by
removing all the bugs.

About the time Microsoft released the first version of Visual Basic, many people were predicting the demise of the
BASIC language (and its offshoots such as QBasic). These naysayers thought any language based on BASIC could not
be used for serious programs because they never thought of BASIC as a serious language. Languages such as C, C++,
and Pascal were all the rage because of their compilation abilities and also because their programming structures lent
themselves more to a Windows environment. With Visual Basic, Microsoft taught the programming community these
and other lessons:

• A BASIC-like language can be both simple to understand and powerful.
• With the right interface, a BASIC-like language works well for a Windows environment.
• Visual Basic can be both an interpreted and a compiled language depending on the programmer's requirements.
• Instead of being obsolete, a language based on BASIC can become one of the most widely used languages in

the world.
•

Visual Basic's Visual Nature

As you saw in Figure 1.1, Visual Basic 6 is more than just a programming language. The secret to Visual Basic is in its
name: visual. With today's Windows operating systems, a program must be able to interact with the screen, keyboard,
mouse, and printer graphically. Older programming languages, such as BASIC, worked well in a text-only computing
environment, but such languages do not support the graphical interface needed for today's computers.

You won't even learn much of the Visual Basic programming language in the first week of this tutorial because much
of the Visual Basic programming process requires interacting with the Visual Basic visual environment and requires
very little of the programming language details to make working programs. Only when you need to write more
advanced programs will you need to learn more of the Visual Basic language than just the handful of commands you
learn in your first few days.

Note

It's not just the underlying BASIC language that makes Visual Basic simple to learn and use. Much of a program's
development consists of dragging and dropping (with your mouse) elements onto the Visual Basic screen when you
create a program. Instead of writing a series of complicated input and output statements to interact with users, you will
drag controls, such as text boxes and command buttons, onto the screen; Visual Basic takes care of making the controls
operate properly when the user runs the program.

A user is a person who uses a program. You, the programmer who writes programs, are also a user because you use
programs that you and others write. The Visual Basic programming system is nothing more than a program that you use
to create other programs.

Visual Basic comes in several varieties including the following:

• Visual Basic Enterprise Edition: Created for team programming environments and client/server computing
where applications distribute processing and data among several computers.

• Visual Basic Professional Edition: Geared toward professional programmers who want to get the most from
the Visual Basic programming environment. This edition includes a full set of tools and wizards that help you
package and distribute applications. This 21-day tutorial assumes that you use the Professional Edition as most
Visual Basic programmers do. Nevertheless, if you use one of the other editions, the majority of this book also
applies to you because this tutorial does not focus on the Professional Edition-only tools as much as it presents a
well-rounded introduction to the Visual Basic programming environment and language.

• Visual Basic Learning Edition: The essentials with the standard complement of programming tools and
everything one needs to get started programming. A multimedia CD-ROM called Learn VB Now comes with
the package as well as a full set of Microsoft Developer Network documentation so that you will have the help
that you require to learn and use Visual Basic.

Note

A special edition of Visual Basic comes with a package called Visual Studio. Visual Studio is a programming
environment that supports several Microsoft languages including Visual Basic, Visual C++, and Visual J++. When you
use Visual Basic, you use the same environment that users of these other languages also use. Therefore, if you move to
another programming language, you will not have to master a new set of menus and dialog boxes.

Why Write Programs?
Many computer users will never need to learn computer programming. Some people buy all their programs from the
store or from mail-order outlets and never need more specialized programs. Rarely, however, will you be able to find
exactly the program you need for a particular task, especially if you use a computer to help you in your business or
scientific research. In addition, you might think of a new game concept that you want to turn into a hot-selling
computer game so that you can retire early in the Cayman Islands. If you want a specific application but cannot find
what you need on the store shelves, or if you want to write new programs for a living, you'll need to design and write
those programs using a programming language such as Visual Basic.

Note

Remember that you cannot just tell a computer what to do and expect it to work for you. A computer must have a
detailed list of instructions because the computer is a dumb machine that does nothing on its own. You give your
computer those instructions in the form of a program. A Visual Basic program consists of program code (similar to that
in Listing 1.1) and visual elements that define the screen and the Windows controls that the program's user interacts
with when the user runs the program.

Tip

When you learn Visual Basic, you also learn how to automate common application programs such as those you find in
Microsoft Office. Microsoft Office is comprised of several programs that work together, such as a word processor,
worksheet, and database program. Microsoft Office also contains the complete Visual Basic 6 programming language
with which you can automate Microsoft Office applications. (Microsoft Office 95, the edition that preceded Microsoft
Office 97, contain Visual Basic for Applications (VBA), which is similar but not fully compatible to Visual Basic
version 6.) For example, you can automate your accounting month-end procedures by writing a program that
consolidates your month-end Excel worksheets. The Visual Basic that comes with applications is not the full Visual
Basic development system you get with Visual Basic 6,but it does contain the complete language so that you can fully
control the applications.

The Programming Process

Over time you'll find your own way of writing programs that works best for you. Nevertheless, you'll generally follow
these standard set of steps when creating your Visual Basic programs:

1. Decide what your application is to do by creating an overall design.

2. Create the visual portion of your application (the screens and menus that your users will interact with).

3. Add Visual Basic programming language code to tie the visual elements together and to automate the program.

4. Test your application to locate and remove any bugs you find.

5. Compile your tested application and distribute the compiled application to your users.

Do Don't

DO test your application to rid it of bugs and then distribute
your application program to others. Despite the virtual
impossibility of eliminating all bugs, do `test, test, and test again
trying all possibilities in the program to help ensure that you've
found as many bugs as you can before you compile and
distribute your program.

DON'T be surprised if a user locates another bug (or
several of them). The most thorough testing never
guarantees that all bugs are gone. The more that your
program does, the more likely a bug will raise its
ugly head some day when you and your users least
expect it.

By waiting until you've thoroughly tested your Visual Basic application program before you compile the program, you
help speed up the testing process. When you test your program interactively, you can locate and correct bugs that you
find more easily and quickly. Visual Basic includes a special helper system called a debugger that you can use to help
you locate bugs that appear during testing. You'll learn in Day 21, "Distributing Your Applications," how to use the
debugger.

A debugger is an interactive monitoring system that you can turn on and off inside Visual Basic that helps you locate
statements that contain bugs. For example, if you run a program you've written and the program computes an amount
incorrectly, the debugger can help you quickly find the statement in the program that contains the bug.

Before Visual Basic, writing a program was more tedious for several reasons. In a text-based environment, you would
have to design on paper all the screens that the user would see. You would then take that paper to the users to see if you
were designing exactly what they wanted. If you were designing a program for mass distribution, such as a game or a
general-purpose business application, you would still write down all the screens, create complicated data flows to and
from the various screens, design the disk files needed by the program, and basically plan every detail before you ever
went to the keyboard.

Visual Basic's visual nature encourages you to go to the keyboard much earlier in the programming process. Instead of
using paper, you'll design screens with Visual Basic's tools. Figure 1.2 contains one such screen. No code is required to
produce a screen such as this one; all you need to do is drag the various controls onto the Form window.

Figure 1.2. Visual Basic enables you to design and create screens as you create your program.

The Form window, also called a form, comprises the background of a Visual Basic program's screen and contains
elements such as command buttons and scrollbars. Programs may require one or more form windows depending on the
nature and complexity of the program.

Even before you add code, you can test your program screens (each form is the basis for a screen) because Visual Basic
enables you to run your program interactively after you create at least one form. You can make sure that your screens
look good, and you can show your prototype to users who have requested the program to ensure that they like what you
are creating. Making changes in this prototype pre-coding stage is much easier than making changes after you add the
code. Visual Basic's prototyping capability is one way Visual Basic helps you create programs quickly and accurately.

A prototype is a test program that contains virtually no functionality but does contain some or all of the screens that the
final program is to contain. You and your program's ultimate users can test the prototype to see whether you are
including all of the needed screen elements.

Tip

Once you create your program, test your program, compile your program, and distribute your program to your users,
you still can make changes to the program. Doing so, however, is tedious and requires that you re-distribute all the
application's files once again to the user. Nevertheless, the earlier you locate problems, the simpler those problems are
to repair.

Understanding Program Maintenance

Bugs are not the only reason that you will work on a program after you think you're completely done with it. Program
maintenance is necessary because requirements change, companies change, and laws change. You must also change the
programs you write so that they remain viable programs; you will need to update your program periodically to reflect
changes that impact the program. In addition, users will think of new things that they want the program to do.

Program maintenance is the term used for the updating of a program after the program is put into use. This update may
be a result of a user's request or a change in the way the program needs to operate.

It is said that a program is written once and modified many times. The more program maintenance you perform, the
more likely that your program will be up-to-date and in use. You may want to release new versions of your program so
that users can, with a different version number on the opening screen that you place there, keep track of the latest
version installed on their system.

Tip

Document your programs so that other programmers will understand your code if they must make changes to it later.

As you learn more about the Visual Basic programming language, you'll learn how to write code that is clear, and you'll
learn how to create documentation for your program. The more remarks you put in your program and the clearer you
write program code instead of using tedious, complicated, tricky program statements, the easier it will be for you and
others to track errors and maintain the program later.

Documentation is comprised of descriptions of the program. You can place documentation inside the program itself so
that when you (or someone else) later make a change to the program, you'll read what sections of the program are for
without having to figure out what the code's purpose is. Internal Visual Basic program descriptions are called remarks.

Add program remarks as you write your program because it is at that time that you understand the program the best. If
you wait until after you complete an application, as many programmers do, your application might never be properly
documented because other projects can take over your time, and the documentation is often pushed aside once a project
is completed.

In addition, you may want to write external documentation with screen shots of the program's different screens and
descriptions of what the user must do to start, use, and terminate the program. The better your user's documentation is,
the more likely your user will master your program and want to use more programs that you write.

Creating Your First Program
If you are familiar with several other Windows products, such as Microsoft Publisher, you've see wizards that work
with you, helping you create the documents you require. Visual Basic also supports wizard technology to help you
create programs. When you write a Visual Basic program, you have a choice to create an application from scratch or

use a wizard to create an application's shell or general structure. After the wizard creates the application's shell, you can
fill in the details.

A wizard presents step-by-step questions and prompts that you respond to. As you respond, the wizard generates an
application that matches the criteria you specify. Visual Basic offers several wizards, but the one you'll use most
frequently is called the Application wizard.

It's sometimes difficult to tell whether you should create an application shell with the Application wizard and then fill
in details for your particular situation or create an application from scratch. Some people, if they've created another
application already that is similar to the one they need, make a copy of the first one and make changes to the copy to
create the new application. Over time, you'll learn to decide which is best for your needs in different situations.

To help you get started, this section guides you through the creation of your very first application. You'll see how easy
the Application wizard is to use for an application's shell. Although the resulting application will not do much (it's only
a shell after all), you will see how much Visual Basic can automatically create when you use the Application wizard.
By tomorrow's lesson, you will be ready to learn how to create an application from scratch without the Application
wizard.

Note

Perhaps surprisingly, you'll probably create more applications from scratch instead of using the Application wizard, or
you'll make a copy of a similar application and modify the copy when making a new program. Although the
Application wizard creates a fully-functioning program skeleton, you'll develop your own style of programming over
time, and you'll probably find it easier to modify a copy of an existing application than first creating a skeleton and
adding to it. Your preferred style will come with time, so just sit back and enjoy learning Visual Basic. Try things, don't
be afraid to mess up, and expect some errors every time you write a program. Programming is creation, and you'll find
that Visual Basic makes creating fun.

As soon as you start Visual Basic, the Application wizard is there to help. The New Project dialog box, shown in Figure
1.3, appears when you start Visual Basic from the Windows Start menu. The tabs on the New Project dialog box offer
these choices:

Figure 1.3. You can select the Application wizard from the New Project dialog box.

• New lets you create new applications by using various wizards or starting from scratch.
• Existing lets you select and open an existing Visual Basic project.
• Recent displays a list of Visual Basic projects you've recently opened or created.

Note

If you cancel the New Project dialog box, and then later want to start the Application wizard, select File, New Project to
display the New Project dialog box once again. This New Project dialog box will not contain the Recent and Existing
tabbed pages, however, because you are specifying from your menu choice that you want to create a new project.

A project is a collection of files that make up your application. A single application might consist of several files, and
the project is the collection of those files. One or more of the files might contain code, one or more of the files might
contain descriptions of screens inside their respective form windows, and one or more of the files might contain
advanced programming information that your program will use to communicate with other programs and modules
inside the operating system.

Do Don't

DO, if you don't want to see the New Project dialog box every time you start Visual Basic, click the check box
labeled Don't Show This Dialog Box in the Future. The next time you start Visual Basic, the New Project dialog
box will not appear.

When you select the icon labeled VB Application Wizard on the New tab, the wizard begins its work. The first screen
that the wizard displays is an introductory title screen that explains the wizard is about to begin. (In addition, the screen
lets you load another profile that defines options, but you won't need extra profile options for this book.) As with most
wizards, when you finish reading and selecting from one wizard screen, you click the Next button to display the next
screen that the wizard has to offer. Figure 1.4 shows the next wizard screen from which you must select an interface
type.

Figure 1.4. The interface type determines how your application will process multiple windows.

Here are the options from which you can select:

• Multiple Document Interface (MDI) allows your application to contain multiple document windows. In
effect, this interface lets you work with several sets of data in multiple windows within your program. Each
document window is called a child window.

• Single Document Interface (SDI) limits your application to one open document window at a time. Most
applications that you write will probably be SDI applications.

• Explorer Style lets your application take on a Windows Explorer-like interface with topic summaries in the left
window and details for a selected topic in the right pane.

You can click any of the three options to read a description and see a thumbnail sketch of a sample program window.
Many of your applications will contain the single document interface because many applications require only a single
window with data that is open at any one time. For this first example, select the Single Document Interface option.

The wizard screen also lets you name your project. The default name, Project1, leaves a lot to be desired, so change the
project name to FirstApp (no spaces are allowed), and click Next to display the next wizard window shown in Figure
1.5.

Figure 1.5. Select the options you want your application's menu to contain.

The Application wizard adds the menu options that you select to your application menu. The options are common
Windows options found on most Windows programs. The menus will be the typical Windows drop-down type. You
can select the menu bar options (such as File, Edit, and so on) as well as submenu options, such as New, Open, and
Close. The ampersand (&) next to a letter in a menu name indicates the underscored accelerator key letter; in other
words, &New indicates that New (notice the underscore) appears on the menu and that the user can select the option by
pressing Alt+N. If you want to place an actual ampersand in the name, use two; for example, typing A&&B produces
A&B. For this application, leave all the options as they are (keeping the File, Edit, View, Window, and Help options
checked) and click Next to continue with the wizard.

Note

After the Application wizard finishes creating your application, the menu options will operate as expected. For
example, the File menu will appear when you select Alt+F or click the File menu.

The next wizard screen, shown in Figure 1.6, lets you select the toolbar buttons that your application will have. As you
can see, the Application wizard does a lot of work for you. By creating an initial toolbar, the wizard takes care of a lot
of tedium that you would otherwise have to handle. The left window pane indicates the available toolbar buttons and
the right window pane lists the buttons (and separator spaces between buttons) on your application's toolbar. As with
the menu options in the previous screen, click Next to accept all the default toolbar settings.

Figure 1.6. The Application wizard saves you time by creating an initial toolbar.

The next wizard screen to appear is the Resource screen from which you can elect to use resources in your program,
such as multilanguage text files. Simple programs often do not require external resources. For this example, keep the
option labeled No checked and click the Next button to continue.

The next wizard screen is the Internet Connectivity screen from which you can add an Internet interface to your
program if you want one. If you were to select Yes from this window (please don't select Yes here), the Application
wizard would add a complete Internet browser to your application that would operate much like Internet Explorer.
Without any programming on your part, your application's user can access the Internet. When the user enters an
Internet address (also known as an URL [pronounced "earl"] for Uniform Resource Locator), such as
http://www.mcp.com, the browser displays that Web page in the application's browser window, first logging on, if

needed, using the PC's default Internet service. You can enter a default startup page address that initially displays when
the user starts the browser.

Caution

If you add the browser to your application, you are assuming that your user has Internet access. If not, an error will
result when the user attempts to use the browser.

This first application requires no Internet access, so click Next without changing any of the default options to display
the next wizard screen. The screen gives you the option of adding one of these standard screens to your application:

• Splash screen is an opening title screen that appears when your application first begins.
• Login dialog is a dialog box that asks for the user's ID and password as a part of application security that you

can add.
• Options dialog is a tabbed blank dialog box from which your users can specify attributes that you set up for the

application.
• About box is a dialog box that appears when your users select Help, About from the application menu.

For this application, click the option labeled About Box.

Tip

The button labeled Form Templates lets you select from several form templates located in the Visual Basic Templates
folder. Visual Basic installs the templates you select into your application. The templates include an add-in template
that lets you add a form from your own library, an ODBC Log In form that lets your users connect to advanced
database access, and a Tip of the Day that displays a random tip when your user starts the application.

A form template is a model of a form that you can customize. Form templates are forms with similar properties that
might appear in several different applications.

The After selecting the About Box standard form, click Next to bypass the database wizard screen that lets you add
external database files to your application. You can click the button labeled Finish to instruct Visual Basic to complete
your initial application.

Note

The View Report button displays a summary of the project you have designed, and details the changes you can add and
other wizards that you can run to add functionality to your new project.

Congratulations! You've just created your first application without knowing much about Visual Basic and without
knowing any of the Visual Basic programming language! After a few gyrations on the screen, Visual Basic displays a
dialog box letting you know that your application is complete. When you click OK, the dialog box disappears, and you
can run your application.

Tip

After loading an application from disk or creating one, run or execute that application to see it work just as your users
will eventually do after you've tested and compiled the applications you write. Visual Basic is a lot like a kitchen. You
are the cook, and your application is the recipe. Change the application (the recipe), and the resulting program (the
meal) turns out to be different. The programming stage can take quite a while if your application is complex even if you
use the Application wizard to generate an initial program. As you create the program, you won't see the program do
work until you run it.

Run the program (the program runs interactively by default) by selecting Run, Start. You'll see from the menu option
that F5 is a shortcut key for running the application as well. Figure 1.7 shows the window that appears.

Figure 1.7. Your first application is complete!

With the Application wizard, you created a fully working program (albeit only a simple shell that only does a little) just
by answering the wizard's screen prompts. You have created an application that does the following:

• A standard program window appears that you can resize and move. The name of the project, FirstApp, appears
in the window's toolbar.

• A status bar displays the date and time. You can turn on and off the status bar from the View menu.
• A working menu appears with four options. Only the Help, About menu option does work (try it), but the usual

menu options, such as File, Open (produces a file locating dialog box) and Edit, Cut, are all there ready for you
to insert active code behind them. The About dialog box follows the standard Windows convention of
displaying system information when you click its System Info button.

Tip

The System Information screen displays a complete summary of the user's operating system and hardware. This
summary appears after Visual Basic executes a System Info program that searches the user's computer for specific
hardware and system information. (You can call the System Info program from locations other than the About box.)

Such a summary can some in handy when your users call you with problems about applications you write. You can ask
the user to display the system information summary to verify that the user is using the proper operating system and
hardware that your program requires. In addition, the System Info window is useful for checking available resources
such as disk space and memory to ensure that your PC is running with enough resources.

• A standard toolbar appears that you can add functionality to and turn on and off from the View menu.

The application does little, yet it is complete and ready for you to fill in the blanks. You can easily change and add to
the application, its menus, and its windows. The application is only a shell of things to come, yet the Application
wizard generated a complete project that takes care of much tedious work that you might otherwise have to add by hand
if you created the application from scratch. You'll find in tomorrow's lesson that you can create working projects quite
easily, but the Application wizard adds basic functionality that applications often require.

To quit the running application, select File, Exit. Answer No to the prompts when Visual Basic asks if you want to save
the project. You don't need to save the application shell because you can easily generate this project again by running
the Application wizard once again.

Event-Driven Programming
Figure 1.8 shows a window from a Windows program. The window contains several kinds of Windows controls such
as command buttons, check boxes, and a scrollbar. These controls are just a sample of the many Windows controls
available for you within the Visual Basic programming environment to add to the programs that you write.

Figure 1.8. Windows programs respond to events.

Visual Basic's visual nature requires these kinds of controls because, unlike programs written in older text-based
languages, Windows programs must respond to events. An event might come to a program from any of these controls,
as well as from internal activities such as the PC's clock. Events come in random order. For example, the user of Figure
1.8's window might click a command button or check one or more check boxes, or open the drop-down list box. The
user might perform several of these events in a different order each time the user runs the program. You must use
event-driven programming techniques to respond properly to the user's actions and other activities that trigger events.

An event is an activity that occurs during a program's execution, such as a mouse click or a keystroke. Event-driven
programming applies to programming that responds to Windows events.

Note

Not only must your program handle random events, but if more than one Windows program is running at once, each
program needs to analyze and respond to events.

As Figure 1.9 shows, Windows handles a few events but passes most to the programs currently running. Windows is a
multitasking operating system so more than one program can run simultaneously. Your program must handle any and
all events appropriate at the time the events occur and ignore all the others. For example, if your program needs to
display a warning message at a preset time interval, your program will have to check the timer event to see whether the
correct time span has passed since the last warning. If another program running at the same time did not require the
timer, that program would ignore all timing events that Windows sends to it.

Figure 1.9. Your programs must respond to some events and ignore others.

A Visual Basic program consists of the visual interface that makes up the windows and controls that the user sees and
interacts with. In addition, programming code connects everything together. Each control is both automated and set up
to respond to the programming code. For example, a command button will visually show a click action when the user
clicks the button with the mouse when running the program. You have to do nothing more than place the button on the
form (the program's window) for the button to operate. (As with all command buttons, you can trigger a command
button with the Enter key as well as the mouse.) Other aspects of the command button, however, are under your
control, such as the name or picture that resides on the button, the size of the button, the color of the button, and so on.
These are properties that you can change, although Visual Basic assigns default values. Properties distinguish one
command button from others.

A property helps to differentiate a control from other controls because the property shows appearance and behavior of a
control. Properties have values, such as colors, text labels, size, and location on the form. When you place a control on
a form, you assign properties that make that control somehow unique from the other controls.

Figure 1.10 shows a window with several command buttons. If all of these buttons appeared in a program with no code
behind them to modify the way they respond, you could click any of them and they would all respond the same way,
depressing inward with the click and triggering a click Windows event. Despite these similarities, however, each button

looks differently because its text caption, size, location, color, and text font property values are different from the other
buttons.

Figure 1.10. Multiple controls look different if they have different property values.

Once you place controls on a form and assign their individual property values, you are ready to write programming
code that responds to events. The same control can trigger several different kinds of events. For example, a command
button may generate a single-click or a double-click event depending on what the user does. The code that you write for
the program determines which of those events your program ignores or handles in some way.

Tip

If you write code for a particular event, your program will respond to that event when it occurs during the program's
execution. If, however, you don't write code for a particular event, and that event happens, your program will ignore
that event when Windows sends it to your program.

Your programming code behind the forms looks and acts, not like one long listing of text, but like several small
sections of code with each section written to respond to one of the form's control events. Each of those sections sits
around doing nothing until its event occurs; at that time, the program immediately starts executing that event's code.
For example, if the right-click of an object, such as a particular command button, is to produce a warning beep and

message, you must write the code to produce the beep and message. The executing program runs that code if and only
if the user right-clicks over the button.

An object is an element from a Visual Basic program, such as a control, form, or code module that holds programming
statements.

How do all these details work together? The answer to that will take, oh, about 20 more days. Tomorrow's lesson
begins to show you how to specify control properties and how to respond to those controls when you create your very
first Visual Basic program from scratch without the help of the Application wizard. Theory alone is not enough—you
need to get your hands on the keyboard and begin placing controls, setting control property values, and writing code
that responds to events.

Summary
You are well on your way to mastering Visual Basic. Today, you learned the background needed for programming. By
understanding the programming process, you are better equipped to begin using Visual Basic, one of the most advanced
programming environments available today.

Today's lesson explained how you design and write programs. Visual Basic has changed the way programmers design
programs because the Visual Basic environment makes it easy to prototype your program's design and then turn that
prototype into a finished application. Programming often requires several review and edit steps. Programs rarely work
perfectly the first time you write them, but as you saw today, Visual Basic's interactive environment takes care of much
of your work so that you can keep errors to a minimum.

The Application wizard will generate a program shell that you then can add details to so that the program becomes a
separate, working application that performs its needed job. Those details consist of adding controls, setting property
values, and writing code to make the program interact and respond to the controls properly. The rest of your 21-day
tutorial will show you how to fill in those details to make working programs.

Q&A
Q: Do I always follow the programming process steps (design, create visual elements, and so on) for all

Visual Basic programs I write, or just for the small ones?

A: The larger the program, the more you'll need to adhere to the program development procedure. Programs get
complex quickly as you add more and more features to their requirements. One feature may affect other
features, so the more you plan, the less you'll have to redo and correct later. Fortunately, the Visual Basic
environment makes program changes rather simple in many cases, even changes that involve major structural
design changes. Of course, if you start with an Application wizard's shell, the design of your program is your
second step. As you learn how to write programs throughout this book, you'll learn more about proper
program design and creation.

Q: Does the Application wizard generate program code?

A: The Application wizard does generate some code but not much. The purpose of program statements is to

make the program perform a specific function, such as computing accounting figures or processing customer
billing. It's your job as the programmer to specify the code.

Workshop
The Workshop provides quiz questions to help you solidify your understanding on the material covered and exercises
to provide you with experience in using what you've learned. You should understand the quiz and exercise answers
before continuing to the next chapter. Appendix A, "Answers to Exercises," provides the answers.

Quiz

1: What language did Microsoft use as the basis for Visual Basic?

2: Why is Visual Basic suitable for both beginners and advanced programmers?

3: Which is more important to newcomers to Visual Basic: the programming language or the visual interface?

4: What's the difference between a form window and the application window?

5: What do the terms bug and debug mean?

6: Which runs faster: a program written in an interpreted language or a program written in a compiled
language?

7: Which is easier to debug: a program written in an interpreted language or one written in a compiled
language?

8: What is the difference between a splash screen and a Tip of the Day screen?

9: What's the difference between a control and a control property value?

10: True/False. Controls hold code that makes them respond to the user's input.

Exercise

 Use the Application wizard to create an application that includes an Internet browser window and a splash
screen in addition to the other options you selected today when you created your first project. Run the
application to see how the Internet access works. If you don't have Internet access, you will get an error when
you open the browser window, but create the project anyway for the practice.

Day 2. Working with Visual Basic
Now that you've seen how easy the Application wizard is to use, you are ready to take the plunge and create a program
from scratch. Although creating a program without the Application wizard is not difficult, you need to understand
Visual Basic's environment a little more before you write your first application. Today's lesson explains how to
maneuver within the Visual Basic environment so that you then will be ready to create an application from scratch
without the Application wizard.

Today, you learn the following:

• The parts of the Visual Basic environment
• About placing controls on a form
• How to save your project and its associated files
• The Properties window's features
• How to access the Code window

Understanding the Visual Basic Environment
Throughout the rest of your 21-day tutorial, you will be building and studying programs within Visual Basic's
environment. The sooner you acquaint yourself with Visual Basic's environment, which mainly requires understanding
the purpose of Visual Basic's windows, the sooner you will master Visual Basic programming. Figure 2.1 shows the
Visual Basic screen with several of its common elements labeled.

Figure 2.1. You should understand how Visual Basic's components work for you.

The New Project Window

As you saw in yesterday's lesson, the New Project window appears when you first start Visual Basic or when you select
File, New Project. Throughout this 21-day tutorial, you'll begin most new applications from the New Project window.

If you don't create an application shell with the VB Application wizard, as you did in yesterday's lesson, you'll more
than likely create a standalone program by selecting the Standard EXE icon. The icon is named to represent the
resulting application's filename extension (.exe for executable) if you compile the application you create. Even if you
will not be compiling your application right away, the Standard EXE icon is the one you'll choose most of the time
while learning Visual Basic.

A standard EXE application is an application that you can compile or run interpretively.

Note

You'll see several New Project window icons labeled with ActiveX. ActiveX is the name given to controls that you can
create. These controls have the filename extension .OCX, and you can add them to the Visual Basic environment so
they reside on your Toolbox window. You can write applications that become new controls and then add those controls
to the Visual Basic environment for future program development. ActiveX is a rather comprehensive term that also
applies to other areas of computing.

Tip

Remember that Visual Basic is nothing more than a Windows program (albeit a comprehensive program) that helps
you create new Windows programs. The Visual Basic environment's toolbars, menus, dialog boxes, and windows all
work just as they do in other Windows programs, so the mechanics of working in Visual Basic should not be a problem
for you.

The Toolbar

The Visual Basic toolbar that you see beneath the menu bar changes as you use Visual Basic. Visual Basic has a total
of four toolbars:

• Debug. This toolbar appears when you use the interactive debugging tools to trace and correct problems.
• Edit. This toolbar aids your editing of Visual Basic code.
• Form Editor. This toolbar helps you adjust objects on forms.
• Standard. This toolbar is the default toolbar that appears beneath the menu bar.

You can display and hide these toolbars from the View, Toolbars menu. Each toolbar shows multiple buttons that offer
one-button shortcuts so you don't have to traverse menu items to access common operations. As you use Visual Basic,
you'll run across several buttons that are helpful to you, and you'll never use others. This tutorial will point out many
toolbar buttons that help speed your program development, but it will not serve as a complete reference to every toolbar
button because not all buttons will necessarily help speed your program development time.

Do Don't

DO rest your mouse cursor over a button that you don't recognize to see a pop-
up ScreenTip message telling you what the button is for.

DON'T try to memorize all the
buttons on all the toolbars.

Tip

You can dock and undock any toolbar. That is, you can drag a toolbar from its location under the menu bar to form a
floating toolbar. Therefore, you can place a toolbar close to the item to which it applies so that the buttons are where

you need them. You can then dock the toolbar by dragging it back under the menu bar so that it stays in the fixed
toolbar area.

The Toolbox

The Toolbox window differs from the toolbar. The Toolbox window, typically called the toolbox, is a collection of
tools that act as a repository of controls you can place on a form. You will learn how to add and remove tools from the
toolbox as you move through this 21-day tutorial. Figure 2.2 shows the most common collection of toolbox tools that
you'll see.

Figure 2.2. The toolbox holds tools, or controls, that you can place on your application's form
window.

The toolbox does not run out of tools! When your application requires more than one command button, you will get all
those buttons from the Toolbox window's Command button tool. In effect, these toolbox buttons generate tools on your
form when you need them, as you'll see in today's last section when you create a new application from scratch.

The Form Window

Most of your work goes on inside the Form window. You'll design all your application's forms, which are the
background windows that your users see, in the central editing area where the Form window appears. You can resize
the Form window to make the windows you create in your applications as large or small as needed. (Scrollbars appear
to let you scroll the Form window if you need to see parts of the forms that run off the screen or underneath other
Visual Basic windows.)

Keep in mind that an application may contain multiple forms; you can display one or more of those forms in their own
Form window editing areas, as shown in Figure 2.3. The active form is the form with the highlighted title bar in its
window. Activate a form by clicking anywhere within the window or on the title bar.

Figure 2.3. Edit one or more of your application's forms in the Form window editing area.

The Form Layout Window

The Form Layout window is an interesting little window connected closely to the Form window, because the Form
Layout window shows you a preview of the Form window's location. If one or more forms appear in your Form
window, thumbnail sketches of those forms will also appear in the Form Layout window. The window shows you
where each of the forms will appear on the screen when your user runs the application and, through using the program,
views the various forms.

Not only does the Form Layout window show you where a form will appear relative to the sides of your screen when
you run the program, but you can also move the initial location of a form (where the form will appear when the user
runs the program) just by dragging the form in the Form Layout window to a different location. Therefore, if you want
a form to appear in the center of the screen, move the form in the Form Layout window to the center, and Visual Basic
will place the form there when the user runs your program.

Note

After you learn enough of the Visual Basic programming language, you will be able to write the code to place any form
at any exact screen position. You can even instruct Visual Basic to center the form on the screen as soon as the form
appears, regardless of what the Form Layout window shows during the program's development.

Tip

Many Visual Basic programmers close the Form Layout window to make room for more of the other windows inside
the development environment.

The Project Window

Use the Project window to manage your application's components. As Figure 2.4 shows, the Project window can get
busy. A Windows program, more accurately called an application as yesterday's lesson explained, can consist of several
files. Before you compile a Windows program, the number of Visual Basic-related files can get even more numerous.
The Project window enables you to manage all those components and bring the component you want to work with to
the editing area where you can work on it.

Figure 2.4. The Project window holds your project's components

Note

The Project window is also called the Project Explorer because of its Windows Explorer-like interface that lets you
expand and shrink object groups.

The Project window lists its components in a tree-structured listing. Related objects appear together. You can expand or
shrink the details by clicking the plus or minus signs that appear next to object groups. For example, if you click the
plus sign next to the object labeled Forms, a list of the current project's forms will appear. When you double-click a
form, that form's Form window appears in the Form window editing area.

Each item in the Project window has both a project name and a filename. In Visual Basic, you can assign names to
objects, such as forms and modules. Each of the Project window's items is stored on your disk in a separate file. The
filename, which differs from the project name for the same item (project names, unlike filenames, have no extension
for example), appears in parentheses next to the Project window item. Therefore, you can tell from the Project window
every filename and every project name for all your project's files, and you can activate any object's window by clicking
that object inside the Project window.

Tip

Notice that the Project window contains a toolbar with three buttons. The Code Window button displays the Code
window for a selected object so that you can write and change code related to the object. (The Code window did not
appear earlier in Figure 2.1 but will appear in this lesson's final section when you add code to an application.) The
View Object button displays the object window for a selected item. Many objects have both a Code window and an
object window associated with them. Each form, for instance, has a code module and a Form window associated with
it. Therefore, the Code Window button and the View Object buttons let you quickly switch between an item's code and
its visual elements. The Toggle Folders button groups and ungroups the Project window's items in an Explorer-like
interface.

The following kinds of objects can appear in the Project window:

• Projects. An application might consist of multiple projects, as can occur when you create ActiveX controls.
Projects always have the filename extension .VBP.

• Forms. The Project window displays a list of your project's forms. Form files always have the filename
extension .FRM.

• Modules. Your project's modules hold general and reusable routines comprised of Visual Basic programming
statements. You can use the same module in several programs due to its general nature. Modules always have
the filename extension .BAS.

• Class modules. Class modules are special code modules that define objects you've designed for a project. Class
module files always have the filename extension .CLS.

• User controls. User controls are ActiveX controls you've added to the project. ActiveX control files always
have the filename extension .OCX.

• User documents. User documents are document objects that describe parts of your project. User document files
always have the filename extension .DOB.

• Property pages. Property pages (such as those found inside tabbed dialog boxes) that appear in the project file
describe a particular control. Property page files always have the filename extension .PAG.

Note

Other items can sometimes appear in the Project window, such as resources and other documents you add to your
project.

For the majority of your Visual Basic application development, especially the first 21 days that comprise this tutorial,
you'll be working with forms and code modules only.

The Properties Window

A form can hold many controls. As you add controls to a form, you can select a control by clicking the control. When
you select a control, the Properties window changes to list every property related to that control. As you'll see in today's
final section, when you add a control to a Visual Basic application, Visual Basic sets the control's initial property
values. When you display the Properties window for a control, you can modify its property values.

Figure 2.5 shows a Properties window listing some of the properties for a Label control. Notice that the name, type, and
description in the Property window reflect the selected control. To assign a value to a property, select the property and
type a new value. Sometimes a drop-down list box will appear when you can select one of an established set of values
for that property.

Figure 2.5. The Properties window describes each property of the selected control.

Each property has a name so you can work with a particular property, and each property has a value that either you or
Visual Basic assigns. For example, Visual Basic always names the first command button you add to a project
Command1. Therefore, the Name property for the first command button holds the value Command1. You'll almost
certainly want to rename the command button to something more meaningful to help document the application. You
might name a command button that triggers a report cmdReportPrint, for example.

Do preface each object name you assign with a three-letter prefix that describes the object. Then when you later look at
the list of objects, you not only know the object's name but also its type (command button, text box, form, or whatever).
Table 2.1 lists common prefixes used for Visual Basic object names. Refer to Table 2.1 throughout these 21 days when
you assign names to Visual Basic objects. When your project contains numerous controls, these names help you
decipher the purpose and type of the controls.

Table 2.1. Preface object names with one of these abbreviations.

Prefix Object type
cbo Combo box
chk Check box
cmd Command button

Table 2.1. Preface object names with one of these abbreviations.

Prefix Object type
dir Directory list box
drv Drive list box
fil File list box
fra Frame
frm Form
grd Grid
hsb Horizontal scrollbar
img Image
lbl Label
lin Line
lst List box
mnu Menu
mod Module
ole OLE
opt Option button
pic Picture box
res Resource
shp Shape
tmr Timer
txt Text box
typ User-defined data type
vsb Vertical scrollbar

Do Don't

DO use lowercase letters for the object's prefix when you assign Visual
Basic names to the objects.

DON'T use the prefix when you assign
filenames to objects.

Tip

Remember that you can move, resize, and close any Visual Basic window. At times, you'll want to see more or less of a
window to make room for a different window.

Getting Help
Visual Basic contains a wide assortment of online tools that give you help when you need help. Before you create an
application in today's final section, you should learn how to access the various help options so that you can learn more
about a procedure when you need the help.

Receiving Local Help

Most of the time, the Visual Basic environment gives you all the help you need without you going anywhere else (other
than this book, of course!). The first option on the Help menu, Contents, produces an HTML-based Windows help
screen shown in Figure 2.6. The left window pane lists several online books you can open and read, and the right pane
is a guided tour through several help topics by a Dr. Gui. (GUI is an abbreviation for the term graphical user interface,
by the way.)

Figure 2.6. Visual Basic's online help gets you through trouble spots.

Note

Visual Basic's Help system is based on Books Online, a help reference database found in older Microsoft products.
You'll need the MSDN CD-ROMs to access much of the online help.

MSDN stands for Microsoft Developer's Network and is an abbreviation for a series of online articles, CD-ROMs, and
newsletters that Microsoft has produced in the past few years for programmers. Visual Basic's help is now a part of the
MSDN material. The online screens for MSDN are available only through a subscription service plan. You can
subscribe to the online MSDN area by clicking the Help, Contents screen's MSDN Online hyperlink.

Caution

Your help may differ slightly depending on the date of your Visual Basic 6 software publication. Microsoft sometimes
changes help screens from early editions of products.

The Help dialog box offers online and immediate help in the following forms:

• Contents. This option offers help organized by books, such as "Visual Basic Documentation" and "Tools and
Technologies."

• Index. This option enables you to look for help from a collection of indexed words from the Contents help
references.

• Search. This option enables you to search within articles for specific text.
• Favorites. With this option, you can store useful help topics that you've collected.

Ever wonder why a large development system such as Visual Basic comes without thick, bulky manuals? Visual Basic
does come with many manuals, but they are online as the MSDN help system. You click to "open" one of the books in
the left pane and move to a chapter and page. The page appears in the right pane of the help window.

Tip

The help screens appear in their own window, separate from the Visual Basic window. Therefore, you can keep both
open at once, switching between a reference and Visual Basic by pressing Alt+Tab or by clicking the appropriate
Windows taskbar button.

The Help system offers references on Visual Basic, database connections, ActiveX programming, and other
programming issues that you'll often use to get quick answers you need for programming problems you may encounter.
Think of the Help system as a complete set of expensive reference books that, if they were bound and came as separate
books with Visual Basic, would increase the cost of your software considerably and be far less simple to search when
you needed help on specific topics.

Another entry on the Help menu, About Microsoft Visual Basic, produces a routine About dialog box that shows your
Visual Basic version number, serial number, and registered name. In addition, when you click the System Info button,

the dialog box shown in Figure 2.7 appears after the program performs a check of your system. The system information
contains both software and hardware information.

Figure 2.7. The System Info button performs an important check of your system.

In Day 20, "Providing Help," you learn how to add online help to the applications that you write.

Getting Technical Support

When you select Help, Technical Support, a dialog box opens to let you know how to contact Microsoft's technical
support staff for more personal help. The online help and the Books Online may not be able to answer your specific
question. For example, if Visual Basic behaves a certain way that appears to be a bug in the system itself, you may
have to resort to Microsoft for help. (For such problems, though, always try to reinstall Visual Basic to see whether that
fixes the problem before consulting the technical support. That's the advice they would probably give you, so save
some time and reinstall before you call.)

Note

You might wonder why you need help with contacting technical support. After all, don't you just need a toll-free phone
number and the hours of operation? Microsoft offers several levels of technical support, from free to a metered service
and annual subscriptions. The help guide provides a summary of the options available to you. In addition, Microsoft
has technical support offices all over the world. If you live outside the United States, you'll want to contact the office
closest to you.

Getting Online Help

When you select Help, Microsoft on the Web, Visual Basic offers a wide selection of online support options from
which you can choose. (They all require Internet access.) When you select Online Support, Microsoft's Visual Basic
Web page appears. This page is a good place to check frequently even if you don't require online help. You'll find a
rich set of update information, bug corrections, tips, workarounds, sample code, and updated links to related sites.
Other options from the Web menu option are links to the Microsoft home page, a Web search engine, and even a
feedback link to Microsoft so that you can give Microsoft advice and comments about Visual Basic.

Tip

Check the Frequently Asked Questions site to find a list of answers to many common questions from Visual Basic
developers.

Getting Used to the Screen
Before your first day was over, you created a complete, working Visual Basic application. More accurately, you created
an application with the help of the Visual Basic Application wizard, which did all the work. You're about to improve on
that achievement by creating an entire application from scratch.

You now understand the Visual Basic environment better than before, and you know how to get help with Visual Basic
when you need it. Before you follow the next section's steps to create a new application, take a moment to load an
existing application from one of the samples that come with Visual Basic. You then can familiarize yourself with the
windows that appear. The following steps help guide you:

1. Start Visual Basic.

2. Insert the MSDN CD 1 into your CD-ROM drive.

3. Click the Existing tab and maneuver to the Samples folder from the Open Project dialog box.

4. Double-click the icon labeled Controls to open the project named Controls.

Tip

You may not see the .VBP filename extension on the Controls project in the Open Project dialog box depending on
your Windows Explorer option settings. Regardless of whether you display filename extensions in Windows dialog
boxes, you can distinguish file types from the icon at the left of the files. The Open Project window displays only
project files (unless you change the selection in the Files of Type drop-down list box), and the icon next to the Controls
project is the icon that represents all Visual Basic project files.

5. After you open the Controls project, you may get a dialog box asking if you want to add the project to
something called SourceSafe. Always respond No to this prompt throughout the book. As a follow-up, Visual
Basic will offer two more SourceSafe-related dialog boxes; click OK to close each of them.

SourceSafe is a Visual Studio tool (available for all the Visual Studio languages) with which you can keep track
of versions of your source programs.

The source program is the code and the visual screens that comprise any application you write. You won't
distribute the source program because that is what you make changes to. You'll distribute a compiled
application.

6. After you open the Controls project, your Visual Basic screen will not look all that more interesting. The
Controls application does not start because you only loaded the project from the disk. To run the project's
application (interpretively), select Run, Start to see the program run as shown in Figure 2.8.

Figure 2.8. The Controls program runs within the Visual Basic environment.

Note

When you run an application interpretively, the program's windows stay within the active Visual Basic environment so
that you can stop the program and change it or examine areas for problems. When you compile a Visual Basic program,
you run the program from Windows and outside of Visual Basic's environment.

Do Don't

DO press F5 or click the Start toolbar button to run a program. DON'T select Run, Start from the menu.

7. The Controls program demonstrates several Windows controls available on the Visual Basic toolbox. Click a
button, and then test the resulting control options that appear.

8. After trying several program options, click the Exit button to stop the program's execution and close the
program window. You'll be back in the Visual Basic environment. At this point, the Controls application is still
loaded in the environment, but the Controls application is not running. You can now study some of the Visual
Basic windows.

9. Look at the Project window. Notice that the Controls program consists of forms only. Although some code does
exist (click the Project window's View Code button to see a Code window, and then click the View Object
window once again to return to the list of forms), the code resides in the seven form files that accompany the
project.

10. Double-click a form name within the Project window to see that form appear in the Form window editing area.
The form will look somewhat like it did when you ran the program. Look at the Form Layout window (select
View, Form Layout Window if you do not see the Form Layout window) to see where the form will appear on
the screen when you run the program.

11. Drag the small thumbnail form in the Form Layout window to a different location. If you were to rerun the
program, the initial form window would appear in the location where you dragged the thumbnail sketch.

12. Take a look at the Properties window, which shows the selected control's property values. Keep in mind that the
Properties window shows property values for only a single, selected control in the Form window. In Figure 2.9,
the Properties window shows properties for the option button that is selected (enclosed in eight sizing handles).

Figure 2.9. The Properties window displays property values for a selected control.

13. Scroll through the property values to see the properties for the selected control.

14. Click another control on the form and look at the updated Properties window. When you select a control by
clicking on it, sizing handles appear around the control, and the Properties window updates to reflect the newly
selected control's properties.

Leave the project open as you move to the next section. Also, close the Edit and Form Editor toolbars if they appear on
your screen because you won't need them in the next section. Now that you've gotten better acquainted with Visual
Basic's environment, you are ready to fill that environment with your own creation.

Creating an Application from Scratch
This section concludes today's lesson by walking you through the creation of an application. You won't understand
everything that takes place in the next few minutes, but walk through the example anyway because doing so prepares
you to learn more. This first application is simple, but it illustrates how Visual Basic makes it easy to create programs.
The rest of this 21-day session will explain the details of what this overview shows you.

Setting Up the Form

This first application will display a picture and a command button. The program changes the picture when you click the
command button. Follow these steps to create this simple application:

1. Select File, New Project to display the New Project dialog box. If you still have an application open from an
earlier section, Visual Basic may ask if you want to save changes to that application. Answer No to save any
changes.

2. Select the Standard EXE icon. Your Visual Basic environment will hold only a single form named Form1 (as
the title bar shows). The form appears on the background of the Form window editing area which is white.

3. Click the Maximize window button to expand the Form window editing area (the white background, not the
gray form itself) to its maximum size. This action gives you room to expand the form.

4. Drag the form's lower-right sizing handle down and to the right. As you drag the form, notice the width and
height measurements at the right of the toolbar as they change. Size the form so that it measures about 7,400 by
5,200 twips. This step produces a small background for your program. Figure 2.10 shows your screen. (Your
Form Layout window may appear beneath your Properties window.

Figure 2.10. When you resize the Form window, you are resizing your application's program
window.

Note

Sizing handles appear around the form because the form is the only object inside the Form window editing area. Notice
that the Properties window displays properties about the form. Forms, just as other objects, have property values you
can set.

A twip is a screen measurement. You can think of a twip as a dot on your screen, but dif ferent screens and video cards
provide different resolutions and, hence, a different number of dots. A twip is a resolution-independent measurement
value for an imaginary small screen dot (smaller than the highest resolutions allow). Therefore, when you size a form to
7,400 twips, the form will not require 7,400 actual screen dots (called pixels).

5. Select View, Form Layout Window to display the window and center the thumbnail screen inside the Form
Layout window so that your application window will be centered on the screen when the program starts.
Although the Form window itself will not change, the form-location coordinates will reflect the new position.

6. Close the Form Layout window to give you more room for the other windows.

Tip

As you locate and size form windows, pay attention to the form-location coordinates and the size coordinates at the
right of the toolbar. These values always appear in pairs. The first value in the form-location pair represents the number
of twips from the left edge of the screen where the window begins. The second value represents the number of twips
from the top edge of the screen where the window will appear. The second pair of values, the size coordinates,
represents the number of twips wide and high the window consumes. The form properties for the form-location
coordinates are named Left and Top to represent the number of twips from the left and top of the screen. The form
properties for the size coordinates are named Width and Height and represent the width and height of the Form
window. Visual Basic automatically updates these values in the Properties window when you move and resize the form
in the Form window editing area.

The grid is the dot pattern that comprises the Form window's background. You can adjust the grid's dot density from
the Tools, Options dialog box.

Note

The dots that appear inside the Form window make up the grid. You can turn on and off the grid by selecting Tools,
Options, clicking the General page, and checking or unchecking the Show Grid option. The grid will not appear when
you run the application; it appears solely to help you place and size controls on the form.

7. Assign a better name than Form1 to the form. To do so, you'll see how to work with the Properties window. A
property called (Name) (enclosed in parentheses to keep the name at the top of the alphabetical property list)
holds the selected form's name. (In the future, this tutorial will omit the parentheses from around the Name

property.) Scroll the Properties window up until you see the Name value if you cannot see it, and notice that the
Name value is currently assigned Form1.

8. Click the form's Name property and type frmMyFirst for the form name. As you type the name, the name
appears to the right of the property called Name as well as Visual Basic's title bar.

9. Change the form's title bar from its original value to Happy Application by select ing the Caption property and
typing Happy Application. The Caption property determines what appears in the form's title bar when the
user runs the program. The new name appears in both the Properties window and the form's title bar.

Tip

You'll change and assign all properties inside the Properties window the same way you just changed the form's name.
Scroll to the property, click the property, and enter (or select for those properties with drop-down list boxes) a new
property value.

10. Before continuing, save the form to disk for safety. Select File, Save Project. The Save Project option saves
every file inside your project (your project currently holds only a single form file) as well as a project
description file with the filename extension .VBP. Visual Basic asks first for the filename you want to assign to
your form. Visual Basic uses the form's Name property as the default filename. If you accept that default name,
as you should now do, Visual Basic also adds the extension .FRM to the form's filename. (If your project
contained more forms or modules or other objects stored in files, Visual Basic would ask you to name the
remaining items as well.) Visual Basic then asks for a project name for the project description file. Name the
project HappyApp before saving the project. Answer No if Visual Basic asks to add the project to the SourceSafe
library.

Note

The project description file is what you load when you want to work on your application in the future. When you load
such a project description file, Visual Basic loads all files associated with that project, and their names appear in the
Project window.

Adding the Details

Now that the application's background is complete, you are ready to add the details by putting controls on the form.
Adding controls to a form typically involves one or more of these steps:

1. Select the control from the toolbox.

2. Place the control in its proper location.

3. Size the control.

4. Set the control's properties.

5. Activate the control with Visual Basic code if needed.

In the steps that follow, you'll quickly learn how to select controls from the toolbox and place those controls on the
form. Generally, you'll do these steps in one of two ways:

1. Double-click the control's icon on the toolbox. Visual Basic then places that control in the center of the form.
You then can drag the control to its proper location and size the control by dragging the control's sizing handles
in or out.

2. Click the control's icon on the toolbox and move the resulting crosshair mouse cursor to the form when the
control is to go. Click and hold your mouse button where the control is to go. As you drag the mouse, Visual
Basic draws the control's outline on your form. When you've drawn the control at its proper location and size,
release the mouse button to place the control in its proper location.

The following steps spruce up the application you began in the previous section:

1. Double-click the label control so that Visual Basic places the label in the center of your form. The label control
contains the letter A, as you saw in the previous section "The Toolbar." (Remember that ToolTips pop up to let
you know what a toolbox icon is for.) The label is now the selected tool on your Form window editing area so
the sizing handles appear around the label. In addition, the Properties window changes to show the label's
properties, and the toolbar's location and size coordinate pairs now reflect the label's measurements.

A label displays text on a form. This new label will hold a title banner for your application.

2. Drag the label up the form until it rests approximately 1,320 twips from the left edge of the form window and
120 twips from the top of the form. The toolbar's location coordinates will let you know the location.

Tip

Unless you change the Align Controls to Grid option located on the General tab of the Tools, Options dialog box,
Visual Basic automatically aligns all controls to the closest grid point on your form, ensuring that your controls align
with each other properly.

3. Double-click the toolbox's command button control to place a command button in the center of your form.

4. Locate the toolbox's image control and click the control's icon once instead of double-clicking to place the
control as you did with the label. Move your mouse to the Form window and draw the image control, trying to
first anchor the image at 2,520 twips from the form's left edge and 2,880 from the form's top edge. Size the
image at approximately 2,175 twips wide and 1,825 twips high. As you size the image, drag the image's sizing
handles slowly so that Visual Basic's ScreenTips pop up showing you the coordinates of the image. When the
coordinates appear at their proper size, release your mouse button to place the image at that size. Figure 2.11
shows your screen at this point. The image control will display a graphic image when you run the program. A
twip is 1/1440th of an inch.

Figure 2.11. Your application is taking shape.

Tip

Although you can place the image control at approximately the same location and size described here, you can match
these location and size twip measurements exactly by filling in the following properties with the measurement values
described in the previous step: Left: 2520, Top: 2880, Width: 2175, and Height: 1825. When property values
are specified in the future, this kind of notation will be used. You now know to click the property name and then type
the property value to assign new values to properties.

Note

Location twip coordinates and size twip coordinates are always specified in pairs. Often, you'll see such coordinate
pairs specified inside parentheses, as in a location value of (2520, 2880).

5. Now that you're more familiar with setting property values for controls, even though you may not understand
many of the properties yet, you are now equipped to set additional properties for the form and controls to
finalize the look of the application. After you set appropriate property values, you will then add code to connect
the controls and to make them work together.

Table 2.2 contains a list of property values that you now need to set for the form and the three controls.
Remember that you must select the form or specific control before you can change property values for that form
or control. To select the form, click anywhere inside the form or title bar but not over any of the controls. The
Properties window will change to display the form's properties. Click either the label, command button, or
image to select the control, and then you can change one of that control's properties by clicking the property
name and typing the new value.

Caution

At first, setting a control's font information is confusing. When you select the Font property for a control, an ellipsis
appears after the property value. The ellipsis indicates that you can set more than one value for the Font property, and
clicking the ellipsis displays a Font dialog box such as the one shown in Figure 2.12. After setting the Font dialog box
values and clicking OK, several property values related to the font used on the control's caption will change to reflect
your new values.

Figure 2.12. The Font dialog box enables you to set multiple property values for the Font property.

Table 2.2. Assign the following property values to the application's form and controls.

Contro Property Property value

Form Max Button False (open the drop-down list box to see values)

Label Alignment Center (open the drop-down list box to see values)

Label Name lblHappy

Label Caption Have a happy day!

Label Font Courier New

Label Font style Bold

Label Size 36

Label Left 1320

Label Height 1695

Label Top 120

Label Width 4695

Image Name imgHappy

Image Stretch True

Command button Name cmdHappy

Command button Caption Click Here

Tip

While writing your application, you can run the application to see what you've done so far. For example, if you now
pressed F5 to run the application, Visual Basic would analyze your program and display an active program window
with a command button that you can click. Nothing happens when you click the command button except that the
command button shows the click. In addition, nothing appears where you placed the image control, but the next section
will fix both of those minor problems. To exit the program, click the program window's Close window button. You'll
learn how to add more graceful exit capabilities in tomorrow's lesson.

Finalizing with Code

Adding Visual Basic programming statements will turn your creation into a working, although simple, application. The
following process may seem like magic because you'll be adding code that looks somewhat cryptic in a Code window

that will pop up unexpectedly. Follow the next few steps to add the code, and subsequent days will fill in the details
about what you are doing:

1. Double-click the form somewhere on the grid inside the Form window. The form disappears, and a Code
window appears with the following lines at the top:

Private Sub Form_Load()

End Sub

These lines are two of the four lines needed for code required by the form. The Code window works like a
miniature word processor in which you can add, delete, and change statements that appear in your program
code.

Note

All code appears in procedures, and all procedures require beginning and ending lines of code that define the
procedure's start and stop locations. Visual Basic automatically adds the first and final line of many procedures as it has
done here.

A procedure is a section of Visual Basic programming code that holds Visual Basic programming statements and that
performs a specific task, such as the centering of a Form window.

2. You can now type the following lines. Press the spacebar three times before each line so it appears slightly to
the right of the start and end lines. Visual Basic programmers often indent the body of procedures to make it
easy to locate the procedure's beginning and ending in a list of multiple procedures. This code ensures that your
application window appears in the center of the screen no matter what screen resolution you run the program in:

frmMyFirst.Left = (Screen.Width – frmMyFirst.Width) / 2
frmMyFirst.Top = (Screen.Height – frmMyFirst.Height) / 2

After you type just a little of the first line, Visual Basic displays an Auto List Members drop-down list box as

shown in Figure 2.13. When Visual Basic senses that you are about to specify a control's property value, Visual
Basic offers this drop-down list box of property choices for that control, so you can select a property instead of
typing the full property name. After you select a property and press the spacebar, Visual Basic fills in the
property, and you can continue with the rest of the line.

Figure 2.13. Visual Basic helps speed up your entry of code.

3. Click the Project window's View Object button to return to the Form window.

4. Double-click the command button to once again open the Code window. Your previous code will be there, and
a new set of beginning and ending statements will appear for a new procedure related to the command button.
Press the spacebar three times and type the following line between the two that are there:

imgHappy.Picture = LoadPicture("\Program Files\Microsoft Visual
Studio\Common\Graphics\Bitmaps\Assorted\Happy.bmp")

As soon as you type the LoadPicture's opening parenthesis, Visual Basic offers a pop-up help similar to the

Auto List Members drop-down list box you saw a couple of steps ago. Some Visual Basic statements, especially
those with parentheses such as the ones you see in this statement, require that you type one or more values.
Visual Basic pops up the format of these required values, so you'll know how many to enter. You'll learn more
about why these values are required as you learn more about the language. Visual Basic is a large language, so
this help from Visual Basic comes in handy.

5. Run your program and click the command button. An image like that shown in Figure 2.14 appears. You have
successfully completed your new application without resorting to the Application wizard. You've created an
application that displays a picture when you click the command button. The application contains code, and its
controls all have property values that you've set.

Figure 2.14. Your application produces a graphic image from the click of your mouse.

6. Click the Close window button to terminate the program. Be sure to save your project before you exit Visual
Basic.

Summary
Today's lesson described the Visual Basic environment because you can become an effective Visual Basic programmer
only with an understanding of the various windows and interface. Visual Basic supplies several levels of help,
including Online Help, Web support, and personal technical support offered in a variety of ways. If the Visual Basic
interface or language poses a problem too big for you to figure out alone, help is close at hand.

To create an application, you must create a new project, add controls to the Form window, set properties for the form
and controls, and activate the controls with code. The project you created in today's lesson should have been
surprisingly simple to produce, especially given the little bit of code required (three lines).

Tomorrow's lesson answers a few questions you may have about controls and their properties.

Q&A
Q: How large should my application's Form window be?

A: Your application determines how large your Form window should be, as well as how many forms the
application will need. For simple programs, one form is plenty, but the size of that form depends on the
number of controls you place on the form and the nature of the program.

Today's lesson could have created a project with a fully maximized form, but with only three controls, there
would have been too much empty space on the form.

Q: What did the code in today's lesson do?

A: The code was necessary for today's application to work properly. The line with the LoadPicture keyword is
critical because it loads the picture when the user clicks the command button. The other two lines, the ones
you added when you double-clicked inside the Form window to open the Code window, center the form
within the screen coordinates of whatever screen size displays the program.

Q: If the code centered the Form window, did I have to use the Form Layout window to center the form?

A: No matter where you placed the form in the Form Layout window, the two lines you typed in the form's
procedure will center the form when the program begins.

The Form Layout window is a rough guide to give you an idea where the Form window will appear when the
form loads. For completely accurate control, especially if you are unsure of the size of the screen on which
your program will run, you need to position the form with code in the Code window.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. You should understand the quiz and exercise answers before
continuing to the next chapter. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: What is the difference between the toolbox and the toolbar?

2: What is the name of the subscription-based online service Microsoft offers for programmers?

3: True/False. The Form window holds one form at a time.

4: What happens when you click a toolbox control?

5: What happens when you double-click a toolbox control?

6: True/False. You set control properties from the Toolbox window.

7: How does Visual Basic determine which control properties appear in the Properties window?

8: What does an ellipsis indicate on a Properties window value?

9: What is the name of the property that specifies the command button's title?

10: Why should you change the control names from their default values?

Exercise

 Load the application you created today so that you can modify it. Add color to the application by making the
form's background blue. In addition, place an extra command button, labeled Exit, on the form and add an
appropriate Name caption for the control. Add the following line inside the new procedure that appears in the
Code window, which is related to the command button :

End

Run the application and click the Exit button to see a more graceful exit than you previously had in the
application.

Day 3. Managing Controls
Now that you've created two applications, one with the Application wizard and one from scratch without the help of the
wizard, it's time to begin studying how Visual Basic works. The previous two days'worth of hands-on sessions showed
you how easy it is to create programs and helped give you a feel for the Visual Basic environment. Starting today,
you'll begin to understand how the components of a Visual Basic program go together, especially how the controls and
properties work together.

Today, you learn the following:

• Common control properties
• Why controls come with so many properties
• About the more common tools on the Toolbox window
• How accelerator keys help speed data entry
• How focus helps users select controls
• How event procedures work

Studying Controls
The toolbox holds the collection of controls that you use in your applications. The toolbox does not hold a limited
number of each tool; in other words, you can double-click the Label control as many times as you like as you create
your forms; Visual Basic sends a new label to the target form each time.

The collection of controls (also called tools) on the toolbox varies depending on your application's requirements. For
much of this 21-day tutorial, the toolbox will hold the same set of tools you saw in yesterday's lesson. These tools are
the standard controls loaded when you create a new application.

Caution

A control is not available to your program until that control appears in the toolbox. Therefore, you cannot, for example,
add an Internet browsing control to your form until you add the Internet browsing control to your toolbox. If you use
the Application Wizard, the wizard will add controls to the toolbox when needed to generate your project.

Note

When a lesson in this book requires a control not found on the standard toolbox, the lesson will explain how you can
add that control to your toolbox.

As Figure 3.1 shows, your toolbox can get quite complicated when it fills up with too many controls. Such a large
toolbox can take away from your other windows'space. You can drag the Toolbox window's title bar to another location
if you want to use the left edge of your screen to view your form. In addition, you can resize the Toolbox window for
more or less room.

Figure 3.1. The Toolbox window should be a manageable size.

Do Don't

 DON'T make the Toolbox so small that tools get hidden from view. No scrollbars appear if you size the Toolbox
window so small that some controls are no longer visible. To use the controls that are outside the window's
boundaries in this case, you have to expand the Toolbox window until the hidden tools appear once again.

Visual Basic purists apply more strict names to the sets of controls available. The controls that first appear in the
Toolbox window are called the intrinsic controls. The ActiveX controls, with the .OCX extension, are external controls

you can add to the Toolbox window. Insertable controls are controls made from external applications, such as
Microsoft Excel.

Many of the controls require similar properties. Table 3.1 lists some common properties that most controls support.
You can probably see why so many of Table 3.1's properties exist for multiple controls. All controls have a screen
location (indicated by the Left and Top properties) and a size (indicated by the Width and Height properties), and
most have foreground and background colors as well as font properties, if the controls display text.

Table 3.1. Common properties for several Visual Basic controls.

Property Description
Alignment Determines whether text on the control, such as a label or command button, is left-justified, centered,

or right-justified on the control.
BackColor Specifies the color of the control's background, which you select from a palette of colors when you

open the property's drop-down list box of colors.
BorderStyle Determines whether the control has a border around it.
Caption Lists the text displayed on the control.
Enabled Set by a drop-down list box, this property is either True if you want the control to respond to the user

or False if you want the control not to respond to the user. This property is useful for turning on and
off controls when they are and are not available during a program's execution.

Font Displays a Font dialog box from which you can set various font properties, such as size and style, for a
control's text.

ForeColor Specifies the color of the control's foreground, which you select from a palette of colors when you
open the property's drop-down list box of colors.

Height Specifies the number of twips high the control is.
Left Indicates the starting twip from the left edge of the form where the control appears. For a form, the

Left property specifies the number of twips from the left edge of the screen.
MousePointer Determines the shape of the mouse cursor when the user moves the mouse over the control at runtime.
Name Specifies the name of the control. As you saw in yesterday's lesson, the Properties window displays the

Name property in parentheses so that it appears first in the list of properties.
ToolTipText Holds the text that appears when the user rests the mouse cursor over the control at runtime (similar to

ScreenTips).
Top Is the starting twip from the top edge of the form where the control appears. For a form, the Top

property describes the number of twips from the top edge of the screen.
Visible Set by a drop-down list box, this property is True if you want the control to be visible on the form or

False if you want the control to be hidden from view.
Width Specifies the number of twips wide that the control is.

Remember that all controls have all their property values set before you ever change a value. As soon as you place a
control, Visual Basic uses a set of predetermined property values (the most common values) for the controls. In
addition, Visual Basic assigns default names and captions to the controls, although you'll surely want to change these
properties. Many of the default values work well in many cases. You won't change all of a control's property values
from its default set.

You already know that you can set the properties for a control when you write the application, but you can also set and
change property values with Visual Basic code during the application's execution. For example, the Enabled property
is often changed during the execution of a program if a particular control is temporarily unavailable to the user. You
may, for example, disable a command button that produces a report until the user has specified the contents of the
report.

Caution

Not all properties for all controls appear in the Properties window. Properties that you can set only with Visual Basic
code do not appear in the Properties window.

Tip

Some control properties, such as the Alignment property values, may look strange because their drop-down list boxes
display numbers to the left of their values. For example, the Alignment property can take on one of these three values:
0-Left Justify, 1-Right Justify, and 2-Center. You can use your mouse to select these values from the list
without worrying about the numbers in them, but you can also, after opening the drop-down list box for a property,
type the number that corresponds to the value you want to quickly set that value. The numbers also come in handy
when you assign property values to controls with Visual Basic code. You can assign the numeric value instead of
having to type the entire value, such as 0-Left Justify. The numbers provide shortcuts when you write code, as
you'll see in future lessons.

The following sections describe the most useful standard toolbox controls. You'll learn about several important
properties associated with those controls. Today, you will not learn about all the toolbox's controls, just those that you'll
work with over the first few days of Visual Basic programming.

You don't need an in-depth reference on all the properties for all the controls because some of the properties are rarely
used. Most Visual Basic programmers don't even know all of the properties available for a control. Generally, if you
need to make a control appear a certain way, a property probably exists to accomplish that. By taking a brief tour of the
controls and their properties in the following sections, you'll better understand the purpose for the controls, and you'll
have a better idea of which properties are available.

Tip

Some programmers prefer to view properties in the Property window grouped by category. To group properties this
way, click the Properties window's Categorized tab, as Figure 3.2 shows.

Figure 3.2. You can categorize properties to more quickly locate properties you need.

The Form's Properties

Many form properties correspond with other control properties that you learned about in Table 3.1. The form, however,
is unique in that it does not reside on a form, but appears on the user's window. That is why the form's Left, Top,
Width, and Height properties all correspond to the edge of the screen and not to a Form window.

These form properties are important as well:

• BorderStyle. This property determines how the Form window responds to the user's efforts to resize it. Some
values you may need are 0-None, which offers a form without any edge or title bar, 1-Fixed Single, which
offers a nonsizable window (the user can close the window but not resize, minimize, or maximize the window),
and 2-Sizable (the default), which offers a regular sizable window with maximize and minimize buttons.

• ControlBox. This property's value of True or False determines whether the form's Control menu appears.

A Control menu is the menu that appears when you click a window's icon in the upper-left corner of the
window. The Control menu enables you to move, size, minimize, maximize, and close a window.

• Icon. This property specifies an icon filename for the Windows taskbar icon that appears when the user
minimizes the form.

• MaxButton. This property determines whether the form contains an active Maximize window button.
• MinButton. This property determines whether the form contains an active Minimize window button. (If you set

both the MaxButton and MinButton properties to False, neither appears on the form.)
• Movable. This property determines if the user can move the form or if the form is to remain in its displayed

location.
• ShowInTaskbar. This property's True or False value determines whether the open form appears on the user's

Windows taskbar.
• StartUpPosition. This property provides a quick way to specify the starting position of the form on the

screen. One of the most useful values is 2-CenterScreen that centers the form on the user's screen when the
form first appears.

• WindowState. This property determines the size (normal, maximized, or minimized) of the form (useful for
starting a minimized form).

The Pointer Tool

The pointer tool is the only toolbox item that is not a control. About the only use for the pointer tool is to eliminate the
crosshair mouse cursor that appears when you select any of the other controls in the Toolbox window.

The Label Control

The label control displays text. Although your user cannot alter the text that appears on a label, you can, at runtime,
change the label's text through code. (See Day 5's lesson for details.) Programmers often use labels for titles, prompts,
and descriptions. For example, when you want the user to enter a value into another control, such as a text box, you
place a label next to that data-entry location on the form describing the value you want the user to enter. Without the
label, the users would not know what you needed them to enter.

Two properties, AutoSize and WordWrap, affect the way you display text on a label. If you set AutoSize to a True
value, the label automatically expands horizontally across the form to display all the text you've assigned to the
Caption property. If you set WordWrap to True, Visual Basic keeps the label's width but expands the label vertically to
display as many lines as needed to show the full caption. Figure 3.3 shows three versions of a label with the same
Caption property but with a different combination of AutoSize and WordWrap properties, so you can study the effect
of the two properties.

Figure 3.3. The AutoSize and WordWrap properties affect the way a label displays its caption.

Caution

Surprisingly, for WordWrap to work, you must also set AutoSize to True. Visual Basic needs to be able to expand the
label at least partially horizontally if a single word in the caption is larger than the label's width.

The Text Box Control

Use a text box control when you want the user to type something, such as an answer to a prompt, when you want to
collect values, such as name and address information. Often, a default value is helpful for your users, and your Visual
Basic program can supply an initial value. For example, if you are asking the user to enter a date, you might place
today's date in the text box so that the user can accept the date without having to enter it.

Text boxes don't make for good yes/no, true/false answers. In other words, if you must ask your user to select between
two values or answer a yes or no question, other controls—such as an option button or list box control that you'll learn
about on Days 5 and 6—are better to use.

Do Don't

DO use a Label control to prompt the user for a value before you offer a text box control. In a name and address
form, for example, you might place a Label control before the name TextBox control that reads Enter your
first name:. Your users then will know what information you expect them to type in the text box.

Programmers must distinguish between designtime and runtime. Designtime is the time when you write and maintain
an application. Runtime is when you or a user runs an application. When you place a value in a text box's Text
property at design-time, you are placing the default value that the user will see at runtime. At runtime, the user then can
change the text box's value to a different value by typing over or editing your default value.

When placing text boxes on forms, you'll find the following text box properties useful:

• Alignment. This property determines how the text aligns inside a text box whose MultiLine property is set to
True. The Alignment property has no meaning for single-line text boxes.

• Locked. This property determines whether the user can enter a value or change the default value of the text
box. If True, the user cannot change the text box value until the program, at runtime, assigns a False value to
this property.

• MaxLength. This property specifies the maximum number of characters that the text box will accept. A value of
0 indicates that the user can enter a value of any length.

• MultiLine. If True, the property specifies that the text box can hold more than a single line of text. A vertical
scrollbar will appear if the user enters more text than will fit on a single line, unless you've disallowed
scrollbars with the ScrollBars property. The Alignment property, whose default value is 0-Left Justify,
determines how the multiple lines of text align.

• PasswordChar. This property designates a character, such as an asterisk, that will appear in place of the
characters the user types into the text box. In other words, if the user is entering a secret code, only asterisks
will appear on the screen as the user types the code instead of the code's value so that nobody looking over the
user's shoulder can read the code. Although the asterisks appear, the text box receives the actual value that the
user types.

• ScrollBars. This property determines if and how many scrollbars will appear on the text box. A value of 0-
None keeps scrollbars from appearing. 1-Horizontal allows only horizontal scrollbars. 2-Vertical allows
only vertical scrollbars. 3-Both allows both horizontal and vertical scrollbars.

Caution

You must set the MultiLine property to True before vertical scrollbars can appear in a text box.

• Text. This property specifies the initial text (the default value) that appears in the text box.

A special cursor comes into play with text boxes and forms. Your user enters and edits text using the text cursor.
Clicking a text box's text places the text cursor at that point so that the user can add, change, or delete text from within
the text box.

The text cursor, also called the caret or the insertion point, is a vertical bar used for entering and editing text in controls
such as text boxes.

Tip

Load and run the sample application called Controls from your MSDN's Samples folder. Select the text box option to
practice using text boxes. Figure 3.4 shows the screen that appears. You will be able to practice working with single-
line and multiline text boxes as well as with the text cursor and scrollbars. The Controls application even shows that
you can select text within a text box and copy, cut, and paste text to and from text boxes using standard Windows
operations.

Figure 3.4. The sample Controls application lets you work with several styles of text boxes.

The Command Button Control

Almost every application's form contains a command button. With the click of a command button, the user can indicate
that an answer is ready, a printer has paper, or that it's time to terminate the program. As you saw in yesterday's lesson,
Visual Basic takes care of showing that the command button is pressed when the user clicks it.

An accelerator key is a key that, when combined with the Alt key, triggers a response. For example, menu bar options
all have accelerator keys, such as Alt+F for the File menu option. The underlined letter in a menu bar option name or
on a command button's label indicates the accelerator key for that object.

Tip

Command buttons aren't just for mouse clicks! You can add an accelerator key to a command button's label so that the
user can select the command button by pressing the appropriate key combination, such as Alt+R. The Caption property
determines a command button's accelerator key. In addition to an accelerator key, the user can select a command button
by pressing Enter if the command button is the selected control (see the section called "Control Focus" for more
information) or if the Default property is True. In some cases, you may want the user to be able to trigger a command
button by pressing the Esc key, such as when a command button offers an exit from a program and the Cancel property
handles Esc.

The following properties are useful for command button programming:

• Cancel. This property determines how the command button responds to the Esc key. If True, the user can
trigger (simulate a click) the command button by pressing Esc. Only one command button on a form can have a
Cancel value of True. If you set more than one command button's Cancel property to True, Visual Basic
resets all but the last one to False.

• Caption. This property specifies the text that appears on the command button. If you precede a letter with an
ampersand (&), Visual Basic makes that letter the accelerator key. A Caption of E&xit produces a command
button such as the one you see in Figure 3.5. The user can trigger this command button by clicking the button or
by pressing Alt+X.

Figure 3.5. A control's Caption property that contains an ampersand before a letter determines
the accelerator key for that control.

• Default. This property determines how the command button responds to the Enter key. If True, the user can
trigger (simulate a click) the command button by pressing Enter unless the user moves the control focus (see the
next section) to another control first. Only one command button on a form can have a Default value of True.
If you set more than one command button's Default property to True, Visual Basic resets all but the last one to
False. The command button with a Default value of True is always the selected command button when a
form first appears.

• Picture. This property specifies a graphic image that appears on the command button in place of a caption.
The Style property must be set to 1-Graphical before a picture will appear.

• Style. This property determines whether a command button displays a text caption (if set to 0-Standard) or a
picture (if set to 1-Graphical).

Do Don't

DO choose different
accelerator keys for
your controls.

DON'T use the same accelerator key for more than one control. If two or more controls have
the same accelerator key, Visual Basic will select only the first one in the focus order (see the
next section) for the accelerator key, and your user will not be able to select any of the other
controls with that accelerator key.

The Image Control

A brief mention of the image control is in order here because you placed an image on the application you created in
yesterday's program. The image control is one of two controls (the picture box is the other) that display graphic images.
The image properties determine the file used for the image and whether the image control resizes to fit the file or the
file resizes to fill the image control's size. You'll learn all about the image and picture box controls in Day 14's lesson,
"Introducing VB Graphics and Multimedia."

Although many more controls exist, you'll learn about the others as you progress through these 21 days. The next
section describes how the user can use the keyboard to trigger any control on the form.

Control Focus
Only one control on a form can have the focus at any one time. The first control with the focus is determined by the
order in which you placed the controls on the form or, more accurately, the order determined by the TabIndex property
of each control on your form. Not every control can receive focus. Only those controls the user can interact with can
receive the focus. For example, a label control cannot receive the focus because the user cannot interact with label
controls.

The focus, or control focus, is the currently selected control. Visual Basic indicates the control with the focus by
highlighting the control.

For a moment, study Figure 3.6. Notice that the center command button has the focus because it's highlighted by a
dashed box. Visual Basic typically displays the control with the focus with just such a dashed box. In the figure, if the
user pressed Enter, the center command button would trigger because that's the command button with the focus. The
user could also press Tab or Shift+Tab to move the focus to another control. If the user pressed Tab, the third command
button would receive the focus, so then if the user pressed Enter, the third command button would be the one to
respond.

Figure 3.6. The highlighted control has the focus, but the user can move the focus to a different
control before pressing Enter.

Note

Notice that the third command button's accelerator key is Alt+A, not Alt+S. The center command button already used
the Alt+S accelerator key with a Caption property value of Click for Shrug, so the programmer had to select a
different and unique accelerator key for the third command button.

Tip

Remember that if a control contains a Default value of True, that control will be the one with the focus when the user
first sees the form. Of course, the user can always move the focus to a different control.

All controls have a TabIndex property. As you place controls on a form, Visual Basic automatically sets the TabIndex
property to 0, 1, and so on, placing a unique and sequential number in each control's TabIndex property. Even controls
that the user does not normally interact with, such as labels, have TabIndex properties. The TabIndex property
determines the focus order.

You will not always place controls on a form in the correct TabIndex order. Sometimes you'll add a control between
two others. You may need to change the TabIndex order to match the focus order you desire. For example, you may
want the focus to move down the form in columns as the user presses Tab, or you may want the focus to move across
the controls in rows as the user presses Tab. The order you want the focus to move is determined solely by the values in
the controls'TabIndex properties.

Tip

If the next control that gets the focus—indicated by the TabIndex property—is a label, Visual Basic sends the focus to
the next control in sequence. Knowing this, you can offer your user an accelerator key for a text box that you could
otherwise not offer. Consider the form in Figure 3.7. The First Name: label has a TabIndex one greater than the text
box that follows. No matter which control has the focus, if the user presses Alt+F, Visual Basic sends the focus to the
label, which immediately sends the focus down the line to the text box because labels cannot normally accept the focus.
When you place text boxes with description labels on a form, consider adding accelerator keys to the labels that
identify the text boxes so that your users will have quick access to any text box they want to enter or change. Of course,
you must make sure that each matching pair of label and text box controls has consecutive TabIndex values.

Figure 3.7. The user can press Alt+F to enter the first name in the text box.

Event Procedures
Event procedures sometimes challenge beginning Visual Basic programmers, but the concept of an event procedure is
very simple. When the user presses a command button or enters text into a text box, something has to happen that tells
the application the user has just made a move. You saw in yesterday's lesson that Windows receives events from all
kinds of sources. Most events come directly from the user at the keyboard and mouse running applications within
Windows.

When Windows recognizes that the user triggered an event and that the event is not a system event, such as a Windows
Start button click, but an event directly needed by an application, Windows passes that the event to the application. If
you've written an event procedure to respond to that exact event, your application will respond to the event. If you
haven't written an event procedure, the event goes unhandled.

All kinds of events can occur, such as a click, a double-click, or a keystroke. In addition, multiple controls on your
form can receive the same kinds of events. For example, both a command button and a text box can receive a Click
event, because the user can click the mouse over either control. Therefore, you must not only write an event procedure
for a particular event, but you must also specify which control that event belongs to.

Note

The concept of writing event procedures for all events you want to handle and for each control is vital to your
understanding of Visual Basic. How many click-related event procedures must you write to handle three command
buttons on your form? You must write three event procedures, because the user can click any of the three command
buttons. If you write a Click procedure that is not tied to a specific control, your program cannot respond differently to
the command buttons. You have to write a separate Click procedure for each command button. When Windows passes
the Click event to your program, Windows also passes the control that generated the event. Only if you've written an
event procedure for both that control and that event will your application be able to respond to the event.

Suppose your application displays four command buttons on the form. Here's the process that can occur:

1. When the user clicks any of the command buttons, Windows recognizes that an event just took place.
2. Windows analyzes the event and notices that the event belongs to your application.
3. Windows passes the event and control to your application.
4. If your application has an event procedure written for the control that received the event, the event procedure's

code (the code that you wrote in the Code window) executes.

Note

Code inside a control's event procedure will never execute if the control's event never takes place. This quality makes
Visual Basic a very responsive system, because you'll write all kinds of event procedures that sit around until their
exact event occurs. Then they take over no matter what else is being done at the time.

Common Control Events

You should familiarize yourself with common events that can occur for the controls that you know about. Both the
form and its controls can receive events. Here are some common form events that can occur during an application's
execution:

• Activate. This event occurs when a form gets the focus. If an application contains multiple forms, the
Activate event occurs when the user changes to a different form by clicking on the form or by selecting the
form from a menu.

• Click. This event occurs when the user clicks anywhere on the form. If the user clicks a form that's partially
hidden from view because another form has the focus, both a Click and an Activate event take place.

Note

A right-click triggers the Click event when the user right-clicks over a form. As you learn more about programming
with the mouse, you'll learn how to determine which mouse button triggered the Click event.

• DblClick. This event occurs when the user double-clicks the form.
• Deactivate. This event occurs when another form gets the focus. Therefore, both the Activate and

Deactivate events occur when the user selects a different form. You may choose to write event procedures for
both events for each form, for only one event for one of the forms, or a combination thereof depending on the
needs of your application.

• Initialize. This event occurs when the form is first generated.
• Load. This event occurs right as the form is loaded into active memory and appears on the screen.
• Paint. This event occurs when Windows must redraw the form because the user uncovered part of the form

from under another object, such as an icon.
• Resize. This event occurs when the user changes the size of the form.
• Unload. This event occurs when the application removes a form from the window using code. When an

application is terminated, all loaded forms are first unloaded, so you must write an Unload event procedure for
each form if you want to perform some kind of clean-up or file-saving procedure at the end of an application's
session.

The following events are common text box events:

• Change. This event occurs when the user changes the text.
• Click. This event occurs when the user clicks the text box.
• DblClick. This event occurs when the user double-clicks the text box.

Note

Some events available for most controls, such as keyboard and mouse- control events, are handled elsewhere in this 21-
day tutorial.

Most of these text box events are supported by labels as well, but the nature of labels makes them trigger the events in a
slightly different manner. For example, although a label control supports a Change event, the user cannot change a label
directly. Visual Basic code, however, can change a label, and when that happens, the Change event takes place.

The Image control supports the same set of events as the Label control. The Image control is a lot like a Label control
except that a graphic image appears in place of text on an image.

Note

Remember that many more events exist than you are learning about today. The events described here will be useful as
you begin to probe more deeply into Visual Basic.

The command button control also supports the same set of events listed previously for text boxes. Keep the following
in mind when programming command button events:

• When only a single command button resides on a form, pressing the spacebar when the command button has the
focus will trigger the command button's event procedure.

• If a command button's Cancel property is True, pressing Esc triggers the Click event.
• Pressing the accelerator key combination can trigger a command button's Click event.

Note

Not all of your application's events come from the user's actions. You can trigger events with Visual Basic code. For
example, you could ask your user to press a command button when the user is ready to see a computed total. The
command button's Click event procedure will compute and print the total. However, after a certain period of time, your
code can trigger that same Click event for the command button. Therefore, the total eventually appears with or without
the user's clicking of the command button.

Writing Event Procedures

Remember that event procedures contain Visual Basic code. The event procedures are sections of code that handle a
particular control's event. One control might have several event procedures if you want to respond to several different
kinds of events for that control.

Visual Basic uses an event procedure's name to determine these two things about the procedure:

• Which control will trigger the procedure
• Which event will trigger the procedure

Here is the format of all event procedure names:

ControlName_EventName ()

The underscore separates the control name from the event name and is required. All event procedures are named this
way. Therefore, an event procedure namedcmdExit_DblClick () executes if and only if the command button named
cmdExit's event named DblClick occurs.

You'll eventually fill some event procedure parentheses with values after you learn more about Visual Basic
programming. Even if the parentheses are left blank, as they were in the application you created yesterday, the
parentheses are still required. The parentheses also offer a way to distinguish event procedure names from control
names, even though the parentheses are not part of the actual name.

The code inside the cmdExit_DblClick () event procedure executes only if the user double-clicks the command
button named cmdExit. If this were the only event procedure in the application, the application would ignore every
other event that takes place. If the user clicked the Exit command button, for example, nothing would happen, because
a click is different from a double-click.

Almost every event procedure you write while you learn Visual Basic will begin with the words Private Sub. The
Private keyword is optional; if you don't specify Private, Visual Basic assumes that the event procedure is private.

Visual Basic supports two kinds of procedures: functions and subroutines. All event procedures will be subroutines.
The body of an event procedure can be one to several hundred lines long, although it's best to keep procedures as short
as possible. If you find yourself writing an extremely long procedure, consider breaking it down into multiple, smaller
procedures to make maintenance easier later on. Listing 3.1 is a sample of what cmdExit_DblClick () might look like
if it appeared inside an application.

Listing 3.1 An event procedure that occurs when the user double-clicks the command button.
1: Private Sub cmdExit_DblClick ()
2: lblTitle.Caption = "New Page"
3: intTotal = intCustNum + 1
4: End Sub

Note

You'll see numbers such as those to the left of Listing 3.1's code throughout the rest of the book's listings. The numbers
are not part of the program; they are for reference only as you learn to program. If the text needs to refer to a line of
code, the number to the left of the line makes for an easy reference.

A function acts like a baseball pitcher because a function always sends a value, called the return value, to somewhere
else in the program. The keyword Function indicates that a procedure is a function and not a subroutine. A subroutine,
indicated by the Sub keyword, does not send a return value, but it does perform work through its code. Event
procedures are always subroutines; you'll use functions for other kinds of work. You'll learn much more about the
differences between functions and subroutines as you progress through these 21 days.

The first line of this event procedure tells much about the event procedure. From the first line, you know the procedure
is private (available only to the current application module). You also know that the event procedure is a subroutine, so
no value is returned anywhere. The event procedure is for the command button (indicated by the prefix cmd) that the
developer named cmdExit. You know the event procedure responds only to double-clicks that occur on this command
button.

The body of the event procedure is two lines long. You don't have to understand anything in the body at this time. The
last line of event procedures always finalizes the procedure and lets you and Visual Basic know where the procedure is
to end. (All functions end, as you can probably guess, with the End Function statement.)

Remember that you enter all code from the Code window. The Code window acts like a simple word processor. When
you are ready to write an event procedure, you can get to the Code window in several ways. You can select the control

for which you want to write an event procedure for and select View, Code, or you can click the Project window's View
Code toolbar button.

An even easier way is to double-click any control or form inside the Form window editing area. Visual Basic
automatically opens the Code window for that object, guesses at the kind of event you want to write (using the most
common event for that particular control), and writes the event's first and last lines for you! That's what happened in
yesterday's application when you double-clicked the command button. Visual Basic decided that the most common
event for a command button is the Click event and displayed the Code window with these two lines for you:

Private Sub cmdHappy_Click ()

End Sub

Visual Basic even placed the text cursor between the two lines, so you could type the body of the event procedure!
After you finish the event procedure, you can write another event procedure below that one (if you do, you are
responsible for the first and last line of the event procedures that you add) or click the Project window's View Object
button once again to return to the Form window.

Note

If Visual Basic guesses wrongly, and you want to write an event procedure for an event that differs from the one Visual
Basic supplies, you can change the event name, perhaps to cmdHappy_DblClick (), and complete the event.

Figure 3.8 shows a Code window that lists the code for several event procedures. The Code window not only separates
procedures for you, it also supports routine Windows Copy, Cut, and Paste operations. Unlike a word processor, the
Code window will not wrap lines because each statement of a Visual Basic program must reside on its own line. You
can continue extra long lines down to the next line if you place an underscore at the end of the first line to let Visual
Basic know that the statement continues on the next line. With the underscore, Visual Basic treats the two lines as one
long continuous line; but the broken lines are easier for you to read because you can see all the code without scrolling
the Code window left and right.

Figure 3.8. The Code window acts like a word processor for your procedures.

Using Bonus Projects
You've just read through a lot of theory. Today should have answered some questions for you, but perhaps it generated
additional ones. To help put things into perspective, Bonus Project 1, "Controls, Properties, and Events," appears
between today's and tomorrow's lessons. You'll walk through the creation of another application from scratch so that
you can put today's theory to practice. Although you won't receive as much detailed instructions as you did for
yesterday's application, you don't need as much detail now that you are more familiar with the nature of Visual Basic.
Throughout this 21-day tutorial, Bonus Projects will pop up between some of the chapters to reinforce your learning.
Consider them homework for the next day.

Summary
Today's lesson was more theory than the first two were. You now should understand controls, properties, and events
better than before. Procedures should also be less confusing, even though you've yet to learn any Visual Basic code. An
event procedure must exist for each control and event that you want to respond to in your program. Without an event
procedure, an event gets ignored.

Tomorrow's lesson teaches you how to add menus to your applications so that your users can more easily control the
programs you write.

Q&A
Q: Why do we need to indent the body of event procedures?

A: Actually, you need to indent the body of all procedures. The indention is not required, but it helps you
distinguish events from one another in long lines of code. Although the Code window does a good job
of separating procedures from one another with dividing lines, you might print a program listing for
study and analysis, and the indention will help keep your eyes focused on individual procedures.

Q: Can I make up new names for event procedures?

A: The only way to change the name of an event procedure is to first change the name of the control that
triggers the procedure. Remember that the special name format of event procedures lets Visual Basic
determine which controls and which events should trigger the event procedures. You'll be able to make
up many of the subroutine and function procedure names you write that are not event procedures, but
you are stuck using the event procedure names that correspond to the model described today.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. You should understand the quiz and exercise answers before
continuing to the next chapter. Appendix A, "Answers to Exercises," provides the answers.

Quiz

1: What is an accelerator key?

2: True/False. Properties support multiple events.

3: Why would you assign the Cancel event to a command button?

4: How do you know which control contains the focus?

5: How does the user move the focus from control to control?

6: What property determines the focus order?

7: Is LoadPicture () a subroutine, function, or event procedure (you may have to guess at this)?

8: True/False. Visual Basic automatically generates the first and last lines for the Click event procedure when
you double-click a control inside the Form window editing area .

9: True/False. You can trigger a user event, such as DblClick, from Visual Basic code .

10: What is the purpose for the PasswordChar property?

Exercises

1: Write the first line for a form's Load event procedure. The form's name is frmMyApp.

2: Bug Buster: Why can't the following be an event procedure?

1: Private Function txtGetName_KeyDown ()
2: ' Start the report
3: Call ReportPrint
4: lblWarning.Caption = "Get ready…"
5: End Function

3: Create an application with three multiline text boxes. Make the text boxes tall enough to display three or four
lines of text. Give the first one a vertical scrollbar, the second a horizontal scrollbar, and the third one both
kinds of scrollbars. In all three text boxes, supply the default text Type here. In addition to the text boxes,
include an Exit command button, so the user can press Alt+X to terminate the program .

Bonus Project 1: Controls, Properties, and Events
Throughout this book's 21 sessions, you'll find Bonus Project sections scattered among them that help reinforce the
material you've learned to this point. These Bonus Project sections include complete applications. You should take the
time to create these applications because the practice will familiarize you with the Visual Basic environment and get
you up to speed quickly as a Visual Basic programmer.

This first Bonus Project application demonstrates the text box's PasswordChar property. The program uses a text box
property to request a password. Once the user enters a correct password, a special graphic image appears.

Experiment with the Bonus Project programs. As you learn more about Visual Basic, you can modify the Bonus Project
applications to test a hypothesis you might have and to practice coding. You probably won't understand all the code
you'll enter in this Bonus Project's Code window. That's okay for now, though, because you'll understand the code
soon.

Tip

The password to run this application is Sams. Shhh… don't tell anyone.

The Visual Elements
Figure BP1.1 shows the application's Form window that you'll create. You already know how to place controls on a
form, and Table BP1.1 contains all the controls and their respective property values that you need to create the
application's window. To begin, follow these usual steps for creating a simple Visual Basic application:

1. Select File, New Project.

2. Select the Standard EXE icon.

3. Set the form's properties to those listed in Table BP1.1.

4. Place the remaining controls in Table BP1.1 on the form and set their properties. Leave all the default values for
all the properties not listed in Table BP1.1.

Note

You don't have to assign a control's properties as soon as you place it on the form. You can place all the controls first
and then go back to set their properties.

Figure BP1.1. This application uses the text box control's PasswordChar property.

Table BP1.1. Set these controls and properties on the form.

Control Property Name Property Value

Form Name frmPassword

Form Caption Try a password

Form Height 5610

Form Width 8475

Image Name imgPassword

Image BorderStyle 1-Fixed Single

Image Height 1890

Image Left 3000

Image Stretch True

Image Top 2640

Image Width 2295

Label Name lblPrompt

Label BorderStyle 1-Fixed Single

Label Caption Type the secret password below

Label Font MS Sans Serif

Label Font Size 14

Label Font Style Bold

Label Height 855

Label Left 2520

Label Top 600

Label Width 3375

Text box Name txtPassword

Text box Height 375

Text box Left 3360

Text box PasswordChar *

Text box Text (Leave blank by clearing the default value)

Text box Top 1800

Text box Width 1695

Table BP1.1. Set these controls and properties on the form.

Control Property Name Property Value

Command button Name cmdTest

Command button Caption &Test Password

Command button Left 6360

Command button Top 3000

Command button #2 Name cmdExit

Command button #2 Caption E&xit

Command button #2 Left 6360

Command button #2 Top 3720

Adding the Code
Once you create the Form window, you're ready to enter the code. Listing BP1.1 contains the code you'll enter. Notice
that two event procedures exist: cmdExit_Click() and cmdTest_Click(). Each of these event procedures responds to
the Click event for that particular command button. When the user clicks the command button named cmdExit,
cmdExit_Click() executes. When the user clicks the command button named cmdTest, cmdTest_Click() executes.

Tip

The Click event is the most common event that occurs for command buttons. Therefore, you can quickly open an
event procedure for each command button by letting Visual Basic complete the procedure's first and last lines. To type
the small one-line body of the cmdExit command button's Click event procedure, double-click the cmdExit command
button on the Form window and fill in the body of the procedure. To type the body of the cmdTest command button's
Click event procedure, double-click the cmdTest command button and fill in the body of the procedure.

Listing BP1.1 This code activates the password-based form.
1: Private Sub cmdExit_Click()
2: End
3: End Sub
4:
5: Private Sub cmdTest_Click()
6: ' This event procedure executes as soon as the
7: ' user wants to test the entered password
8: If txtPassword.Text = "Sams" Then
9: ' Success! Password matched
10: Beep
11: Beep ' Now, display the picture
12: imgPassword.Picture = LoadPicture("C:\Program Files\" _

13: & "Microsoft Visual Studio\Common\Graphics\MetaFile\" _
14: & "Business\coins.wmf")
15: lblPrompt.Caption = "Show me the money!"
16: Else
17: lblPrompt.Caption = "Wrong password - Try Again"
18: txtPassword.Text = "" ' Erase old password
19: txtPassword.SetFocus ' Put focus on text box
20: End If
21: End Sub

Analysis
Although you have yet to learn how to interpret Visual Basic programming statements, a few words about this code
now would make a great introduction to the code basics you begin learning on Day 5, "Analyzing VB Data."

Lines 1 through 3 form the cmdExit button's Click event procedure. When the user clicks the cmdExit button, the End
statement causes the application to terminate. The application stays on the user's screen, even if the user enters a
successful password match, until the user clicks the cmdExit command button (or until the user closes the program
window).

As you type the code, you'll notice that Visual Basic uses different colors for certain text. This syntax coloring is a
handy tool that you can use to locate bugs early in the program-writing stage. As you program more and more, you'll
recognize that Visual Basic assigns specific colors to specific kinds of text. A Visual Basic program keyword, such as a
command, is always blue. An object, such as a control name and its property, is always black. Other kinds of code
words are green. Therefore, if you notice that a keyword is green, you'll know immediately that you've entered
something incorrectly and that you must correct the typo before Visual Basic will properly recognize the code you're
writing. You can change the colors from the Tools, Options Editor Format page.

Syntax is a programming language's collection of grammar and spelling rules. If you misspell a command or forget a
required punctuation character, a syntax error will occur.

Visual Basic recognizes most syntax errors as soon as you press Enter at the end of a line. Figure BP1.2 shows the
dialog box that appears after a line was typed incorrectly. (The dialog box will not always describe the error as a syntax
error; sometimes the error message is more specific and points out an incorrect command.) If you see the problem
(such as the extra equal sign in this case), press OK and correct the problem. If you need more help, click the Help
button, and Visual Basic will give you more information about the possible problem.

Caution

Visual Basic does not always correctly locate the problem when you type something incorrectly. Sometimes Visual
Basic will not highlight the exact problem (although in Figure BP1.2, Visual Basic correctly found the problem)
because it might not realize a problem exists until a few keywords after the real problem. Therefore, you may have to
look back through the last line or two to locate the real problem if Visual Basic fails to highlight it.

Figure BP 1.2. Visual Basic locates syntax errors as soon as you press Enter.

Lines 6 and 7 illustrate the primary way you'll document your Visual Basic code. You may recall from Day 1,
"Welcome to Visual Basic," that documentation is important because you'll maintain your code over time, and the more
descriptions you place inside the code, the more quickly you'll understand what you've written. Lines 6 and 7 are
examples of remarks. Visual Basic completely ignores any line that begins with a single apostrophe, which indicates
that a remark follows. Remember, remarks are only for people, not for computers.

A remark is a comment inside a Visual Basic program that describes the code. Sometimes, a programmer will put a
remark at the top of a program with his or her name and phone number. This way, if anyone else has to modify the code
later and has a question, the original program author can be contacted.

Do Don't

DO add a line with the date and description of any changes you make at the top of the code. This maintenance
log will let you (and others who might maintain the program) know exactly which changes you've implemented
since the program's original generation.

You now know part of the Visual Basic programming language! Remarks, although they are for people, are valid and
important Visual Basic statements. You should scatter remarks throughout your program to describe in easy-to-
understand language what the program is doing. As you can see in line 11, you can place a remark at the right of a
program statement if it's a short remark. Try to fit all your Visual Basic code and remarks inside the Code window
without requiring horizontal scrollbars at the bottom of the Code window. Keeping all the code in one window makes
editing and debugging much simpler.

Tip

Take advantage of Visual Basic's code-completion tools. For example, when you type txtPassword.Text in line 8,
Visual Basic displays the properties available for the text box as soon as you type the period. Type T and e and Visual
Basic scrolls to the correct property, Text. You can press the spacebar to continue without having to complete the final
two letters because Visual Basic completes Text for you. Of course, this only saves you two characters, but other
properties, such as lblPrompt.Caption, will go even quicker.

Lines 12, 13, and 14 are actually one single Visual Basic statement that spans three lines. The statement is long due to
the long pathname required to get to the graphic. You can type the entire statement on one line, but doing so would far
exceed the Code window size. Therefore, Visual Basic offers a way to continue one logical line onto two or more
physical lines. When you want to break a line into an additional line, press the spacebar and type an underscore
character. The underscore, being the final character on a line, tells Visual Basic that the next physical line is actually a
continuation of the present one.

Caution

The path that begins in line 12 assumes you have installed the sample images when you installed Visual Basic. If you
did not, the pathname will not work. You may have to search using the Windows Find menu option for the Coins.wmf
file on your Visual Basic installation CD-ROMs to locate the file. To add the graphics, insert your first Visual Basic
CD-ROM in the drive and select Add/Change Options from the screen to add the graphics to your hard disk.

A special problem arises when you want to break long text enclosed in quotation marks (as is being done here). You
must close the quotation marks before the space and underscore and then begin the next line with an ampersand (&)
followed by another quotation mark. When you learn about text strings in Day 5's session, you'll better understand the
need for the ampersand character.

Tip

As you learn more of the Visual Basic programming language, you'll understand why some of the statements in Listing
BP1.1 are indented farther to the right than others.

Here's a final thought before you quit for the day: You may be surprised that this application uses the Test Password
command button. Why not let the user type the password and press Enter instead of having to click the extra command
button to test the his or her password? As you'll learn in Day 7, "Advanced Keyboard and Screen Support," sensing
certain keystrokes, such as Enter, would add extra code to this program. This application was kept as simple as possible
because you're still early in this 21-day course.

Day 4. Creating Menus

A menu bar offers a special kind of control that lets your users select options and issue commands. Some menu options
might mimic controls on your form. For example, you may want to include an Exit command button as well as a File,
Exit menu option to let your users exit your application. In addition, some menu options mimic toolbar buttons that
you'll supply. Other menu options might be the only way you provide access to certain areas of your program. Visual
Basic makes adding menus simple.

Today, you learn the following:

• More about the Application wizard's generated menus
• What kinds of menu options are available to you
• How to create menu bars, drop-down menus, and submenus
• About menu event procedures
• How to use the Code window's Object and Procedure drop-down list boxes to enter event procedures quickly

Using the Application Wizard for Menus
You've already seen the Application wizard in action in Day 1's lesson. Figure 4.1 shows the Application wizard screen
that enables you to generate a menu bar for your application. After you click the menu options and submenus you want
in your applications, the Application wizard generates the appropriate menu controls and places them in the generated
application.

Figure 4.1. The Application wizard helps you generate standard Windows menu bars and options.

Tip

Menus are useful controls because your users already know how to use them. Users are more likely to use menu
commands they understand.

If you've used many Windows programs, you'll recognize most or all of the Application wizard's menu options. Menu
bar options such as File, Edit, and Window appear in many Windows programs; the corresponding submenu options
that the Application wizard provides are also familiar, such as the Exit option on the File menu.

Although you'll probably never include as many menu bar options and submenus as a huge mass-distributed program
such as Microsoft Word does, Word and the other top-selling Windows programs do provide good guidelines for menu
design. Almost every Windows program includes a File, Exit option. Virtually every Windows application includes

Edit, Cut and Edit, Copy commands. Your menus will not perfectly match other Windows applications because your
application's goals will differ. Nevertheless, when you can follow general Windows menu guidelines, you should do so.
Your users then will have less trouble adapting to your program. The faster your users learn your program, the more
likely they will use your program and keep using subsequent editions you produce.

The Application wizard makes generating an initial menu so easy that you should strongly consider using the
Application wizard to create your program's shell if you want your application to contain a complex menu. Starting in
the next section, you'll see how easily you can create your own menus using the Visual Basic tools, but the Application
wizard is even easier to use. All you have to do is click an option to include it in your final application. Even if you
don't want a toolbar or anything else the Application wizard can provide, you may want to create an initial application
with the Application wizard just to generate an application with a full menu before you add the details and special
menu options that your application requires.

Do Don't

DO check out the online MSDN help's reference book called, The Windows Interface Guide to Software
Design. Make sure you follow the Windows standards for menus and other controls. By following the
guidelines, you can be assured that your application conforms to the Windows standard and will be as familiar
as possible to your users.

Learning About Menus
You've used Windows menus many times before, including during the first three days of this course because Visual
Basic includes a standard Windows menu bar. Figure 4.2 shows the Visual Basic menu with the File menu dropped
down and the parts of the menu labeled. Even if you are extremely familiar with Windows programs, take a moment to
study the figure's callouts so that you will know the Visual Basic names of the various menu items. The rest of today's
lesson describes how to include these items on your own application's menus.

Figure 4.2. Visual Basic can create a standard Windows menu and options.

Tip

When one of your application's menu options displays a dialog box, be sure to end the option with an ellipsis as Figure
4.2 shows. When you create a menu with a submenu, Visual Basic takes care of adding the right-arrow indicator.

Some menu options produce additional menus. Figure 4.3 shows the Visual Basic View menu with a submenu coming
off the Toolbars option. Notice the checked option on Figure 4.3's Toolbars submenu. The checked option indicates an
option that the user turns on or off by selecting the option. The Menu Editor lets you create checked menu options as
well as regular menu options.

Figure 4.3. Visual Basic creates submenus for you when you request them.

Introducing the Menu Editor
The Toolbox window doesn't contain any menu-creation tools. Instead, Microsoft offers a special menu tool called the
Menu Editor, shown in Figure 4.4, that you use to create menus. From the Form window, you can press Ctrl+E (the
shortcut key for Tools, Menu Editor) to display the Menu Editor.

Figure 4.4. You'll use the Menu Editor to create menus and submenus.

The Menu Editor helps you design menus for your applications. In a way, the Menu Editor acts like a Properties
window for the menu bar because you'll designate the names of the menu controls as well as the captions that the users
see on the menus and other related information from within the Menu Editor. The Menu Editor has been around in
Microsoft programming products for many years with little change during that time. The Menu Editor's longevity is a
testament to its power and simplicity.

The top half of the Menu Editor, the Menu properties section, specifies the control properties for one menu option. That
option can appear on the menu bar or on a submenu that pulls down from the application's menu bar. The Menu control
list box adds to a tree-structured diagram of your menu bar as you build it.

Working with the Menu Editor
Perhaps the best way to learn how to build application menus with the Menu Editor is to create a simple application
that includes menus. You've yet to master file-related operations and other advanced Visual Basic concepts, so this
sample application's menu will not conform well to the standard Windows program menu. Nevertheless, the application
does acquaint you with the steps needed to build menus, and you'll see how easy the Menu Editor is to use.

The following are the goals of the application:

• Display a label in the center of the form.
• Offer a menu option that lets the user change the label's background color.
• Offer a menu option that lets the user change the label's text.
• Offer an exit menu option that lets the user terminate the program.

As you can see, the program will be simple, but you'll gain insight into menus by creating it.

First, start a new Standard EXE application from the File, New Project menu option. Assign the form the name
frmMenu, change the form's title bar to read Menu Application by changing the Caption property. Finally, resize the
form to a Height value of 6030 and a Width value of 8415.

Add a label to the form with these properties:

• Name: lblMenu
• Alignment: 2-Center
• BackColor: Red (click the BackColor's Palette tab and select the first red in the list of colors that appears)
• BorderStyle: 1-Fixed Single
• Caption: Select a menu option
• Font Size: 24
• Font Style: Bold
• Height: 615
• Left: 1800
• Top: 2160
• Width: 4935

Note

Your PC can display from a few hundred to more than a million colors. Each color has associated with it a unique
numeric color code value. Visual Basic uses the hexadecimal numbering system for the color values. Selecting the red
color from the palette, however, is much easier than typing the red color's exact hexadecimal value, such as
&H000000FF&.

A hexadecimal numbering system, also called base-16, is a counting system based on the number 16. In the normal
base-10 numbering system, 10 unique digits exist, 0 through 9. In base-16, 16 unique digits exist: 0 through 9, plus the
letters A, B, C, D, E, and F to represent the remaining "digits." Hexadecimal numbers are always preceded by &H to let
Visual Basic and the programmer know the number is a base-16 number and not a normal base-10 value. You can
represent a numeric value using either base-10 or base-16, but base-16 offers a more compact format for large values.
With over a million color combinations available, the base-16 numbering system enables you to use fewer digits to
represent each shade of color than the base-10 would allow.

Your screen should look like the one in Figure 4.5.

Figure 4.5. You have now placed a label that you'll control with menu options.

You are ready to begin the application's menu. Click the form and press Ctrl+E to display the Menu Editor. Most of the
fields in the Menu Editor will be blank because you must fill in values as you specify menu options.

A field, often represented by a text box, is a generic name for a location where the user or programmer types values in
an application. The Menu Editor includes many fields, as do most dialog boxes, where you type values.

Here are the values that will appear on the menu bar you now create:

• File
• Color
• Message

Notice that the menu bar options all will have accelerator keys so that the user can select a menu bar option using the
keyboard. When you add items to the Menu Editor, those items either appear on the application's menu bar or on a pull-
down menu depending on how you specify the values. Follow these steps to add the File menu option to the
application's menu bar:

1. Type &File for the Caption field. As with all other Visual Basic values, the ampersand indicates that the F will
be the accelerator key for the menu selection. As you type the caption, Visual Basic displays the caption in the
Menu control list box in the bottom half of the Menu Editor.

2. Press Tab to move to the Name field. Tab and Shift+Tab shift the focus between the Menu Editor fields.

3. Type mnuFile for the name of the first menu option.

Tip

Keep in mind that menu options are special controls, and like other controls, they have names.

Do Don't

DO use a consistent naming convention for menu names. Begin all menu names with the prefix mnu followed
by the name that appears on the menu bar. Therefore, the menu bar's File menu option is named mnuFile.
When you create submenu options, use the related menu bar name as a prefix to the submenu name. In other
words, mnuFileExit is a great name for the File, Exit option.

4. Leave all the other fields alone and click the Next button to prepare for the remaining menu bar options. The
Next button lets the Menu Editor know that you are through with the first option and want to enter another.

5. Type &Color for the next menu bar caption and type mnuColor for the name.

6. Click Next to add the next item.

7. Type &Message for the third and final menu bar caption and type mnuMessage for the caption. Your Menu
Editor should look like the one in Figure 4.6.

Figure 4.6. The first three menu bar options now exist.

Test the Menu

You can test your menu at any point during its creation. Click the OK button to close the Menu Editor. The Form
window shows your application's new menu bar. Press F5 to run your application. Because you've not yet created
submenus or written event procedures, nothing happens when you select from the menu bar, but you can already see
how simple adding menus can be. Click the Window Close button on the running application (or click the Visual Basic
toolbar's End button) and press Ctrl+E to return to the Menu Editor.

Adding a Pull-Down Menu

You can either create pull-down menus as you build the menu bar or add the menus later. If you create the complete
menu bar first, however, as you've done here, you'll have to insert the menu options in their respective locations when
you are ready to add them. The Menu Editor's Insert button lets you do just that.

Note

The Insert button inserts a blank menu bar or menu position. Before clicking Insert, highlight the menu option that
appears after where you want to insert an option. In other words, to add a menu option to the File menu, click to
highlight &Color in the Menu control list box and then click Insert; Visual Basic adds a blank row between &File and
&Color so that you can add a menu option to the File menu.

Somehow, Visual Basic must distinguish between a primary menu bar option and a pull-down menu option. If you
inserted the Exit option after File using the same technique you used in the previous sections, Visual Basic would add
the Exit option to the menu bar between File and Color and not as a File menu option.

After inserting a new menu position after &File, click the Menu editor's right arrow button. Visual Basic adds an
ellipses after &File that indicates the current item will be a menu option and will not appear on the menu bar. Click
Caption and type E&xit for the new option's caption. As you type, notice where the Menu Editor places the option:
indented to the right of the other options at the bottom of the Menu control list box. The indenting shows that the item
is an option from the menu that precedes it. If a menu has yet another menu coming from it, often called a submenu,
you would click the right arrow twice to add two sets of ellipses before the submenu option.

Caution

Too many submenu levels can get confusing. At most, include two levels of menus—one menu that drops down from
the primary menu bar and possibly one submenu coming off that.

Note

Do you know why you didn't use the E in Exit as the accelerator key? The standard Windows File, Exit option always
uses the letter x for the shortcut, and you should follow the standards everywhere you can.

Type mnuFileExit for the name of the option. You've now completed the short File menu and its drop-down menu.
You can run the program to see that selecting File now produces the drop-down menu with the Exit option. Of course,
nothing happens when you select the Exit option because you've yet to write event procedure code for the menu.

Add Three Checked Options

The second menu, Color, will contain three options: Blue, Green, and Red. These colors will be mutually exclusive; the
label will not be able to be all three colors at once, but only one color at a time. Such colors make perfect candidates for
checked menu options.

A checked menu option is a menu option that includes a check mark indicating that the option is set.

Study the drop-down Color menu shown in Figure 4.7 to see the menu you are about to create. As you can see, the
check mark appears next to one menu option, and the other two options are not checked. When you create the Color
menu, you will make Red the option that's first active because you are setting the label's background color to red at
design time. The user will first see the red label until the user selects a different color.

Figure 4.7. Only the checked menu option is active.

Caution

Actually, more than one menu option can be checked at once, but through programming the menu's event procedures
properly, you can ensure that only one is checked. When the user checks a different option, the original one appears
unchecked.

Then follow these steps to add the Color menu options:

1. Open the Menu Editor if you closed it in the previous section.

2. Click the &Message option in the Menu control list box to highlight that option.

3. Click the Insert button, click Right Arrow, then click Insert two more times to add three empty rows for the
Color menu options.

4. Highlight the first blank row where you'll add the Blue option.

5. Type &Blue for the caption and mnuColorBlue in the Name field. When the user first runs the program, the
Blue option will be unchecked to indicate that Blue is not currently selected.

6. Click Next to enter the next option.

7. Type &Green for the caption and mnuColorGreen for the name of the next option.

8. Click Next to enter the next option.

9. Type &Red for the caption and mnuColorRed for the name of the next option.

10. The Red option is to be checked when the user first starts the program. Therefore, click the Checked field to
place the check mark next to Red.

11. Close the Menu Editor and run your application to test the Color menu. Your program's window should match
that of Figure 4.7.

Not only can you provide checked menu options, but you can also, initially from the Menu Editor and also through
Visual Basic programming statements, enable and disable menu options. Figure 4.8 shows the Visual Basic Debug
menu with several enabled options and several disabled menu options. Visual Basic grays menu options that are
disabled, so the user knows not even to try the option.

Figure 4.8. The Enabled property determines which menu options are enabled and disabled.

The Menu Editor's Enabled option lets you indicate whether you want an option enabled when you design the menu.
Depending on the application, you might enable menu options as they become available and then disable some options
if the user should not be allowed to select an option. Many word processors disable the Paste option on the Edit menu,
for example, until the user copies something to the Windows Clipboard. Your application's menu is little more than a
set of controls, and the various Menu Editor fields are all properties for the controls. Therefore, your Visual Basic code
can modify the Enabled property for any menu item, setting it to True or False as you'll learn how to do in tomorrow's
lesson, and the option will be enabled and available for the user to select or disabled and unavailable until the program
once again enables the option.

Notice that the Debug menu, as well as most others, have shortcut keys to the right of menu options. F8 is the shortcut
for Step Into, and Shift+F8 is the shortcut key for Step Over. (Accelerator keys are often called shortcut keys when
referring to the keystrokes that trigger menu options, such as Ctrl+C for Edit, Copy.) If you want to add shortcut keys
for some of the menu options, select the shortcut key combination you want to use from the Shortcut field's drop-down
list box. Most shortcut key combinations use the Ctrl key, such as Ctrl+C.

Note

You'll see that seven options in the Debug menu (some are disabled) have graphic icons to the left of the options. These
icons indicate a corresponding toolbar button. In other words, a Debug toolbar button exists for the Debug, Step Into
option, and the icon on the toolbar matches that of the menu option. The icons give users an added chance to learn
which toolbar buttons mimic the various menu options. Unfortunately, Visual Basic provides no way to add an icon to
the left of menu options in your application menus although some third-party controls are available that do offer this
feature.

Completing the Menu's Message Submenu

The Message option will produce a drop-down menu with three options and only one checked at any one time, as to the
Color menu. The checked option will be the message that currently appears in the label. Just for practice, you're going
to format the Message menu differently from the normal way of doing things. The Message menu will look like the one
in Figure 4.9.

Figure 4.9. A separator bar lets you group menu options.

Note that the Message menu has a separator bar. A separator bar separates some menu items from others. Your user
cannot select a separator bar. As the user presses the down arrow key when a menu is displayed, the highlight moves
over the separator bar to the next menu option.

Follow these steps to add the Message menu and include the separator bar on that menu:

1. Press Ctrl+E to display the Menu Editor.

2. Click the row beneath &Message in the lower half of the Menu Editor to prepare the Menu Editor to receive the
next option.

3. Click the right arrow to indicate that you are about to enter a menu option that will drop down from the menu
bar's Message option.

4. Type &Initial Message and mnuMessageInitial for the new option's caption and name.

5. Click the Checked field to place the check mark on the first option when the program begins.

6. Click Next to prepare for the next menu item. Notice that Visual Basic indents the next item automatically
because the previous item was indented. (If you do not want an item indented, but you want to make it a menu
bar item, click the left arrow to remove the ellipses. The up and down arrows let you move an item up or down
the menu tree to other options.)

7. Type a single hyphen (-) for the caption of the next menu item. All separator bars have this caption. When
Visual Basic encounters the hyphen for a menu caption, Visual Basic turns that hyphen into a separator bar.

8. Type mnuMessageSep1 for the separator bar's name. Separator bars are objects and, as such, require unique
names. You could name subsequent separator bars on the Message drop-down menu mnuMessageSep2,
mnuMessageSep3, and so on.

Caution

Separator bars cannot be checked, disabled, or have shortcut keys.

9. Click Next to prepare for the next menu option.

10. Type &VB is Simple! for the caption and mnuMessageSimple for the name and click Next.

11. Type &Programming is Fun! for the caption and mnuMessageProgramming for the name of the next option.

Your Menu Editor window should look like the one in Figure 4.10. Close the Menu Editor and run your program to see
the menu. You are almost done. The only thing left to do is add the code that activates the menu.

Figure 4.10. Your menu is now finished.

Tip

The Application wizard lets you add separator bars to the program it generates. Select the option labeled [Separator]
when you want to add a separator to a wizard-generated program.

Finalize the Menu with Code

You must now add the procedure event code for the menu you just created that will make the menu do work. As with
the previous days'lessons, don't worry about the details of the code at this point. For now, concentrate on getting the big
picture. A menu and its options are just controls that produce events at runtime. Your users will interact with your
application's menu. Each time the user selects from a menu, that selection generates a Click event. That menu option's
Click event procedure then executes.

You should now know, after yesterday's lesson, that the menu option named mnuFileExit would require a Click event
procedure named mnuFileExit_Click (). The procedures for the other menu options are named accordingly. Listing
4.1 contains the complete code listing required for the application. You can enter the code in several ways:

• You can enter the code one procedure at a time. From the Form window, select the menu option you want to
add code for. Visual Basic will open the Code window and display the wrapper lines of that option's Click
event procedure for you. You then can fill in the body of the code. Close the Code window and click the next
menu option to enter its code body until you've completed the code.

Wrapper lines, or wrappers, are a procedure's first and last line. You learned the requirements of an event
procedure's wrapper line format in yesterday's lesson, but you did not know at the time that the lines were called
wrappers.

• After entering the first event procedure using the method just described, you can select the next menu option
from the Code window itself. Toward the top of the Code window are two drop-down list boxes labeled Object
and Procedure. Figure 4.11 shows an open Object list. Select the next menu option for which you want to write
a procedure from the Object list, and Visual Basic places the wrapper lines for that event procedure in the Code
window beneath the previous event procedure. You can then complete the procedure's body. Continue adding
event procedures until you've added all of them for the menu options.

Figure 4.11. You can request another pair of wrapper lines from inside the Code window.

Note

In this application, every object other than the label is a menu control. Menu controls only support the Click event, so
Click is the only event you'll see in the controls'Procedure drop-down list box. You can add an event procedure for
other kinds of events using the Code window's drop-down list boxes when you work with controls that support
additional events. For example, if you selected this application's label control from the Code window's Object list box
and then opened the Procedure list box, you would see several event names listed because the label control supports
several kinds of events.

• You can open the Code window and type the code from beginning to end. This method takes extra time,
however, because you must type the wrapper lines yourself.

Tip

The Code window's Object and Procedure drop-down list boxes are useful for locating code you've already entered but
want to edit or view. For example, if an application contained multiple event procedures for several kinds of controls,
and you wanted to locate a specific command button's double-click event procedure, display the Code window and
select the command button from the Object drop-down list box. Then select DblClick from the Procedure drop-down
list box, and Visual Basic locates and displays the code for that event procedure in the Code window.

Listing 4.1 The menu code controls the label's color and contents.
1: Private Sub mnuColorBlue_Click()
2: ' Color the label Blue and check the Blue
3: ' menu option. Make sure both the Red
4: ' and Green options are unchecked
5: lblMenu.BackColor = vbBlue
6: mnuColorBlue.Checked = True
7: mnuColorGreen.Checked = False
8: mnuColorRed.Checked = False
9: End Sub
10:
11: Private Sub mnuColorGreen_Click()
12: ' Color the label Green and check the Green
13: ' menu option. Make sure both the Blue
14: ' and Red options are unchecked
15: lblMenu.BackColor = vbGreen
16: mnuColorBlue.Checked = False
17: mnuColorGreen.Checked = True
18: mnuColorRed.Checked = False
19: End Sub
20:
21: Private Sub mnuColorRed_Click()
22: ' Color the label Red and check the Red
23: ' menu option. Make sure both the Blue
24: ' and Green options are unchecked
25: lblMenu.BackColor = vbRed
26: mnuColorBlue.Checked = Fasle
27: mnuColorGreen.Checked = False
28: mnuColorRed.Checked = True
29: End Sub
30:
31: Private Sub mnuFileExit_Click()
32: ' Terminate the program
33: End
34: End Sub
35:
36: Private Sub mnuMessageInitial_Click()
37: ' Change the label's message to the original
38: ' message and check the proper menu option.
39: ' Make sure the other options are unchecked
40: lblMenu.Caption = "Select a menu option"
41: mnuMessageInitial.Checked = True
42: mnuMessageProgramming.Checked = False
43: mnuMessageSimple.Checked = False
44: End Sub
45:
46: Private Sub mnuMessageProgramming_Click()

47: ' Change the label's message to a replacement
48: ' message and check the proper menu option.
49: ' Make sure the other options are unchecked
50: lblMenu.Caption = "Programing is fun!"
51: mnuMessageInitial.Checked = False
52: mnuMessageProgramming.Checked = True
53: mnuMessageSimple.Checked = False
54: End Sub
55:
56: Private Sub mnuMessageSimple_Click()
57: ' Change the label's message to a replacement
58: ' message and check the proper menu option.
59: ' Make sure the other options are unchecked
60: lblMenu.Caption = "VB is Simple!"
61: mnuMessageInitial.Checked = False
62: mnuMessageProgramming.Checked = False
63: mnuMessageSimple.Checked = True
64: End Sub

Again, don't worry about the code's details, but do make sure you understand how event procedures work before going
further. Starting tomorrow, you will begin to learn the details of the Visual Basic language, so understanding how the
language supports event procedures now will help you tomorrow when you tackle the code specifics.

Run the program and test it. Select the Color and Message menu options several times to ensure that the check mark
moves accurately as you select options and that the label updates accordingly. You can change the colors before or after
you change the label's text.

Summary
Today's lesson taught you how to work with Visual Basic menus. The Menu Editor operates like a special Properties
window that lets you easily set menu control values. The Menu Editor lets you manage the checked and visible
properties of menu options and also lets you specify shortcut keys for the various options.

Tomorrow's lesson dives into the specifics of the Visual Basic programming language. You'll learn how Visual Basic
recognizes and stores data, and you'll learn how to assign property values at runtime with the code that you write.

Q&A
Q: Why don't menu bar selections generate Clickevents?

A: Actually, they do unless a drop-down menu appears on the menu bar option. If no drop-down menu appears
from a menu bar, the menu bar option will generate a Click event when the user selects the menu bar option.
If a menu appears, however, the menu takes priority over the Click event, and the drop-down menu will
appear instead of a Click event being generated.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. You should understand the quiz and exercise answers before
continuing to the next chapter. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: What do you call the dialog box that helps in your creation of menus?

2: True/False. Menu options are controls.

3: Which event do all menu options support?

4: What is the term shortcut key usually reserved for?

5: How do shortcut keys relate to menu usage?

6: What events do menu options generate if the user uses a shortcut key to access the menu options?

7: True/False. The Menu Editor helps you design your menus and create Click event procedure code for the
menu options .

8: What's the purpose of the Checked menu option?

9: True/False. More than one menu option can be checked at once.

10: In Listing 4.1, what are lines such as 57, 58, and 59 used for?

Exercises

1: Describe the difference between entering a menu bar option and a drop-down menu option within the Menu
Editor.

2: Bug Buster: Manuel the menu master is having trouble with his menus because the check mark does not go
away from a menu option when the user selects a different checked option. Can you give Manuel some
general advice? (You don't have to write any code yet.)

3: Add shortcut keys to every menu option in the menu application that you created today. Make sure that no
two menu options have the same shortcut keys.

Day 5. Analyzing VB Data
Today's lesson begins your foray into Visual Basic programming using the Visual Basic programming language.
Instead of working with graphical objects such as command buttons, you'll type text into the Code window to give your
applications the brains they need to make things happen. You'll begin first by looking at Visual Basic data, and
tomorrow you'll learn how to manipulate that data using commands and controls on the form.

Today, you learn the following:

• More about the Code window
• The kinds of data you can declare
• How to distinguish between data types
• The data storage requirements of Visual Basic data
• How to declare and assign values to variables
• Why Visual Basic uses an order of operators when calculating

A Few Preliminaries
When you're working with code, you need to know a few preliminary details. You need to understand more fully just
how code fits in with an application's forms and controls. To begin, remember that the Project window lets you manage
your applications and view all the files associated with your application. Although you write event procedures inside
the Code window, event procedures don't require their own files. They stay with their respective controls. Therefore,
your projects to this point have included only one form, and that form holds controls and the event procedures related
to those controls. As you'll see, a form can hold code that is not specifically event procedure code but is more general
purpose also.

Some projects hold other kinds of code as well. You have learned that all code appears in procedures and that Visual
Basic supports both subroutine and function procedures. Event procedures fall into the subroutine category, but as you
progress through these 21 days, you'll learn how to write function procedures as well. If a procedure is not an event
procedure for a particular control, that code can appear inside a separate code module. The Project window lists the
module if one appears in the project.

A module is a file that holds procedure code. The file that holds the form and its code is technically called the Form
module, so you've already worked with modules.

If a project contains several forms, the project contains several Form modules because each form's controls must
respond to events; therefore, each form has its own set of code in the Form module. One of the first points to consider
when you're adding multiple forms to a project is which form will be the first form to appear on the screen when the
user starts the application. The first form you create is the default startup form, but you can designate another startup
form by selecting Project|<project name>Properties from the Visual Basic menu, where <project name> is the name
of the current project. Visual Basic then displays the Project Properties dialog box, as shown in Figure 5.1. As you
progress through these lessons, you'll learn how to program Visual Basic so that a secondary form appears when
needed.

Figure 5.1. Designate the startup form from the Project Properties dialog box.

Working Inside the Code Window
Now that event procedures are familiar to you, you'll work with event procedures over the next few days to learn the
fundamentals of the Visual Basic programming language. Before starting on the language specifics, however, you need
to understand that Form modules hold not only event procedures but also a declarations section as well. Each module
that holds code also holds a declarations area.

A declarations section reserves space for and names data areas used throughout the rest of the module. You don't have
to declare controls in the declarations section, but you often must declare other Visual Basic data storage areas in the
declarations section.

The declarations section always appears at the top of every module that contains code. Therefore, the declarations
section appears before any event procedures in a form module. Any time you type code before a module's first event
procedure, that code is considered to be general purpose and not linked to a specific control. For the early part of your
Visual Basic programming, you'll declare data in this area, so you'll treat the whole area as a data declaration section.
Later, you'll also write general-purpose procedures in this area.

Study the Code window in Figure 5.2 to help put all this information into perspective. The details aren't important at
this point, but the general concept is. The selected text makes up the declarations section starting with the first
statement, which reads Option Explicit. Notice that the Code window's Object and Procedure drop-down list boxes
read (General) and (Declarations). The Code window lets you know where each line of code falls in the program's
scheme through these drop-down list boxes.

Figure 5.2. The Code window contains several sections.

The next two procedures are not event procedures, and you know that fact from their names. Remember that an event
procedure must contain an underscore that separates a control name from an event name. If you were to place the text
cursor anywhere within the Update_Count() procedure, the Code window's Object drop-down list box would still read
(General) because the code falls within the general-purpose section of the module. The Code window's (Object) list
box, however, would read Update_Count because that is the name of the selected procedure, and the Code window
lists the procedure name in the (Object) list box for all procedures that are not event procedures.

Okay, enough with the big picture, you're now ready for the nitty-gritty details.

The Data in Visual Basic
Visual Basic computing requires that you process several types of data. For example, you'll work with names,
addresses, dollar amounts, large numbers, small numbers, and logical data that may be true or false (or yes or no).
Visual Basic supports many data types so that it can handle all your programming needs.

Visual Basic, like most programming languages, gets picky about its data, so you must go along with Visual Basic's
data requirements. Visual Basic requires that, before you work with a data value, you tell Visual Basic exactly what
type of data the value is. Therefore, the place to begin learning Visual Basic programming is to learn about the data
types. Visual Basic supports 12 data types.

Numeric Data

Generally, all numeric data falls into these two categories:

• Integers. Whole numbers without decimal points such as 614, 0, –934, and 3,918,938. Integers represent ages,
counts, year numbers, and other whole number values.

• Decimals. Numbers with decimal points that can represent fractional values such as 8.709, 0.005, and –
402.35534. Decimals (sometimes called floating-point numbers) represent temperatures, dollar amounts, and
interest rates. All decimals require decimal points even if the fractional portion to the right of the decimal point
is zero.

These sample numeric values are called literals or sometimes constants because they never change. The value 614 is
always 614. In the later section "Working with Variables," you'll see how to declare data that can change.

Caution

Integers and decimals are stored differently inside Visual Basic, and Visual Basic treats them differently even though
people don't always treat them differently. For example, –8 is not the same as –8.00 to Visual Basic.

Some data types consume a lot of memory and are inefficient, whereas others consume less memory and compute more
quickly. You cannot tell by looking at a number how much memory it consumes. The number 29,999 requires the same
number of memory locations as the number 701.

Tip

As you learn about the data types that Visual Basic supports, you'll also see how much memory each data type requires.
Although memory requirements are less important now than they used to be, you, as a programmer, will want your
program to run as efficiently as possible. Therefore, if you have the choice of using two or more data types for a value,
use the data type that consumes the least amount of memory.

Table 5.1 describes each of the seven numeric data types that Visual Basic supports, the storage requirements of each
data type, and the range that each data type covers. Use the storage requirements and ranges to determine the data type
you want to use when you declare data. For example, if you need to represent negative numbers, you cannot use the
Byte data type. If you need a way to hold people's ages, however, the Byte data type would be the most efficient and
best data type to use.

A byte is one storage location in a PC's memory.

Table 5.1. Visual Basic supports seven numeric data types.

Type Storage Range
Byte 1 byte 0 to 255
Integer 2 bytes –32,768 to 32,767
Long 4 bytes –2,147,483,648 to 2,147,483,647
Single 4 bytes –3.402823E+38 to –1.401298E-45 for negative values; 1.401298E-45 to 3.402823E+38 for

positive values
Double 8 bytes –1.79769313486232E+308 to –4.94065645841247E-324 for negative values;

4.94065645841247E-324 to 1.79769313486232E+308 for positive values
Currency 8 bytes –922,337,203,685,477.5808 to 922,337,203,685,477.5807 (the extra precision ensures that

monetary calculations are kept accurate to two decimal places)
Decimal 12

bytes
+/–79,228,162,514,264,337,593,543,950,335 if you use no decimal; +/–
7.9228162514264337593543950335 with up to 28 decimal places (the Decimal data type is not
fully supported in Visual Basic yet but remains for compatibility with future versions)

Note

Some of the data values in Table 5.1 are expressed in scientific notation.

Scientific notation is a shortcut method for approximately representing extremely large or extremely small decimal
values. The E means exponent (stored as a single-precision, Single, data type), and high-precision scientific notation
numbers use a D for double-precision exponent (stored as a Double data type). Lowercase e and d are allowed as well.

To convert a value from scientific notation to its numeric equivalent, multiply the number to the left of the E or D by 10
raised to the number on the right. If the scientific number contains a negative sign after the E or D, divide the number
to the left of the E or D by 10 raised to the number on the right. For example, 5.83E+5 is 5.83 times 10 to the 5th
power, or 5.83 times 100,000, or 583,000 stored as a single-precision value. Although the scientific notation is not
shorter in this case than writing 584,000, the scientific notation would be much shorter for 5.83E+125 (which translates
to 583 followed by 123 zeros). The number –3.2D-6 represents –3.2 divided by 1,000,000 or –.0000032 stored as in a
Double memory location.

The issue of data types may still seem unimportant because you've yet to learn about data storage areas, but you will
shortly in the section called "Working with Variables." When you type the literal value –8.3 in a program, you don't
have to specify that the literal is the Single data type. You must be concerned, however, with the type of the location
that will hold that literal value. You cannot store –8.3 in an integer location and expect Visual Basic to represent the
value properly.

Sometimes when you use a literal, you'll want to guarantee that Visual Basic uses a specific data type for that literal.
For example, suppose that you are going to use –8.3 in a calculation that requires high-precision mathematics combined
with values that are Double. If Visual Basic assumes the –8.3 is a Single data type, the calculation may not be carried
out to as many decimal places as needed in some cases. Therefore, you can add a data-type suffix character to literals to
ensure that Visual Basic treats the literal as a specific data type. Table 5.2 lists these data-type suffix characters. If you
type -8.3# in the calculation, therefore, Visual Basic knows that you want the –8.3 treated from the beginning as a
double-precision number with the highest decimal accuracy possible.

Table 5.2. Visual Basic suffix characters for literals.

Suffix Data Type Represented
& Long
! Single
Double
@ Currency

Caution

The E and the D in scientific notation values represent Single and Double data types, so no suffix character is needed
for scientific notation values that you type because the scientific notation itself declares the literal's type.

Visual Basic respects the Windows International settings you've specified for your PC. Therefore, if you've set up to
use your PC for a European country, for example, you use the comma in place of a decimal point.

Tip

The good news is that, despite this section's heavy theory, you don't have to worry too much about data types when
you're working with literal values. If you need to assign a number to a control's property, just do so. Only in special
cases, such as high-precision scientific and mathematical work do you need to concern yourself with whether a literal is
single or double precision. One of the most important things to watch for is that you don't embed special characters
inside a number. For example, don't put commas inside a long numeric literal unless your Windows International
settings are set to a country that uses a comma in place of a decimal point for fractional values.

The Remaining Data Types

The nonnumeric data types are easier to understand than some of the higher-precision numeric data types if you are not
mathematically inclined. One of the reasons that BASIC and its incarnations have remained on the scene, despite the
proliferation of "more powerful languages" over the years, is the result of BASIC's text-handling power. BASIC, and
therefore Visual Basic, far surpasses virtually every other language available when it comes to processing text strings.

A string is a series of zero or more characters. Although a string may hold numeric digits, a string is never used in
calculations but only holds characters. You use strings for names, addresses, codes, Social Security numbers, and other
data values that you do not need to compute with. Use the numeric data types only when you need to compute or hold
strict numeric information such as monetary amounts.

In addition to string data, Visual Basic supports other kinds of data such as dates and Boolean data. Table 5.3 lists the
nonnumeric data types that Visual Basic supports.

Table 5.3. Visual Basic supports several nonnumeric data types.

Data Type Storage Range

String (fixed length) Length of string 1 to about 65,400 characters

String (variable) Length + 10 bytes 0 to 2 billion characters
Date 8 bytes January 1, 100 to December 31, 9999
Boolean 2 bytes True or False
Object 4 bytes Any embedded object

Variant (numeric) 16 bytes Any value as large as Double

Variant (text) Length plus 22 bytes Same as variable-length String

Boolean data, named after the mathematician George Boole, represents data that can take only two values. These values
are usually represented as true or false although they can also be treated as yes or no values.

Always enclose string literals in quotation marks. Strings can contain any characters; all the following are valid string
literals:

"Oh me, oh my"
"543-00-0234"
"1020 S. Yale Avenue"
""

Anything between two quotation marks is a string, even the null string at the end of the list.

A null string, sometimes called a zero-length string, is zero bytes in length and is sometimes used to initialize string
data to a value of nothing. The special Visual Basic value called Null also represents null strings. Visual Basic also
supports a special string value called an empty string, represented by the Empty keyword. Empty strings represent
strings that are similar to null strings but hold a slightly different interpretation; a control property that contains the
Empty keyword is assumed not to have been initialized with any value yet, not even a null string.

The distinction between fixed-length strings and variable-length strings will become more critical as you learn more
about Visual Basic data storage methods.

When you type a date or time literal, enclose the date or time value between two pound signs (#). Visual Basic allows
for virtually any kind of date and time format. The dates and times can follow whatever international setting you've
assigned to your PC. All the following are valid date and time literals:

#July 4, 1776#
#7:11 pm#
#19:11:22#
#1-2-2003#
#5-Dec-99#

The Boolean data type is useful for setting values to a control property that takes only a True or False value such as
an Enabled property value.

The Variant data type can hold any kind of data except fixed-length strings. You employ variant data for different
uses, especially when a data storage area is to hold different kinds of data. A variant storage area can act as a temporary
storage location for any data type that you will later place elsewhere in a more specific data-typed area.

Note

Perhaps you've heard of the year 2000 problem, also known as the Y2K bug. For many years, programmers used two-
digit years in code to save the space needed to carry the full year. These kinds of programs may have problems when
the two-digit year moves from 99 to 00. Visual Basic is year-2000 compliant which means that the internal date
representations take the next millennium into account. Therefore, at midnight on December 31, 1999, your Visual Basic
programs should have no trouble moving to the next year.

Nevertheless, some Visual Basic programmers resort to fancy time- and spacing-saving tricks, so not all Visual Basic
code will necessarily work. As a newcomer to Visual Basic programming, keep focued on the Y2K problem and
always work with the full year in your programs. You should have no problems when the year 2000 finally hits.

Working with Variables
Variables hold values that can change. A variable's value can change because a variable is nothing more than a storage
area, not unlike a box, that can hold one value at a time. When you store a different value in a variable, the original
value is replaced. The literal value 54 never changes, but if you were to store 54 inside a variable, the variable would
hold the 54 until you stored a different value in the variable, and then the variable would hold something else.

A variable is a temporary named storage area inside your program's memory that holds data. Variables hold
intermediate calculations and values that you assign to and load from controls on the form.

You are responsible for naming all variables in your code. Two different variables cannot have the same name within
the same procedure because Visual Basic cannot distinguish between them. Unlike control properties that are already
named, variables don't have names until you give them names. Before you can use a variable, you must declare the
variable by telling Visual Basic the name and data type that the variable is to hold. Variables can hold data only from
the data type you've defined the variable to hold. A variable declared as Byte cannot hold a string value. (The exception
to this rule is a variable declared as a Variant data type.)

Declaring Variables

The Dim statement declares variables by assigning them a name and data type. Before you can use a variable, you must
first declare that variable with a Dim statement. You can relax this rule a bit, but doing so can make for sloppy
programming that produces errors at times. Visual Basic's Tools, Options menu produces a dialog box. When you
select the Editor tab, you can check the Require Variable Declaration option to ensure that Visual Basic requires the
initial declaration. The declarations section of your code also includes a statement, by default, that looks like this:

Option Explicit

This statement tells Visual Basic that the rest of the code in this module is to declare all variables before they are used.
Thereafter, if you misspell a variable name in the middle of your program, Visual Basic will catch the error. If you do
not require explicit declaration before you use a variable, Visual Basic treats the misspelled variable as an uninitialized
variable and uses a bad value when the variable appears inside calculations.

Note

If you don't require explicit variable declarations, Visual Basic assumes that an undeclared variable is of the Variant
data type.

Here is the format of the Dim statement that you use to declare variables:

Dim VarName As DataType

VarName is the name you assign to the variable, and DataType is one of the data types listed in Tables 5.1 and 5.3. If
you declare variables inside a procedure (event procedures or nonevent procedures), you declare them immediately
after the opening wrapper line. The variable is then available to that procedure and only to that procedure. No other
procedure knows about the variable, which keeps the variable local to the procedure. If you declare a variable in a
module's declarations section, every procedure in that module has access to the variable. The variable is then said to be
global to the module, but no other module in the application has access to the variables. You can even make some
variables global to an entire project, but the more local you make your variables, the less likely you will attempt to use
the same variable for two different purposes.

Note

Two variables can have the same name and still be different variables as long as they are declared locally within
different procedures. In addition, two procedures can share a variable that is local to only one of the procedures. You'll
learn about how to share local variables on Day 8, "The Nature of VB Programs."

You make up variable names, so you should know the rules for naming them. When naming variables, you must

• Begin all variables with an alphabetic letter.
• Use letters or numbers in the name.
• Keep the name from 1 to 255 characters in length (so don't make up 256-character names).
• Use a limited set of special characters in the name. To be safe, use only the underscore character (_) in the

name. When you stick to letters, numbers, and the underscore, you don't have to worry about forgetting which
special characters are and are not allowed. Especially, don't embed spaces in a variable name.

The following are not hard and fast rules but good general rules of thumb to follow when naming your variables:

• Preface variable names with a prefix that describes the variable's data type. This way, you don't have to keep
referring to the declarations section of a long program to locate the variable's data type, and you are less likely
to store an incorrect data-typed value in the variable. Table 5.4 lists common variable-name prefixes you can
use.

Note

You can store some values of one data type into variables declared for a different type if the data types are compatible
in type and size. For example, you can store a byte data value in an integer variable because the Integer data type
accepts a larger range of integer numbers than the Byte data type.

• Use names that are meaningful, such as curHighTotal instead of something ambiguous such as a or curX1.
The names help document the code.

• Use a combination of uppercase and lowercase letters to separate parts of variable names. (This tutorial uses
only letters and numbers in variable names although many programmers prefer to use the underscore to separate
parts of a name, such as curHigh_Sales.) A combination of uppercase and lowercase is called camel notation
due to its hump-like nature (that is, aCamelHump).

Table 5.4. Variable name prefixes that describe the variable's data type.

Prefix Data Type Example
bln Boolean blnButtonEnabled
byt Byte bytLength
cur Currency curSales98
dte Date dteOverdue
dbl Double dblScientificAmt
int Integer intYear1998
lng Long lngWeatherDistance
obj Object objWorksheetAcct99
sng Single sngSales1stQte
str String strFirstName
vnt Variant vntValue

Here are some possible variable declarations using Dim:

Dim intTotal As Integer
Dim curSales99 As Currency
Dim dteFinal As Date
Dim strName As String
Dim blnIsChecked As Boolean

Name your variables of the Boolean data type like a question that can be answered as yes or no (or true or false), as
done here with blnIsChecked.

You can also combine variable declarations in one Dim statement, separated with a comma, but you must use the As
DataType clause for each variable, as in the following:

Dim intTotal As Integer, curSales99 As Currency

If you don't specify the As DataType clause, Visual Basic declares the variable as a Variant data type. Therefore, the
following statements are equivalent:

Dim vntControlVal As Variant
Dim vntControlVal

Caution

When you declare variant variables, always specify As Variant to clarify your intentions with the variable.

Declaring Strings

Strings pose an extra problem when you declare them because the String data type works for two kinds of strings:
variable length and fixed length. The most common string data type is the variable-length string; such string variables
are the easiest to declare because they follow the same Dim statement format as the other data types. The following
statements declare two variable-length string variables:

Dim strCityName As String
Dim strStateName As String

Both strCityName and strStateName can hold strings of any length. If you first store "Indianapolis" in
strCityName, you can later store "Tulsa" in that same name and the variable adjusts to the new string length. Most of
the time you'll work with variable-length strings; however, this book does not describe fixed-length strings too much
unless the length is vital, as is sometimes the case when working with disk files. In addition, you may want to limit the
number of characters that appear in a label or some other control by assigning only fixed-length strings to them.

Note

The quotation marks are not stored as part of the string but serve only to delimit the string in a string literal.

Here is the format of the Dim statement that you must use to declare fixed-length strings:

Dim VarName As String * Length

The * Length option tells Visual Basic that the Dim statement declares a fixed-length string that will never hold more
characters than Length specifies. The following declaration declares a variable that will hold at most five characters:

Dim strZipcode As String * 5

If you attempt to store more characters than a fixed-length string variable allows, Visual Basic stores only the fixed
number of characters and discards the rest. Such bugs are often difficult to trace.

Using Variable Storage
After you declare a variable, you can store data in the variable. Using the assignment statement is the easiest way to
store values in variables. Here is the format of the assignment statement:

ItemName = Expression

ItemName can be a declared variable, and is for most of today's lesson, but ItemName can also be a control property
value. Expression can be any of the following:

• A mathematical expression
• A literal
• A variable
• A logical or string expression
• A control's property value (control properties are Variant, but Visual Basic converts them to a data type when

you store them in variables)
• A mathematical, logical, or string expression that contains a combination of literals, variables, and control

property values

The concept of an expression may seem daunting at this point, but an expression can be virtually anything that becomes
a value. All the following are valid assignment statements:

curSales = 5712.75
strFirstName = "Terry"
blnPassedTest = True

blnIsEnabled = lblTitle.Enabled
dblValue = 45.1
intCount = intNumber
dteOld = #4-1-92#
sngOld97Total = sngNew98Total - 1000.00

You can easily see how the assignment works from the first assignment here. The value 5712.75 is stored in the
variable named curSales. You can add a data-type suffix after a literal, as done in the fifth assignment, to keep both
sides of the assignment the same data type. In this case, however, 45.1 is smaller than a Double data type, so Visual
Basic would automatically make the conversion if you omitted the suffix. Assign variables declared with the Boolean
data type either True or False, or a property value that contains either True or False. Notice that the last assignment
includes a minus sign. You'll learn how to write mathematical expressions in the next section.

Note

Visual Basic still supports an older assignment statement format that starts the assignment with the Let keyword. The
following two statements do exactly the same thing:

Let intCount = 1

intCount = 1

Throughout the first four lessons, you learned that you can store control property values through Visual Basic code.
You use the assignment statement to do just that. The following statement changes the value shown on the form's label
named lblTitle:

lblTitle.Caption = "The task is completed"

All controls have default properties that are the properties Visual Basic assumes you are assigning to if you don't
specify a property name. The default property for label controls is the Caption property, so the following assignment is
equivalent to the preceding one:

lblTitle = "The task is completed"

Tip

Although assigning to controls'default properties requires less typing, the more explicit you make your code, the more
self-documenting the code will be and the more clear the code will be to readers. Always type the property you are
assigning to even if that property happens to be the default property. When you later maintain the code, the statement
will be less ambiguous.

The moment a statement assigns a value to a control, that control is updated on the form. Therefore, the new title
appears immediately as soon as this assignment to the title is made. The user will instantly see the new title on the
screen.

Visual Basic's Operators
Visual Basic supports numerous mathematical and string operators. Table 5.5 lists the most common operators. You
use these operators in expressions when calculating and working with data.

Operators manipulate data by combining or computing results. Most operators are symbols, but some, such as Mod,
look more like Visual Basic commands.

Table 5.5. These common operators perform calculations and manipulate data.

Operator Meaning Example Result
^ Exponentiation 2 ^ 3 8

* Multiplication 2 * 3 6

/ Division 6 / 2 3

+ Addition 2 + 3 5

– Subtraction 6 – 3 3

/Mod Modulus 11 Mod 3 2

/\ Integer division 11 \3 3

+ or & String concatenation "Hi," & "There" "Hi,There"

The exponentiation raises a number to a power. Therefore, 2 ^ 3 is the same as 2 raised to the 3rd power, or 2 times 2
times 2, which equals 8. You can raise fractional values to a power, and you can raise values to a negative power to
compute the root of the number if you need an nth root. The multiplication and division operators work as you would
expect. The expression 10 / 3 results in the approximate value 3.3333, and 10 * 3 results in a value of 30.

The Mod operator returns the remainder from an integer division. Only integer values can appear on each side of Mod; if
you include a different data type, Visual Basic attempts to convert and round the data to an integer before proceeding
with the modulus. For example, 11 Mod 3 returns a 2 simply because 11 divided by 3 is 3 with a remainder of 2. The

integer division operator, \ (notice that the backslash and not the forward slash denotes division), returns the whole
number value of a division and discards any remainder. Therefore, 11 \3 is 3 because 11 / 3 is 3 with a remainder of 2.
(Using the normal division operator, 11 / 3 would compute a fractional value, such as 3.666.)

The plus sign (+) is an overloaded operator because it performs two operations depending on the data you place on
either side of it. When you place two string values on either side of the plus sign, or on either side of the ampersand, &,
Visual Basic concatenates the strings and treats the concatenated string as a single string. Visual Basic adds nothing
between the concatenated strings, so if you want a space between them, you have to concatenate a space between them
specifically.

An overloaded operator is an operator that performs more than one operation depending on the context in which you
use it.

Concatenation is the merging together of two or more strings into one longer string.

The following assignment concatenates the values from two labels into a single string variable, putting a space between
them:

strCompleteName = lblFirst.Caption & " " & lblLast.Caption

Tip

To avoid possible confusion with the addition operator when you maintain your code, use the ampersand only when
you are concatenating strings.

Analyzing the Order of Operators
Visual Basic performs math in a strict predefined order, which is illustrated in Table 5.6. Exponentiation is performed
first, and then multiplication and division are performed before any addition and subtraction in an expression unless
parentheses override that order.

Table 5.6. Visual Basic follows an order of operators when computing results.

Order Operators Example Result

1 Parentheses () (2 + 3) * 7 35

2 ^ 2 ^ 3 + 1 9

3 *, /, \, Mod 2 + 3 * 7 23

4 +, – 10 – 4 * 2 + 1 3

Unless parentheses override the default order, Visual Basic always calculates the intermediate results of any
multiplication and division in an expression before the addition and subtraction. Exponentiation has an even higher
priority.

If multiplication and division both appear in the same expression, Visual Basic performs them from left to right unless
parentheses override that order. Therefore, the following expression produces a result of 15 because Visual Basic first
divides 10 by 2 to get 5 and then multiplies the 5 by 3 to get 15. In the same way, addition and subtraction compute in
their left-to-right order if they appear in an expression without other operators or parentheses changing their behavior.

10 / 2 * 3

If you embed one set of parentheses within another, Visual Basic computes the innermost set first. Therefore, Visual
Basic computes the (8 – 3) before anything else in the following expression:

(10 + 2 - (8 - 3)) + 1

Summary
Today's lesson introduced you to preliminary details of Visual Basic code. First, you learned how the declarations
section fits into the overall Visual Basic application, and then you studied the specifics of code starting with data types.

Visual Basic supports several kinds of data, as you learned today. You must not only understand how to distinguish
between two or more data types but also how to declare the various data types that you want to work with. You'll use
variables for intermediate storage as a program runs, but before you use a variable, you must properly declare that
variable and name it. After you declare a variable, you might then use the Visual Basic math operators to calculate
results and store those results in the variables that you've defined.

Tomorrow's lesson takes you to the next step of Visual Basic programming by showing another set of operators with
which you can compare data. After you tackle the operators, you then will learn new programming statements and
controls that work with those operators.

Q&A
Q: Why does Visual Basic not compute all operators from left to right?

A: Visual Basic follows a standard and historical algebraic operator hierarchy. Don't blame Visual Basic; blame
the mathematicians! Seriously, the order of operators keeps ambiguity from your code by defining a preset
order that is always followed. Actually, you don't have to rely on the order of operators because you can
dictate all order by using extra parentheses, even where they are not needed. For example, the following
assignment would store the same result with or without the parentheses, but the parentheses might be clearer

because they eliminate all possible ambiguity:]

intValue = (8 * 9) + intResult

Q: Why are local variables better than global variables?

A: You'll gain more insight into the local versus global discussion as you learn more about Visual Basic
programming. The rule of thumb is that local is always better than global with few exceptions. Generally, a
procedure should work on a need-to-know basis. It should have access only to variables that it needs and not
to any others. Such separation helps eliminate nasty and hard-to-find bugs that can appear if all variables are
global.

Perhaps already you realize that controls are global to the entire project. Any procedure may need to modify
or read a control's property value so that a form's controls are available to all code within a project.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next day's lesson. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: What kind of code goes in the declarations section of a program?

2: What can you do if two or more procedures need access to another procedure's local variable?

3: True/False. A literal's value never changes.

4: True/False. A variable's value never changes.

5: Why does Visual Basic support two kinds of division operators?

6: What is an overloaded operator?

7: Which operator is preferred for concatenating string expressions?

8: Which data type holds any other data type?

9: True/False. The variable prefixes are required in variable names.

10: What two ways can you use to ensure that Visual Basic doesn't allow for undeclared variables?

Exercises

1: What do you think Visual Basic will do with the following variable declaration statement?

Dim intCnt As Integer, abc, curSales As Currency

2: Bug Buster: Sally is having difficulty calculating a correct average using the following expression. Can
you help her?

sngAvg = sngGrade1 + sngGrade2 + sngGrade3 / 3

3: What is the result of each of the following formulas?

a. 1 + 2 * 4 / 2
b. 1 + 2) * 4 / 2
c. 1 + 2 * (4 / 2)
d. 9 \2 + 1
e. 1 + (10 – (2 + 2)))

4: Write assignment statements that convert each of the following formulas to their Visual Basic
equivalents:

a.

b.

c.

5: The program from the first Bonus Project, "Controls, Properties, and Events," included the following
procedure :

1: Private Sub cmdTest_Click()
2: ' This event procedure executes as soon as the
3: ' user wants to test the entered password
4: If txtPassword.Text = "Sams" Then
 ' Success! Password matched
5: Beep
6: Beep ' Now, display the picture
7: imgPassword.Picture = LoadPicture("C:\Program Files\" _
8: & "Microsoft Visual Studio\Common\Graphics\MetaFile\" _
9: & "Business\coins.wmf")
 lblPrompt.Caption = "Show me the money!"

10: Else
11: lblPrompt.Caption = "Wrong password - Try Again"
12: txtPassword.Text = "" ' Erase old password
13: txtPassword.SetFocus ' Put focus on text box
14: End If
15: End Sub

Study this procedure to see how the assignments are made. More importantly, can you now see why
long statements that you continue with an ending underscore, such as lines 7, 8, and 9, must include
ampersands when you break string literals?

Bonus Project 2: Variables and Expressions
This Bonus Project's code demonstrates variable declarations, assignment statements, and expressions. Now that you've
mastered the basics of form design using some of the controls, you need to tackle the details of code and learn how to
activate an application's controls with Visual Basic programming statements. The place to start is with data.

The simple code in Listing BP2.1 demonstrates the concepts you learned about in Day 5's lesson ("Analyzing VB
Data"). No visual Form window is described here so that you can concentrate on the code. If you want to create a Form
window to test the code, you can do so by designing a form that contains three labels named lblGrossPay,
lblTaxes, and lblNetPay. Add a command button named cmdCalcPay to trigger the code. You only need to create a
simple form, such as the one shown in Figure BP2.1. After performing some calculations, the code will place the
payroll results in the three labels.

Figure BP2.1. You can create a simple form to test this code.

Listing BP2.1 This code demonstrates variables and assignment statements.
1: Private Sub cmdCalcPay_Click()
2: ' Computes three payroll variables
3: Dim intHoursWorked As Integer
4: Dim sngRate As Single, sngTaxRate As Single
5: Dim curTaxes As Currency, curGrossPay As Currency
6: Dim curNetPay As Currency
7:
8: ' Initialize the variables
9: ' (Normally, data such as this would
10: ' come from the user or from a file)
11: intHoursWorked = 40 ' Total hours worked
12: sngRate = 7.8 ' Pay per hour
13: sngTaxRate = 0.42 ' Tax rate percentage
14:
15: ' Calculate the amounts
16: curGrossPay = intHoursWorked * sngRate
17: curTaxes = sngTaxRate * curGrossPay
18: curNetPay = curGrossPay - curTaxes
19:
20: ' Display results in appropriate labels
21: lblGrossPay.Caption = curGrossPay
22: lblTaxes.Caption = curTaxes
23: lblNetPay.Caption = curNetPay
24: End Sub

Analysis
Lines 1 and 24 are the wrapper lines for the command button's event procedure. Lines such as 2 and 8 help document
the code for ease of maintenance. Lines 3 through 6 declare several variables. Three of the variables are of the
Currency data type.

Lines 11, 12, and 13 assign data values to three variables. Normally, payroll data might come from the user entering the
values from the keyboard or perhaps from a data file; however, because you have yet to master keyboard and file input,
the assignment statements work well for this short example. Notice also that when a literal is assigned to an integer
variable in line 11, no decimal point is used; however, a decimal does appear in the assigned values for the two single-
precision variables in lines 12 and 13.

Lines 16, 17, and 18 perform the payroll calculations. The order of operators does not come into play in any of the
expressions because they are short. You'll see that data types are mixed in the expressions, but all the data is compatible
with each other.

Finally, lines 21, 22, and 23 assign variable values to the label controls. As soon as each assignment is made, the
corresponding form updates the labels with the computed and assigned values.

Caution

An assignment statement copies an expression on the right side of the equal sign to the data holder (such as a variable
or control) on the left side of the equal sign. The assignment is not a move operation. After line 21 executes, for
example, the variable curGrossPay still holds its value, but that value also now appears in the label's caption as well.

Day 6. Controlling Programs
Today's lesson continues to teach you about Visual Basic operators, but the operators you'll study today compute no
mathematical results. Today you'll learn about the conditional and logical operators that perform data comparisons. In
addition, you'll learn some control statements so that you can write programs that repeat sections of code as many times
as needed and that test various data conditions.

Today, you learn the following:

• Conditional operators that you can use to test data
• The logical operators and how they enable you to combine conditional operators
• About the If statement
• When to use a loop
• The difference between the four kinds of Do loop formats
• How the For and Do loops compare

Conditional Operators
Consider the scenario in which you are writing an accounts payable application. The application totals owed amounts
for each vendor that you do business with and prints the checks to the vendors. What if you did no business with one of
the vendors within that past pay cycle? Do you want the program to print a check made out for $0.00? Certainly not.
Until now, all program code within a procedure that you've seen has executed one statement after another. By using
conditional operators and related statements that you'll learn today, you can write a program so that it changes its order
of statement execution if the data requires such a change. Therefore, the application can print checks only to those
vendors to whom you owe money.

Table 6.1 lists several new Visual Basic operators. None of these operators perform math as did the ones in yesterday's
lesson. Instead, these conditional operators compare data. These conditional operators make your Visual Basic
programs somewhat smarter. By comparing data and analyzing results, your Visual Basic program can decide an
appropriate course of action based on data alone. By writing programs with conditional operators and statements, you
let Visual Basic decide, at runtime, which statements to execute in a program.

The conditional operators let you compare one Visual Basic data value to another. Through the conditional operators,
you can learn if a value is less than, equal to, or greater than another.

Table 6.1. Visual Basic supports six conditional operators.

Operator Description Example Result
= Equal to 7 = 2 False
> Greater than 6 > 3 True
< Less than 5 < 11 True
>= Greater than or equal to 23 >= 23 True
<= Less than or equal to 4 <= 21 True
<> Not equal to 3 <> 3 False

Notice that Table 6.1 has a result column. What is the result of 6 > 3? Is 6 greater than 3? Yes, so the result of that
conditional expression is true. As you know from yesterday's lesson, Visual Basic supports the Boolean data type that
accepts a true or false value. The Visual Basic programming language supports the keywords True and False, so you
can use them inside code to assign values to Boolean variables and to control properties that accept True and False.

Note

From Table 6.1, you can see another operator that is overloaded in addition to the plus sign that you learned about
yesterday. The equal sign is used in assignment statements to assign expressions to variables and controls. The equal
sign is also used for equality comparisons. Visual Basic distinguishes between the two operations from the context in

which the equal sign appears in your code.

Before you see these operators inside Visual Basic code, make sure that you understand how they work. The expression
23 >= 23 is true because 23 is greater than or equal to 23. Study the result column in Table 6.1 to make sure you
understand how the values compare.

Literals aren't the only values that can appear on each side of a conditional operator. You can place literals, expressions,
variables, controls, and combinations of all of them around conditional operators. Visual Basic works with many kinds
of data, and your programs have to test to see how data compares before determining the best code to execute.

A special case occurs if a value on one side or the other of a conditional contains the Null value. Visual Basic returns
neither True nor False but Null for the conditional's result. You have to be on the lookout for the Null value if you
suspect such a value is possible in one of the values you are comparing. In these cases, you look for three possible
results: True, False, or Null. Because such results get confusing, Visual Basic contains tools called internal
functions that can help you detect Null values; you'll learn about them on Day 8, "The Nature of VB Programs." Along
these same lines, the conditional operators assume that an Empty value (meaning that a control or variable has yet to be
initialized with any value, as you read in yesterday's lesson) is the same as zero, or a null string if you are comparing
strings.

You use the conditional operators to compare strings just as you do for numeric values. Generally, string comparisons
follow these rules of thumb:

• Uppercase letters are less than lowercase letters, so "ST. JOHN" comes before "St. John."
• Letters compare in alphabetical order, so "A" is less than "B" and the name "Walter" is greater than (comes

before) "Williams."
• Numbers are less than letters, so "3" is less than "Three."

If these general rules of thumb seem confusing, you can be assured that Visual Basic compares most string data in the
same order that you find names listed in your phone book. Being able to compare string data lets your program
alphabetize names, test passwords, and analyze information.

Caution

Visual Basic supports a special statement in the declarations section of a module that reads as follows:

Option Compare Text

If this statement appears in a module's declarations section, possibly along with the Option Explicit statement you
learned yesterday, uppercase and lowercase letters compare equally. If you do not want a case-sensitive comparison,
you can include the Option Compare Text statement in your module, but generally, you won't want to compare
uppercase and lowercase letters equally because you would then be unable to alphabetize properly in most situations.

Note

Visual Basic follows the ASCII table order when comparing strings unless the Option Compare Text statement
appears in the module.

An ASCII table (pronounced ask-ee) is a list of all 256 characters available on the PC along with a corresponding and
unique number assigned to each character. The letter A has an ASCII value of 65, B has 66, and so on. If you search for
ASCII codes in Visual Basic's help index, the ASCII table appears on your monitor, as shown in Figure 6.1. In addition
to the online help that's always available, Appendix C contains an ASCII table.

Figure 6.1. Visual Basic follows the order of the ASCII table when comparing string data.

Consider the following string comparisons:

"abcdef" > "ABCDEF"
"Yes!" < "Yes?"
"Computers are fun!" = "Computers are fun!"
"PC" <> "pc"

"Books, Books, Books" >= "Books, Books"

Each string comparison you see here returns a True result.

Visual Basic supports another conditional operator, Like, which compares values based on a wildcard match. Perhaps
you've used the * and ? wildcard characters when working with files. * stands for zero or more characters, and ? stands
for only one character. In addition, Like uses a third wildcard character, #, to stand for a numeric digit. A few
examples should help explain Like quickly. Consider these conditional expressions that use Like and that all return the
value True:

"Sams Publishing" Like "Sa*"
"Qtr???" Like "QtrOne"
"Data##" Like Data98"
"X" Like "[XYZ]"

The last example shows a special kind of Like expression. If the character is like any character inside brackets, a True
result is produced. The brackets offer a way to test for one of a few characters. All the following compare true when
you use Like against a string value of "Code[12345]Red": "Code1Red", "Code2Red", "Code3Red", "Code4Red",
and "Code5Red".

Note

In real-world Visual Basic programming, you'll compare variables and controls, and the data in them can change as the
program executes. These examples compare literals against literals only to show you how the operators work.

The equality conditional operator would return false for these expressions because = does not recognize wildcard
characters.

Conditional Data
Always compare two values whose data types are compatible. For example, you can compare one number of any
numeric data type against another to see which is larger. You can compare strings against each other and Booleans
against each other. Don't try to compare a string and a number, however, because the results are usually wrong.

Caution

Strings, Booleans, currency values, dates, times, and the integer data types (Byte, Integer, and Long) compare
against each other well for equality. Never try to compare two single- or double-precision values against each other for

equality, as in sngSales = sngGoal. Due to the way Visual Basic stores precision data, two equal single-precision
values may compare as unequal because of rounding that Visual Basic performs to such values internally. If you want
to test for two equal precision variables, you have to subtract them and test the size of the difference to see whether
they are approximately equal. Such coding is tedious, so avoid it if you can.

Visual Basic handles the Variant data type nicely when you make a conditional compar ison because you'll often
compare a control's value, such as a text box's Text value, to a variable or to a literal. Control properties generally
compare as if they were variant data. If the variant variable or control holds characters that correspond to a number,
such as 234.56, and you compare that variant value to a numeric variable, Visual Basic makes a numeric comparison
by temporarily converting that variant value to a number. If, however, you compare a variant variable or control to a
string, Visual Basic temporarily turns that value into a string to make a true character-by-character, ASCII-based string
comparison. Therefore, Visual Basic takes care of some ugly details that would otherwise be difficult to handle when
one side of a comparison is the Variant data type.

Caution

Visual Basic issues a nasty runtime error if you compare a variant value to a numeric value and the variant's value does
not properly translate into a number. Be sure that you know your data. Visual Basic offers help for testing of data types
in some internal functions that you'll read all about in Day 8's lesson.

Combining Conditional Operators with Logical Operators
Technically, the six conditional operators offer enough power to test for any condition, but you can greatly enhance
their flexibility by combining the conditional operators with Visual Basic's logical operators. Table 6.2 lists the logical
operators.

The logical operators let you combine two or more sets of conditional comparisons. Like the Mod operator, the logical
operators use keywords instead of symbols.

Table 6.2. Visual Basic supports three logical operators.

Operator Description Example Result
And Both sides must be true (2 < 3) And (4 < 5) True
Or One side or other must be true (2 < 3) Or (6 < 7) True
Xor One side or other must be true but not both (2 < 3) Xor (7 > 4) False
Not Negates truth Not (3 = 3) False

Programmers use And and Or much more often than the other two logical operators. The Xor operator helps you
distinguish between mutually exclusive options. If more than one option is true in a mutually exclusive situation, such

as a user selecting multiple months for a date of birth, Xor lets you know that more than one option was selected (or
that none were) due to a false Xor result. Finally, the Not negates true and false expressions, although using Not too
much can confuse code because you have to swap the logic when writing and debugging code that uses Not. Don't
overdo the use of Not.

Consider the following expression that combines conditional operators with the And logical operators:

(curSales < curMinSales) And (intYrsEmp > 10)

If the current sales are less than the minimum required and the number of years employed is more than 10 (see how
meaningful variable names help document code?), the entire expression is true. Although you could test both of these
conditions separately without combining them, the And lets you do so in one expression.

Caution

Don't combine too many conditional expressions with logical operators, or your code will become more confusing.
Break up extra-complex expressions such as the following:

(a > 6) And (b < 1) Or Not(1 = c) Xor (d = 4)

The order of operators affects the placement and execution of conditional and logical operators. Consider the following
expression:

curSales * sngCommission > curHighSales / 10

Which operation does Visual Basic perform first? Does Visual Basic compare sngCommission to curHighSales and
then multiply the answer by curSales and divide that by 10? That order of operation makes no sense because the
greater than operator returns a True or False result, and performing math on such a result makes no sense.

Table 6.3 shows a more complete order of operators than the one shown in yesterday's lesson. Table 6.3 shows how the
conditional and logical operators work in conjunction with mathematical operators when they all appear in the same
expression.

Table 6.3. The complete order of operators table includes conditional and logical operators.

Order Operators

Table 6.3. The complete order of operators table includes conditional and logical operators.

Order Operators

1 Parentheses

2 ^

3 *, /, \, Mod

4 +, -

5 Conditional operators including Like

6 Not logical operator

7 And

8 Or

9 Xor

Tip

Just to make sure that your programs are as clear as possible, add parentheses around expressions to reduce ambiguity
with their order of operation. The preceding expression would then clearly read like this:

(curSales * sngCommission) > (curHighSales / 10)

The If Statement Uses Conditional Operators
One of the most popular commands in the Visual Basic language is If. The If command is part of an overall multiline
statement called the If statement, whose format is this:

If conditional Then
 Block of one or more Visual Basic statements
End If

The conditional is any expression that returns a True or False result. Therefore, the conditional might be a
Boolean variable, a control that equates to a True or False value, or a longer expression that includes conditional and
possibly one or more logical operators.

Note

Visual Basic still supports the old BASIC-like If statement that appeared all on one line. Its format is

If conditional Then Visual Basic statement

If statements almost always trigger more than one statement, so the multiline If makes more sense and is more in use
today. Even if the If is to trigger a single statement and the one-line If would work, use a multiline If to make adding
to the If easier in the future.

Do Don't

DO indent the body of an If statement so that you can, at a glance, tell when an If statement begins and ends.
All multiline If statements have a matching set of End If statements somewhere later in the program. The End
If always goes with the most recent If no matter how you indent the code.

People use If-like statements every day. Consider the following:

If I go to work early, then I will finish early.
If I clean my room and empty the trash, then I can play baseball.

In other words, people use exactly the same If statement format as Visual Basic does. The If statement works this
way: If and only if the Condition is true does the code body of the If execute. Read the two previous real-world If-
like statements again. If and only if you go to work early will you finish early. If you don't go to work early, well, you
won't finish early. The second statement says that both conditions must be true: If you clean your room and empty the
trash will you play baseball.

Consider the Visual Basic If statement in Listing 6.1.

Listing 6.1 Compare data using If.
1: If (curSales > curSalesGoal) Then
2: ' The salesperson beat the goal
3: curSalaryBonus = 1000.00
4: lblSalesNote.Caption = "You beat the goal!"
5: lblSalesNote.BackColor = Red
6: lblSalesNote.FontBold = True
7: End If
8: ' Rest of program code continues here

If the value in curSales is greater than the value in curSalesGoal, the four statements (not counting the remark) in
lines 3 through 6 execute. If the value is not greater (even if it's equal), lines 3 through 6 do not execute. Either way, the
program continues, starting at line 8 after the If does whatever job it's supposed to do. Do you see that the data drives
the If statement? Do you see that the program is making a decision at runtime? That decision is whether to execute
certain parts of the code, namely the code inside the body of the If.

Note

The parentheses around the condition are not required in an If statement, but they do help pinpoint the expression to
make the If clearer.

Completing the If with Else
The preceding sections described one form of If, but programmers often use the expanded form that takes the
following format:

If conditional Then
 Block of one or more Visual Basic statements
Else
 Block of one or more Visual Basic statements
End If

As with all multiline statements, the indention of the body is suggested for clarity but not required. The first If format
offered code that executed if the condition was true but did not offer code that executed if the condition was false. The
Else does just that. The If...Else statement provides two bodies of code: one that executes if the condition is true
and the other that executes if the condition is false. No matter what the condition is, the rest of the program continues
after the If...Else test finishes.

Bonus Project 1, "Controls, Properties, and Events," contained an If...Else to test a password field. Listing 6.2
contains that If...Else.

Listing 6.2 If tests a password for a match.
1: If txtPassword.Text = "Sams" Then
2: ' Success! Password matched
3: Beep
4: Beep ' Now, display the picture
5: imgPassword.Picture = LoadPicture("C:\Program Files\" _
6: & "Microsoft Visual Studio\Common\Graphics\MetaFile\" _
7: & "Business\coins.wmf")
8: lblPrompt.Caption = "Show me the money!"
9: Else
10: lblPrompt.Caption = "Wrong password - Try Again"
11: txtPassword.Text = "" ' Erase old password
12: txtPassword.SetFocus ' Put focus on text box
13: End If

Line 1 performs a test to see whether the text box control contains the correct password. If so, the body of code right
after the If, starting in line 2, executes. The Beep statement rings the PC's speaker so that, if the password matches,
lines 3 and 4 make the PC do a double-beep. The image then gets the picture in the continued lines 5, 6, and 7, and the
label's caption changes to reflect the correct password. After the If is over, the program executes starting on the line
that follows the End If statement. If, however, the condition is not true and the password does not match, the body of
the Else keyword executes, and lines 10, 11, and 12 inform the user that the password did not match.

You can embed one If within another as Listing 6.3 shows.

Listing 6.3 Nested If statements add power to data comparisons.
1:If (curSales > 10000.00) Then
2: If (intHrsWorked > 40) Then
3: curBonus = 750.00
4: Else
5: curBonus = 500.00
6: End If
7: Else lblBonus.Caption = "Good work!"
8:End If

When you embed If...Else statements like this, each Else and End If always goes with the most recent If. The
further indention of each embedded If body helps show where one If begins and another one ends.

An Early Exit
Sometimes, depending on the data, you may want to terminate an event or other kind of procedure early. You can
combine the If and Exit statement to do just that.

The Exit statement has the following format:

Exit Sub | Function | Do | For

The vertical bars between the keywords indicate that only one of those keywords can follow Exit; the one you use
depends on what you want to exit from. To exit from an event procedure, which is a subroutine as you learned in Day
4, "Creating Menus," you use the Exit Sub statement. To exit from a function procedure, you use the Exit
Function. The Exit Do and Exit For statements will become clear before today's lesson is finished .

Listing 6.4 terminates the event procedure in line 3 if the If statement's condition is true.

Listing 6.4 Use an Exit Sub to terminate a procedure early.
1: Private Sub cmdCalc ()
2: If (txtSales.Text < 5000.00) Then
3: Exit Sub 'Terminate procedure
4: Else
5: ' If the bonus is at least $5,000...

6: ' perform the next statement that
7: ' displays the sales as a percentage
8: ' of the sales
9: lblBonus.Caption = txtSales.Text * .05
10: End If
11: End Sub

Nesting If...Else Statements
If you embed one If...Else statement inside another If...Else statement, you have to use the ElseIf to start the
nested If statement. Consider the code in Listing 6.5.

Listing 6.5 The ElseIf helps combine two or more nested If...Else statements.
1: If (intHours <= 40) Then
2: curOverTime = 0.0
3: ' Now test for hours between 40 and 50
4: ' and pay time and a half
5: ElseIf (intHours <= 50) Then
6: curOverTime = (intHours - 40) * 1.5 * sngRate
7: Else
8: ' Must pay double time over 50 and
9: ' time and a half for the hours between
10: ' 40 and 50
11: curOverTime = ((intHours - 50) * 2 + (10 * 1.5)) * sngRate
12: End If

A nested statement is one statement that appears inside another's body.

The ElseIf statement in line 5 starts a new If...Else block of code. If the hours are not 40 hours or less in line 1, the
hours must be more than 40. Therefore, line 5 tests to see if the hours are between 40 and 50 (line 5 would never
execute unless the hours were at least 40). Time and a half is computed for those overtime hours. If line 5 is false, then
the hours worked must be more than 50. Line 11 contains a complex expression that computes double time for all hours
over 50 and time and a half for the 10 hours between 40 and 50.

Do nested If...ElseIf...End If statements like these get confusing and difficult to debug? Of course, they do, and
this simple example illustrates just how difficult they can be. In the next section, you'll see how the Select Case
statement offers a better alternative.

Selecting with Select Case
The Select Case statement is more suited to checking for multiple conditions. Having more than three or four
embedded If...Else statements results in a complicated program. You get into messy logic such as "If this is true,
then if this is true, then if one more thing is true, then do something, else.…" Here is the Select Case statement's
format:

Select Case Expression
 Case expressionMatch
 Block of one or more Visual Basic statements
 [Case expressionMatch1
 Block of one or more Visual Basic statements]
 [Case expressionMatch2
 Block of one or more Visual Basic statements]
 :
 [Case expressionMatchN
 Block of one or more Visual Basic statements]
 [Case Else
 Block of one or more Visual Basic statements]
End Select

Select Case selects from one of several conditions. The number of conditions, indicated by the [Case
expressionMatch# ...] body, varies depending on the number of conditions that you need to test. If none of the
cases perform a match, the Case Else code body executes if you supply one.

Despite its foreboding format, Select Case is simple to use. Consider the example in Listing 6.6.

Listing 6.6 Select Case statements compare against multiple values.
1: ' Test for a child's letter grade
2: Select Case txtGrade.Text
3: Case "A"
4: lblAnnounce.Caption = "Perfect!"
5: Case "B"
6: lblAnnounce.Caption = "Great!"
7: Case "C"
8: lblAnnounce.Caption = "Study harder!"
9: Case "D"
10: lblAnnounce.Caption = "Get help!"
11: Case "F"
12: lblAnnounce.Caption = "Back to basics!"
13: Case Else
14: lblAnnounce.Caption = "Error in grade"
15: End Select

Note

The data type of the Expression must be the same as for each case's expressionMatch. Listing 6.6's code assumes
that txtGrade.Text holds string letter grades; for that reason, lines 3, 5, 7, 9, and 11 all check to see whether that
string value matches a string value.

If the text box named txtGrade.Text holds the letter A, line 3's Case body executes, and then Visual Basic skips all
the remaining cases. Once that happens, the code that begins after line 13 executes. If the text box named

txtGrade.Text holds the letter B, line 5's Case body executes, and so on. The body of a Case can cover several lines,
although only single lines of code are shown in this example. Visual Basic knows that after a Case expressionMatch
is made, each line in that matching Case body executes until the next Case, at which point the entire Select Case has
done its job and the program can continue.

If, for some reason, a grade other than A, B, C, D, or F appears in the text box, the Case Else takes over and warns of
the error by setting the label's value.

Visual Basic supports another form of Select Case that lets you specify one conditional operator for each
expressionMatch using the Is keyword. Listing 6.7 rewrites the preceding Select Case to take advantage of
conditional Select Case choices.

Listing 6.7 You can use conditional Select Case comparisons.
1: ' Test for a child's numeric grade
2: Select Case txtGrade.Text
3: Case Is >= 90
4: lblAnnounce.Caption = "Perfect!"
5: Case Is >= 80
6: lblAnnounce.Caption = "Great!"
7: Case Is >= 70
8: lblAnnounce.Caption = "Study harder!"
9: Case Is >= 60
10: lblAnnounce.Caption = "Get help!"
11: Case Is < 60
12: lblAnnounce.Caption = "Back to basics!"
13: Case Else
14: lblAnnounce.Caption = "Error in grade"
15: End Select

Given this format and the numeric grades, each case is dependent on the numeric grade being 90 or above for the best
message and below 60 for the worst message. Notice that no test has to be made for a numeric grade less than 60
because if the grade is not between 60 and 100, the grade has to be below 60. (This example assumes that the grade will
fall between 0 and 100 and not be bad data to illustrate how the Case Else can work as one of the Case statement
bodies.)

Caution

Select Case statements don't work for all nested comparisons. No Select Case format supports the inclusion of
logical operators, so you cannot use And, Or, Xor, or Not for the Select Case's test expression. You have to resort
to a nested If...ElseIf...End If statement for complex nested conditions.

One final format of Select Case appears in the Visual Basic language; that Select Case allows for a range of
choices using the To keyword. The range determines which Case body executes. Use the range-based Select Case
when you can order the possibilities sequentially as shown in Listing 6.8.

Listing 6.8 Use a range for Select Case when comparing from grouped values.
1: ' Test for a child's numeric grade
2: Select Case txtGrade.Text
3: Case 0 To 59
4: lblAnnounce.Caption = "Back to Basics"
5: Case 60 To 69
6: lblAnnounce.Caption = "Get help!"
7: Case 70 To 79
8: lblAnnounce.Caption = "Study harder!"
9: Case 80 To 89
10: lblAnnounce.Caption = "Great!"
11: Case Else
12: lblAnnounce.Caption = "Perfect!"
13: End Select

Notice that the order of Listing 6.8's cases is different due to the range format being used. The first Case test, in line 3,
checks for the lowest possible range. If the numeric grade falls between 0 and 59, the worst message appears in the
label. (Integers are assumed, which could produce errors if someone enters 79.5 for a grade; but integers keep things
simpler here.) Each succeeding range moves up sequentially. You can also test for string ranges as long as the lowest
strings, conditionally according to the ASCII table, are tested earliest.

Tip

You can combine the various forms of Case expressions into a single Select Case statement. Here's a Case that uses
all the formats to check for a value:

Case 101, 102, 201 To 205, Is > 300

If the expression in the Select Case statement is 101, 102, 201, 202, 203, 204, 205, or more than 300, the body of this
Case executes.

Repeat Code with Loops
Visual Basic supports loops through a series of statements called looping statements. Your PC is fast. Therefore, your
PC can process large amounts of information quickly, such as calculating customer payroll records. The secret to
processing large amounts of data or testing a large number of values is to put such code inside looping statements and
let your program process the data over and over until the data runs out.

A loop is a series of one of more statements that execute more than one time. The loop statement repeats until a certain
predetermined condition is met.

Loops pave the way for tomorrow's lesson, which teaches you how to get input from the user without using text box
controls. Some input just doesn't lend itself well to text box controls. Often, you need to ask your user questions and
grab the answers when the user presses Enter. A text box is a little cumbersome for simple answers to which your

program responds. (Text boxes are great for input of form information, such as name and address values and payroll
amounts.)

You need to understand loops before learning about getting user input because the user does not always enter the
expected answer. Suppose you ask a user how old he or she is, and you get the answer 291. The user obviously made a
mistake. With a looping mechanism, you can keep asking the user that question until a reasonable answer is given. Of
course, your program won't know whether the user entered his or her true age, but you can keep asking until the user
enters an age that is more plausible than 291. As you can see, loops can repeat any block of code.

The Do Loop

Visual Basic includes a multiline statement called the Do loop. As with the If statement, Do loop statements come in
several formats, as shown here:

Do While condition
 Block of one or more Visual Basic statements
Loop

Do
 Block of one or more Visual Basic statements
Loop While condition
0
Do Until condition
 Block of one or more Visual Basic statements
Loop

Do
 Block of one or more Visual Basic statements
Loop Until condition

The condition in each Do loop is any expression, control, or Boolean value that equates to true or false. Your choice
of formats primarily depends on your preference and style. The differences between them lie in the following areas:

• The location of the conditional test; if the conditional test appears at the top of the loop in the Do statement, the
loop's body may never execute. If the conditional test appears at the bottom of the loop in the Loop statement,
the body always executes at least once because Visual Basic does not perform the test until the bottom of the
loop.

• The nature of the conditional test; the Do loops can continue either while a condition is true or until a condition
is true. In the former case, the body of the loop keeps executing as long as the condition is true and in the latter
case, the loop keeps executing until the condition is met.

Figure 6.2 shows one Do loop and illustrates how the loop repeats. This code simply increases the value shown in a
label's Caption property from 1 to 10 and then the loop stops repeating. In reality, the code would execute on today's
PCs so quickly that the label would be a blur and you couldn't see the numbers step up from 1 to 10, but remember that
the loop is important for study.

Figure 6.2. A loop repeats a body of statements.

Note

Figure 6.2's code demonstrates a special assignment in which the same variable name appears on each side of the equal
sign. When you see such an assignment, the statement is updating the value of the variable. In this case, the statement
intCtr = intCtr + 1 adds one to the variable intCtr each pass through the loop.

The body of Figure 6.2's code executes 10 times, and each time the code adds one to the variable named intCtr. This
Do loop uses the Do...Loop Until format so that the loop keeps repeating until intCtr is equal to 10. Listing 6.9
shows an identical loop that uses the Do While...Loop format.

Listing 6.9 Use any Do loop form that you prefer.
1: Do While intCtr <= 10
2: ' This loop does the same thing as
3: ' the one in Figure 6.2
4: lblOut.Caption = intCtr
5: intCtr = intCtr + 1
6: Loop

Caution

You must somehow change the loop-testing condition inside the loop's body; otherwise, the loop never ends. If you
accidentally write an endless loop, your application freezes until you click Visual Basic's toolbar's End button or close
the application's window. Something inside a loop's body must allow for the condition being tested to change, or the
loop keeps executing.

Some loops, especially loops that perform user input, require that the body of the loop execute at least once, so that fact
dictates the kind of loop you use. When you want a loop to execute at least once, you need to use a loop that tests the
condition at the bottom of the loop, such as the loop shown in Listing 6.10.

Caution

The following code examples are not complete. They use remarks in place of statements that accept user input and
display error messages. Concentrate on learning how loops work now, and tomorrow's lesson will explain how to code
the user's input and output.

Listing 6.10 Your user may require several tries before entering valid data.
1: Dim strAns As String
2: '
3: ' Ask the user a yes or no question
4: lblPrompt.Caption = "Do you want to continue (yes or no)?"
5: '
6: ' Get input into the string variable
7: ' named strAns
8: ' Check the answer and keep asking
9: ' if the user fails to enter yes or no
10: Do While (strAns <> "Yes" And strAns <> "No")
11: Beep 'Warning
12: lblError.Caption = "You need to answer yes or no")
13: ' Get input into the string variable
14: ' named strAns once again
15: Loop
16: ' Erase the error message
17: lblError.Caption = Null

Line 10 begins the Do loop. If the user typed Yes or No in lines 6 and 7 (remember, remarks are used here for the input),
the loop warns the user with an error label in line 12. The remarked lines 13 and 14 simulate getting the user's input all
over again, and line 15 sends the loop right back up to line 10 to test that input again. How many times does this loop
execute? Either never (if the user types Yes or No) or as long as the user fails to type one of the two required answers.

Note

Of course, the user's Caps Lock key may be on or off, and the user could type YES or yes or NO or no. In that case, line
10 would fail because the two strings would not match in case. You'll learn how to test strings that differ only in case in
Day 8's lesson.

If you ever need to exit a loop before its normal termination, you can use the Exit Do statement to do so. For example,
you may be processing a series of customer payments inside a loop that loops until the final customer account number
is reached. If, however, a bad customer number appears, tested with an If statement inside the loop, you can display an
error message and exit the loop with Exit Do.

For Loops
Visual Basic supports another kind of loop called the For loop. For loops execute a series of one or more statements a
fixed number of times or until a condition is reached. The For loop is a multiline statement (just as the Do loops are)
because of the For loop's body. Here is the format of the For statement:

For intCounter = intStart To intEnd [Step intIncrement]
 Block of one or more Visual Basic statements
Next [intCounter]

intCounter must be a numeric variable that controls the body of the loop. Visual Basic initializes the intCounter
variable to the initial value in intStart before the first iteration of the loop. The intStart value is typically 1 but can
be any numeric value (or variable or control value) that you specify. Every time the body of the loop repeats, the
intCounter variable changes (increments or decrements) by the value of intIncrement. If you don't specify a Step
value (notice that the Step clause is optional because it appears within brackets in the statement's format), the For
statement assumes an intIncrement of 1.

An iteration is one loop cycle. If a loop repeats three times, three iterations of that loop occurred.

IntEnd is a number (or variable or control value) that controls when the loop ends. When intCounter is greater than
intEnd, Visual Basic does not repeat the loop but continues at the statement that follows Next. Next is Visual Basic's
way of ending the loop. If intCounter is less than intEnd, Visual Basic increments intCounter by the value of
intIncrement, and the body of the loop repeats again. (Notice that you don't have to repeat intCounter after Next as
it's optional and serves only as a reminder to which For loop the Next statement is terminating.)

Despite this long introduction to For, the For loop in most forms is simple and does nothing more than automatically
count up or down for you as the loop repeats. A For loop counts up if the Step value is positive, and a For loop counts
down if the Step value is negative.

Listing 6.11's For loop repeats one shown earlier in Listing 6.9 as a Do loop. The For increments the label's counter
variable automatically.

Listing 6.11 Use a For loop if you want Visual Basic to increment a counting variable.
1: For intCtr = 1 to 10
2: lblOut.Caption = intCtr
3: Next

Isn't that simple? This loop repeats 10 times. The first time that line 1 executes, intCtr, is assigned 1 (the intStart
value). The body of the loop, line 2, executes using that value. Line 3 sends the loop to repeat again by incrementing
intCtr by 1 (the implied Step value if you don't specify one) as long as intCtr is not more than 10 (the intEnd

value).

Note

The following statement is identical to line 3 in Listing 6.11 because the Next statement's variable is optional:

Next intCtr

Modifying the Step Value

Listing 6.12's For loop begins at 10 and increments by five until the loop variable reaches 100.

Listing 6.12 Change the increment to make the loop behave differently.
1: For intCtr = 10 to 100 Step 5
2: lblOut.Caption = intCtr
3: Next

Listing 6.13's For loop begins at 1000 and decrements by 100 until the loop variable reaches zero.

Listing 6.13 A negative Step value counts down.
1: For intCtr = 1000 to 0 Step -100
2: lblOut.Caption = intCtr
3: Next

You can see from these short examples how the intStart, intEnd, and intIncrement values affect the loop. (If you
use a negative Step value, the intStart value must be more than the intEnd value; otherwise, the loop's body never
executes.)

Caution

Don't confuse loops with the If statement. Both loops and the If statements rely on conditional values, but loops can
repeat their bodies as many times as necessary. The If statement's body, however, executes at most one time.

Tip

Use the Exit For statement if you want to terminate a loop before its normal termination.

Nesting For Loops

As with all other Visual Basic statements, you can nest two or more For loops inside one another. Anytime your
program needs to repeat a loop more than once, use a nested loop. Figure 6.3 shows an outline of a nested For loop.
Think of the inside loop as looping "faster" than the outside loop. The inside loop iterates faster because the variable In
goes from 1 to 10 in the inside loop before the outside loop's first iteration has completed. Because the outside loop
does not repeat until the Next Out statement, the inside For loop has a chance to finish in its entirety. When the outside
loop finally does iterate a second time, the inside loop starts all over again.

Figure 6.3. The outside loop determines how many times the inside loop executes.

Figure 6.3's inner loop executes a total of 40 times. The outside loop iterates four times, and the inside loop executes 10
times for each of the outer loop's iterations.

Figure 6.4 shows two loops nested within an outer loop. Both loops execute completely before the outside loop finishes
its first iteration. When the outside loop starts its second iteration, the two inside loops repeat all over again.

Figure 6.4. Two or more loops can nest within another loop.

The blocks of code inside Figure 6.4's innermost loops execute a total of 40 times each. The outside loop iterates four
times, and each inner loop executes, first the top and then the bottom, in their entirety each time the outer loop iterates
once again.

Do Don't

DO match Next with For statements when you nest loops. Each Next must go with the most recent For before
it in the code. Visual Basic issues an error if you write a program whose inside loop's Next statement appears
after the outside loop's Next statement. If you omit the Next variable, Visual Basic aligns each Next with the
most recent For for you, but adding the Next statement's variable often helps to document the loops and more
clearly show where a loop begins and ends.

Summary
Today's lesson taught you how to control your programs. By adding conditional operators to your Visual Basic
language repertoire, you can now make Visual Basic analyze data and respond according to the values inside variables
and controls. Using the If statement, you can now write a program in which Visual Basic tests a variable or control's
value and decides on an appropriate course of action based on the data.

In addition to the If statement, Visual Basic supports the Select Case statement, which makes nested If situations
much simpler to understand. Select Case comes in three formats, depending on how you want to compare the various
conditions.

If you want sections of your code to repeat more than once, you can use one of the looping statements taught in today's
lesson. The Do loops loop as long as a condition is met or until a condition is met, depending on the format that you
use. The For loop continues for a certain number of iterations or until a condition is met. Unlike Do, the For loop
automatically changes its controlling variables by adding or subtracting to or from the controlling variable each time
the loop iterates.

Tomorrow's lesson shows you how to ask the user for input using input boxes. You will also learn how to display
answers for the user with message boxes. Input and message boxes offer simple ways to interact with your user when a
form's control for such input is unnecessary.

Q&A
Q: Why should I avoid the Notoperator?

A: Do not use Not because not using Not makes things not as complicated as using Not. Get the picture?
Positive statements are clearer to understand.

Consider the following expression: Not(A <= B). Wouldn't such an expression be clearer if you wrote it this
way: (A > B)? You don't have to avoid Not altogether because using Not for Boolean data types often is
clear, such as the statement that begins If Not(blnClearedScreen). This If statement says this: If the
screen is not yet cleared, then do what follows the If. Generally, however, you can almost always reverse
expressions that use Not to simplify them and make them easier to maintain.

Q: If I can write equivalent Doand Forstatements, does it matter which I select when I'm programming?

A: Which loop you use is up to you. The choice is not just between the For and Do loops, but between several
formats of each loop. Generally, For loops are useful when you must count values or iterate the loop's body
for a specified number of times. The Do loop is useful for iterating until or while a certain condition is met. If
you are counting up or down, the For loop is easier to write and is slightly more efficient than an equivalent
Do loop.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next day's lesson. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: What logical operator returns a True result if either expression is True?

2: What is the difference between a conditional operator and a logical operator?

3: What is a loop?

4: Describe the following assignment statement's action:

intTotal = intTotal - 10

5: How many times does the following code execute the Beep statement?

intN = 0
Do While (intN > 0)
 intN = intN + 3
 Beep
Loop

6: Why should Exit For be part of an If statement instead of appearing by itself in the body of a For loop?

7: True/False. Both blocks of an If...Else might execute .

8: True/False. A For loop may never execute, depending on the start and ending values .

9: Why would you nest a For loop?

10: What is the difference between a decision statement and a looping statement?

Exercises

1: Write an If statement that compares three numbers for equality .

2: Bug Buster: Larry is not able to loop. What, if anything, is wrong with Larry's code that follows?

intN = 10
Do
 Beep
Loop Until (intN > 100)

3: True/False. The clock in a football game counts down 15 minutes to zero. It does this four times. Think
through the four iterations, and describe the kind of Visual Basic equivalent statements such an event

imitates.

4: Visual Basic lets you combine each Select Case format in a single Select Case statement. Therefore, you
can use a regular matching Case combined with a conditional Case combined with a range Case. Rewrite
the nested payroll example shown earlier in today's lesson as a Select Case that utilizes at least two kinds
of Case bodies for the three payroll possibilities .

Day 7. Advanced Keyboard and Screen Support
Today's lesson shows you how to get the user's input and send information to the screen as output. You've already seen
ways to get the user's input using text boxes, and you've already displayed information on the screen with labels.
Nevertheless, controls like these don't always lend themselves well to asking the user questions and getting answers,
interactively, as the program runs. Text boxes are great for forms and placeholders that hold the user's text, but
sometimes a more immediate response is needed from the user. Today's lesson shows you how to get such a response
with very little programming required.

Today, you learn the following:

• Internal functions
• The MsgBox() function
• How to handle optional function parameters
• The InputBox() function
• Keyboard event-handling
• About check boxes
• About option buttons
• How to combine option button groups in Frame controls

Introduction to Internal Functions
Functions are a kind of procedure, not unlike the subroutine procedures you learned about in Day 3, "Managing
Controls." The difference between them is that functions, after they finish their job by executing the code in them, send
a value to another part of the program. You'll learn how to write functions and how they work in detail in tomorrow's
lesson.

For now, you must understand what an internal function is because you'll use internal functions to perform I/O
throughout the rest of today's lesson. An internal function operates like a magic box that takes values you send to it and
sends back, or returns, a single value to your program. Figure 7.1 shows what a function does.

Figure 7.1. Functions accept zero, one, or more values and sends back a single value.

An internal function, sometimes called an intrinsic function, is a function supplied with the Visual Basic language that
does a job such as a calculation or I/O. You must know the name of an internal function and its requirements before
you can use one. Although you won't see the code in an internal function (internal functions are as much a part of the
Visual Basic language as the For command is), you will be able to use the internal functions in your programs.

I/O stands for input/output. Programmers use the term I/O generically to refer to any form of getting input from a
device (such as the keyboard) and sending output to a device (such as the screen).

You'll use functions for many things and the more you learn about them in this and especially tomorrow's lesson, the
better you'll understand them. For now, keep in mind the following:

• You typically pass one or more values to a function; rarely will a function require nothing to be passed to it.
These values that you pass are called arguments.

An argument is a value you pass to a function.

• The function name always has parentheses following it (with the rare exception of those functions that require
no arguments).

• You place the function's arguments, separated by commas if you pass multiple arguments, inside the function's
parentheses.

You've used an internal function already (the rest of today's lesson simply refers to functions rather than internal
functions) in Day 2's lesson when you loaded an image into the Image control that you placed on the form. Here is the
line of code you used, with the argument shortened somewhat to make things easier to describe:

imgHappy.Picture = LoadPicture("\Happy.bmp")

The function's name is LoadPicture(). (As is often done, this book keeps the empty parentheses after the function
name when discussing the function so that you can distinguish between functions, variables, and control names.) This
function has only one argument, a string.

Note

Many functions require one or more arguments but make some of the arguments optional. LoadPicture() requires an
initial single string argument but the remaining arguments are optional.

Caution

You must match the argument data type and order that the function requires. For example, if a function requires two
arguments, an integer followed by a string, enter those arguments in that order.

What does this code send LoadPicture()? A string with a filename. What does LoadPicture() return? The graphic
image located at that file. This assignment that you entered in Day 2's lesson then assigns that picture to the image
control's Picture property. Without the LoadPicture() function, the Image control could not display the image. An
Image control requires a graphic image for the Picture property, not a pathname (unless you're specifying an initial
picture at designtime in which you can select a path from the Properties window and Visual Basic will assign the
graphic to that control).

Visual Basic has to do a lot of work for you when you use the LoadPicture() function. Visual Basic must analyze
your argument list to make sure you've complied with the required arguments in number and data types; then Visual
Basic must make sure the path you supply for the image is correct; then Visual Basic must see if you have network
access rights to the file (if you are networked); and finally, Visual Basic must load the image from the file into the
graphic image. Thankfully, Visual Basic supplies LoadPicture() so you don't have to do all this yourself through
tedious code! That's the beauty of functions: they save you work. Functions let you concentrate on the important stuff
(your application's specifics) and take care of routine details for you.

Note

Functions exist to work with graphics, calculate common mathematical formulas, and manipulate disk files. The
functions you learn about in today's lesson are some of the easiest to work with and perhaps the best introduction to
using functions. You'll study many more functions that Visual Basic provides in tomorrow's lesson.

Let the User Respond with MsgBox()
Now that you better understand how functions work, you can examine the MsgBox() function closely. MsgBox() is a
function that produces a pop-up message box. Figure 7.2 shows a message box. As you can see, a message box displays
an icon and a message along with at least one command button. The command button gives the user a chance to read
the message in the message box and click the command button when done.

Figure 7.2. The MsgBox() function displays a message and lets the user respond when finished
reading the message.

A message box is a small dialog box used for output during a program's execution. The user can close the message box
by clicking a command button and can move the message box but the user cannot resize the message box.

The arguments that you supply to the MsgBox() function determine which icon the MsgBox() function displays, the
message, and the number of command buttons. Therefore, the programmer controls exactly how the message box
appears to the user. When the MsgBox() completes, its return value specifies which command button the user clicked.
Therefore, your program will always test the MsgBox() function's return value if the MsgBox() function displayed two

command buttons. The program can then use an If statement to determine the best course of action based on the user's
command button selection.

Caution

Previous versions of Visual Basic included a MsgBox statement. Unlike the MsgBox(), the MsgBox statement could not
interpret the user's button click. The MsgBox statement is considered obsolete although Visual Basic 6 still supports it
for backwards compatibility.

The following is the format of the MsgBox() function:

intResponse = MsgBox(strPrompt[, intStyle][, strTitle])

Note

This format shows two optional arguments, intStyle and strTitle. Although the format uses italicized placeholders
to show where you place literal, variable, or control arguments, the format uses variable name prefixes so you know the
argument's required data types. As you can see, a MsgBox() function always requires a string argument, and the second
and third arguments are both optional depending on how you want the message box to appear.

intResponse holds the function's integer return data type. The first argument is a string (or variable or control that
holds a string) that displays as the message box's message. The second argument determines the style of the buttons
that appear. The last argument determines the title that appears in the message box's title bar.

All message boxes display a command button. Your executing program must know when your user is finished reading
the message box. The program's execution temporarily halts until the user clicks one of the message box's command
buttons. As soon as the user clicks the command button, the program continues executing at the statement that follows
the command button.

Tip

If you display a message string that's too long to fit on one line of a message box, Visual Basic breaks the line into two
or more lines. Visual Basic breaks properly between words.

Suppose you need to wait for the user before printing a report. You could issue the following very simple message box:

intResponse = MsgBox("Click when you are ready for the report")

You would have had to declare the variable named intResponse somewhere in the Declarations section of the
procedure (or possibly in the module's Declarations section although you already know not to declare too
manyglobal variables). If you don't specify otherwise, in the second function argument that was omitted here, Visual
Basic displays one command button with the word OK that the user can click when she or he is done viewing the
message box. Given that this statement contains a MsgBox() function that displays only one command button, the
integer assignment does not help you much—although you must do something with the function's return value so you
might as well assign it to something. Figure 7.3 shows this simple message box.

Figure 7.3. All MsgBox() functions display a message with at least one command button.

Notice something else that Visual Basic does if you don't specify all the MsgBox() arguments: Visual Basic uses the
project's title for the message box's title bar. Therefore, you almost always want to assign a better name to the title bar,
which you can do after you learn about the first optional argument.

If you want more control of the buttons, you can use an integer value (or a variable or control) for the first optional
argument to specify the style of the buttons. With only one button, the return value, although required in all cases,
makes little difference. With more than one command button, the return value holds a value that corresponds to the
command button clicked. You can use this information in an If statement or a Select Case to execute one of two sets
of code that handles either button.

Table 7.1 lists the integer button style values you can use for the MsgBox() function's first optional argument.

Table 7.1. Use integer values to determine the buttons inside message boxes.

Value Named Constant Description
0 vbOKOnly OK button

Table 7.1. Use integer values to determine the buttons inside message boxes.

Value Named Constant Description
1 vbOKCancel OK and Cancel buttons
2 vbAbortRetryIgnore Abort, Retry, and Cancel buttons
3 vbYesNoCancel Yes, No, and Cancel buttons
4 vbYesNo Yes and No buttons
5 vbRetryCancel Retry and Cancel buttons

Figure 7.4 shows the message box that appears in response to the following statement:

Figure 7.4. The user's button selection determines what happens next.

intResponse = MsgBox("Ready to print?", 1)

The 1 specifies that two command buttons, the OK and Cancel buttons, appear on the message box. This combination is
useful for processes that your program is about to do, such as getting ready to print, because the user can either click
OK to indicate the print is ready or click Cancel to stop the printing process and return to an earlier part of the program.

Table 7.2 lists the return values that are possible from the MsgBox() function. Therefore, the following might be the If
statement that handles the previous message box (with the details remarked out to simplify the If):

If (intResponse = 1) Then
 ' Code goes here that handles
 ' the OK button click
Else
 ' Code goes here that handles
 ' the Cancel click

End If

Caution

Of course, if the message box displayed other message buttons, the If statement would have to check for additional
values, or possibly you would write a Select Case statement to handle multiple return values.

Table 7.2. Test these return values to determine which command button the user clicked.

Value Named Constant Description
1 vbOK The user clicked OK
2 vbCancel The user clicked Cancel
3 vbAbort The user clicked Abort
4 vbRetry The user clicked Retry
5 vbIgnore The user clicked Ignore
6 vbYes The user clicked Yes
7 vbNo The user clicked No

Note

If the user presses Esc at the message box, Visual Basic responds as if the user clicked the Cancel button and returns
the appropriate value.

No matter how many command buttons you display in a message box, the user can click only one button. As soon as
the user clicks any of the message box's buttons, the message box disappears and the return value is filled with the
clicked button's value.

Using Named Constants

Look back at Tables 7.1 and 7.2 and you'll notice the column labeled Named Constants. Visual Basic supports
hundreds of named constants that you can use in any procedure in place of using literals in their place.

A named constant is a name that Visual Basic applies to an internal list of values. Visual Basic's named constants
usually begin with the Visual Basic prefix. You cannot change the value of the named constants (that's why they are
constant) as you can change the value of variables that you declare, but you can use the named constants in function
argument lists and anywhere else that a literal can go.

Named constants make your programs more readable and understandable. For example, each of the following
statements are identical but, in the second statement, the command button that appears is obvious:

intResponse = MsgBox("Ready to print?", 1)
intResponse = MsgBox("Ready to print?", vbOK)

When you write a program, you can use the named constants without referring to a reference manual or the online help
and without memorizing all the named constants. Visual Basic's editor pops up a list of named constants from which
you can select as you type a function that can use them, such as MsgBox(). Later, when you maintain the program and
make changes, you'll have no trouble understanding how the message box will look. If, instead of named constants, you
used literal values, you would have to look up the value before you would know how to change the message box to
something else.

Do Don't

DO use named constants everywhere you can. They require no extra typing because you can select them from
the Visual Basic editor's pop-up list as you enter function arguments.

Triggering Default Buttons

The first command button on a message box is always the default command button. Visual Basic selects the first (the
leftmost) command button and, if the user presses Enter without clicking a command button, the selected command
button is triggered.

You can change the button that appears as the default button when the message box first appears by adding one of the
values in Table 7.3 to the command button argument.

Table 7.3. Add one of these values to the command button argument to specify the initial default
button.

Value Named Constant Description
0 vbDefaultButton1 First button is default
256 vbDefaultButton2 Second button is default
512 vbDefaultButton3 Third button is default

Despite their length, the named constants are easier to maintain than the integer literals so use the named constants as
done in the next statement:

intResponse = MsgBox("Is the printer on?", vbYesNoCancel +
vbDefaultButton1)

Tip

If you are displaying a message box that controls a critical process, such as the deletion of a data file, make the Cancel
button the default. If the user accidentally presses Enter, the Cancel button is triggered and the most critical process is
not accidentally performed, as would be the case if you left the OK button selected.

Specifying the Icon

Adding an additional value to the second argument specifies the icon used to the left of the message inside the message
box. Until now, the message box code has not specified this part of the argument in this lesson so the resulting message
boxes have had no icons.

Note

The MsgBox() function actually supports a few additional and optional arguments but they do not apply to this
discussion and are rarely used for simple programs.

Table 7.4 contains the named constant values and the icons they produce.

Table 7.4. These values produce an icon in your message box.

Value Named Constant Description Icon
16 vbCritical Critical Message icon

32 vbQuestion Question mark icon

48 vbExclamation Warning Message

64 vbInformation Information Message

The following statement produces a complete message box, building on what you've seen, that displays all the elements
because all of the arguments are specified. Figure 7.5 shows the resulting message box.

Figure 7.5. The user's button selection determines what happens next.

intResponse = MsgBox("Is the printer on?", vbYesNoCancel + vbQuestion +
vbDefaultButton2, "Question Box")

Getting Input with InputBox()
The MsgBox() function exists to display messages to your users but gives users a way to respond with the command
buttons that appear in the message boxes. The command button they click guides the next course of action. Of course,
if the message is for information only, you might display the message box with the single command button so the user
can close the message box when finished reading the message and the program can continue.

If you need to ask the user a question, and need a quick answer that a text box control would make too cumbersome,
you can use another function that is the MsgBox() function's cousin: InputBox(). The InputBox() function displays a
message box but also allows the user to enter a value that your program can respond to. This combination message box
and input field is called an input box. Figure 7.6 shows what an input box looks like.

Figure 7.6. The input box provides a title and a field for data entry.

An input box is a message box with a field in which the user can type a value, such as a word or phrase that might
answer a question you ask in the input box's title. As with a message box, the user can move or close an input box but
not resize it. Unlike message boxes, you cannot control which command buttons appear in input boxes. The OK and
Cancel command buttons are the only buttons that input boxes display.

Input boxes don't offer a way to supply an icon as does the MsgBox() function. Here is the format for the InputBox()
function:

strAnswer = InputBox(strPrompt[, strTitle][, strDefault][, intXpos]
[, intYpos])

The InputBox() function returns a Variant data typed value that you can always interpret as a string; so you can assign
the InputBox() function to a string or use it anywhere you can use a string value. (The Variant return data type allows
you to assign the return value to a control property if you want to do so.) The returned string is the user's typed
response at the input box. Only the first argument is required. Here are all the arguments described:

• strPrompt —The message, such as the question you ask, that appears in the input box. StrPrompt can be as
long as 1,024 characters. Always phrase the prompt as a question so the user will know how to respond to the
input box.

• strTitle —The text that appears in the input box window's title bar. In the absence of a title, Visual Basic uses
the project name.

• strDefault —A default value that appears in the input box's input field. Your user can accept your default
answer, which is returned when the user closes the message box, change the answer, or type a completely new
answer. Use default answers for predictable answers to which the user generally only has to press OK to accept.

• intXpos, intYpos —The twip coordinate where you want the input box to appear in the form window. You
might want to position the input box out of the way of another form or dialog box you've displayed if the input
box is asking a question about the other window. If you don't specify twip coordinates, Visual Basic places the
input box in the center of the screen.

Note

A twip is 1/1440 of an inch and 1/567 of a centimeter.

The following statement generated the previous input box:

strAnswer = InputBox("What is the customer's name?", "Get name")

If you want to supply a default value and position the input box at an exact screen location, you do so like this:

strAnswer = InputBox("What is the customer's name?", "Get name", "Jane
Doe", 500, 750)

You must have a way to know if the user clicked the OK button (or pressed Enter to select OK because OK is the
default button) or clicked Cancel. The InputBox() function returns a zero-length string, equal to "" if the user clicks
Cancel instead of entering a value or selecting OK to accept the default value. Therefore, your testing code might
follow something like this format:

If (strAnswer <>"") Then
 ' Code that handles the user's input
Else
 ' Code that handles the user's Cancel click
End If

Note

Remember that Visual Basic supports a special value named Empty that you can use in place of "". The Empty
keyword makes your code clearer. You can rewrite the previous If like this:

If (strAnswer <> Empty) Then

Suppose a user indicates that he wants to compute totals for a specific department's data. You could, with an input box,
ask the user for the department name. If the user enters the name, you would then calculate the needed totals. If,
however, the user selects Cancel, the program would assume that the user changed his mind.

Handling the Keyboard
Your programs cannot handle all keyboard activity with controls and input boxes. Sometimes, you need to respond to
specific keystrokes as the user types them. Windows passes special keyboard events to your applications so they can
monitor the keyboard's input. These events are the KeyPress, KeyDown, and the KeyUp events. These events respond
to combination keystrokes such as Alt+G and Shift+P, as well as individual keys. You can test for these combination
keystrokes when a keyboard event occurs.

After your application receives keyboard input, the application can then modify the input or ignore the pressed key if it
isn't an expected keystroke. Keystroke testing is useful for triggering a splash screen's closing, validating input, and
even playing some types of games.

Keyboard-Triggered Events

The KeyPress event occurs when users press any key that corresponds with one of these characters:

• Uppercase and lowercase letters
• Numeric digits
• Punctuation
• Enter, Tab, and Backspace

The KeyPress event tests for most ASCII characters. KeyPress doesn't test for all ASCII characters (such as the
horizontal tab, arrow keys, and other special control-related ASCII characters that appear between ASCII values 0 and
31), but KeyPress certainly does test for most ASCII characters. Use KeyPress to determine exactly which key users
pressed. For example, KeyPress returns a letter A if users press that key.

Note

The KeyPress event occurs on the downstroke. If the user holds down the key, the event occurs when the keyboard
auto-repeats characters.

An event, as you know, is always associated with an object, such as a command button or the form. The KeyPress
event always associates with whatever object now has the focus when users press the key. If no object has the focus,
the KeyPress event associates with the form. (An exception can occur, depending on the KeyPreview property
explained in the section "Prioritizing Responses" later in today's lesson.)

Caution

Don't use a keystroke event to test for a menu shortcut key. The Menu Editor supports shortcut keys for you and sets up
the response automatically by triggering the menu item's Click() event procedure. If you test for keystroke events,
your program cannot respond to menu selections.

The KeyPress event procedure always contains an integer argument. Therefore, if you were to write a KeyPress event
for a TextBox control, the event procedure might begin and end like this:

Private Sub Text1_KeyPress (KeyAscii As Integer)
 '
 ' Code goes here to test and respond to keystroke
 '
End Sub

The KeyAscii argument is an integer that represents the ASCII code of the character the user pressed. You can use If
or a Select Case statement to see whether the character is an expected keystroke.

One of the most important tasks you can perform with KeyPress is to change users'keystrokes. The KeyPress event
occurs as soon as users press the key and before a control gets the keystroke. Normally, for example, a TextBox control
immediately displays whatever key users pressed when the TextBox control has the focus. If, however, you write a
KeyPress event procedure for a TextBox control, the KeyPress event procedure can change the key, as is done in the
following code:

Private Sub txtTryIt_KeyPress(KeyAscii As Integer)
 ' Change any uppercase A to an uppercase B
 If KeyAscii = 65 Then '65 is ASCII for A
 KeyAscii = 66 '66 is ASCII for B
 End If
End Sub

If the text box named txtTryIt has the focus, the text box accepts and displays any keystroke the user presses until the
user presses an uppercase A with an ASCII code value of 65. The If statement changes the keystroke's KeyAscii value
to a letter B (ASCII 66), and the TextBox control shows the B and not the A because the KeyPress event gets the
keystroke before the text box gets the KeyAscii value.

Tip

Search VB's online help for Key Code Constants. The online help displays named literals that you can use in keyboard
testing. For example, you can test for a Backspace press by checking KeyAscii for vbKeyBack, test for an Enter press
by checking for vbKeyReturn, and test for Tab press by checking for vbKeyTab. (Remember that KeyPress tests for
only these three keys, in addition to letters, numbers, and punctuation.) Although the text box respects the other
keystroke controls (such as Home and End), KeyPress reliably responds only to Enter, Tab, and Backspace.

Whereas KeyPress tests for a wide range of keystrokes, the KeyDown event is more specific. KeyDown occurs when
users press a key down just as KeyPress does, but KeyDown gives you a more detailed—albeit slightly more
complicated—status of your keyboard. For example, KeyPress returns a different ASCII value for the uppercase T and
the lowercase t keypresses. KeyDown returns the same value, as well as another value called the state argument that
describes the state of the Shift key.

Note

The KeyDown event occurs whenever users press a key. Therefore, both the KeyDown and KeyPress events can occur at
the same time (assuming that users press an ASCII key).

Tip

Use KeyPress if you want to test for an ASCII keystroke, because KeyPress is simpler to program than KeyDown.

The following are the opening and closing statements of a KeyDown event procedure:

Private Sub txtTryIt_KeyDown(KeyCode As Integer, Shift As Integer)
 '
 ' Keyboard code handler goes here
 '
End Sub

KeyCode contains the keystroke, and the Shift argument determines the state of the control keys such as Shift, Ctrl,
and Alt. The KeyCode matches the uppercase equivalent of the key pressed. Therefore, if users press a lowercase t, the
KeyCode argument contains 84 (the ASCII value for an uppercase T).

Caution

Be careful because KeyDown's ignorance of the lowercase keys can cause confusion if you're not careful. If you receive
a number keypress, you must check the Shift argument. If Shift indicates that users pressed Shift at the same time as
the number, users actually wanted the corresponding character above the number (such as the caret [^] above the 6).

The primary advantage of KeyDown over KeyPress is that, despite KeyDown's Shift problems, you can check for
virtually any keystroke, including the arrow keys, Home, End, and so on. Again, check online help for the key-code
constants that VB uses to test these special keystrokes.

The shift state is the key—either Shift, Ctrl, Alt, or none—that users press with the other key. The internal binary
pattern of the shift argument determines the kind of shift state. To check the shift state, you must perform an And
against a number 7. (This special kind of And is called a bitwise And, as opposed to the more common logical And that
works as a compound comparison operator.) The code in Listing 7.1 is the shell that performs he common shift state
test.

Listing 7.1 You can write code that tests for the shift state.
1: Private Sub Text1_KeyDown(KeyCode As Integer, Shift As Integer)
2: Dim intShiftState As Integer
3: intShiftState = Shift And 7 ' Special bitwise And
4: Select Case intShiftState
5: Case 1
6: ' Code for Shift combinations
7: Case 2
8: ' Code for Ctrl combinations

9: Case 3
10: ' Code for Alt combinations
11: Case 4
12: ' Code for Shift+Ctrl combinations
13: Case 5
14: ' Code for Shift+Alt combinations
15: Case 6
16: ' Code for Ctrl+Alt combinations
17: Case 7
18: ' Code for Shift+Ctrl+Alt combinations
19: End Select
20: End Sub

The KeyUp event occurs whenever users release a pressed key. You can test for the specific key released (such as the A
if the user releases half of a Shift+A keystroke) by analyzing the argument passed to KeyUp(). Therefore, KeyUp
occurs after both KeyDown and KeyPress events.

The following code shows an event procedure for a text box. The code converts any lowercase letters the user types
into the TextBox control to uppercase:

1: Private Sub txtTry_KeyPress(KeyAscii As Integer)
2: ' Convert any lowercase letters to uppercase
3: If (KeyAscii >= 97) And (KeyAscii <= 122) Then
4: KeyAscii = KeyAscii - 32 ' Adjust to upper
5: End If
6: End Sub

The ASCII value range for lowercase letters, as you can verify from Appendix C, "ASCII Code Table," is 97 (for a) to
122 (for z). The ASCII value difference between the uppercase letters and their lowercase counterparts is 32. Therefore,
if the KeyPress event procedure successfully gets a lowercase letter ASCII value, the procedure subtracts 32 from the
value to convert the value to its uppercase equivalent.

Caution

Don't use the keyboard events to write your own masked edit routine. Press Ctrl+T and add the Microsoft Masked Edit
Control 6.0 to the toolbox. (Day 9's lesson explains in more detail how you add tools to the Toolbox window.) The
Masked Edit control lets you set up input fields, such as phone numbers with area codes and automatic parentheses and
hyphens. If you were to write your own routines, you would be reinventing the wheel and wasting time that you could
spend at the beach.

Sending Keystrokes from Your Program

The SendKeys statement sends keystrokes to your application as though the user were typing those keystrokes.
SendKeys is useful for controlling the placement of the text cursor because you can send keystrokes such as the Home
and End keys to position the text cursor in a text box or other data-entry control. Here is the syntax of SendKeys:

SendKeys strKeystrokes[, blnWait]

strKeystrokes is often a string literal, such as "Widgets, Inc.," if you want to type the value for users. The Boolean
blnWait option is usually omitted and, if False (the default if you omit blnWait), control returns to the executing
procedure as soon as the keystrokes are sent. If blnWait is True, the system processes the keystrokes before the code
continues, meaning that the keystroke events are active during the keystroke entry.

You must enclose the following special characters inside braces ({}) if you send them with SendKeys: caret (^), plus
sign (+), percent sign (%), tilde (~), and parentheses. Therefore, to simulate typing 7 + 6, the SendKeys statement
must embed the plus sign in braces, like this:

SendKeys "7 {+} 6"

Several special keystroke characters, such as the Home and function keys, require a SendKeys code and the braces. For
example, to send the Home keypress to an application, you must use the {Home} literal as follows:

SendKeys "{Home}"

All these special keys have code equivalents you can use. You can look up SendKeys in online help to learn which
keystroke codes are defined for the special keys.

Note

You can't send the Print Screen keystroke to an application with SendKeys.

Prioritizing Responses

When users press a key, either the form or the control with the active focus gets the keystroke. If no control currently
has the focus, the form gets the keystroke event. If, however, a control has the focus, either the control or the form gets
the focus, depending on the result of the form's KeyPreview property.

If the form's KeyPreview property is True, the form receives the keystroke event. Therefore, if you had coded two
event procedures named frmAcct_KeyDown() and txtEntry_KeyDown(), and if the form's KeyPreview property
contains True, the frmAcct_KeyDown() event procedure executes when users press a key. If the form's KeyPreview
property contains False, the txtEntry_KeyDown() control executes (assuming that the text box has the current focus).

Additional Controls
Input boxes and message boxes offer a convenient way for you to display information and get input using pop-up
windows that come and go as needed. The message and input boxes are a great addition to labels and text boxes
because they display output and accept user input differently from those controls.

Other controls accept input and offer the user choices that you've yet to learn. The rest of today's lesson introduces you
to those other controls. By the time you finish today, you will know how to add several kinds of new controls to your
Visual Basic applications.

Check Boxes

A check box offers an option for the user. A check box might appear by itself or perhaps along with several other check
boxes. The check box, when clicked, displays a check mark (meaning the user has selected the check box option) and
the check mark goes away when the user clicks the check box once again.

A check box is an option on a form that is checked when selected and unchecked when not selected. Use CheckBox
controls when you want to offer the user two-value choices, such as whether something is true or false or possibly on or
off.

Remember that a CheckBox control is either checked or not. The check box property value that determines the current
state of the check box resides in the Value property. If the Value property is 1, the check box is selected and the check
mark appears; but if Value holds 0, the check box is not selected and no check mark appears.

Caution

A single check box offers the True or False value selection as indicated by its Value property of 1 or 0. If you just
want a yes or no answer to a prompt, don't supply two check box options but supply only one. Actually, check boxes
are better suited for indicating selected options than for answering yes or no questions. Figure 7.7 shows a form with
three Check-Box controls. Each of the controls might be checked or unchecked depending on the user and depending
on the value the programmer stored in each check box's Value property at design time.

Figure 7.7. Your users can select various options with check boxes.

Tip

If you add an accelerator key to the check box's Caption property value, the user can check and uncheck the check box
by pressing the accelerator keystroke, such as Alt+B.

Check whether or not a check box is checked with an If statement that takes the following format:

If (chkUnder.Value = 1) Then
 ' Code to handle checked conditions
Else
 ' Code to handle unchecked conditions
End If

Remember that your form might contain one, two, or more check boxes. Although you can, through tedious coding,
ensure that one and only one check box is selected at any one time, Visual Basic supplies a better way to provide
mutually-exclusive options than check boxes. You'll learn about the Option button control in the next section.

Option Buttons

Option buttons let the user select from one of several choices. Unlike check boxes, however, Visual Basic lets the user
select one and only one option button at a time. Figure 7.8 shows three option buttons with only one selected. If the
user clicks another, Visual Basic takes care of unselecting the first option button and selecting the one the user clicked.

Figure 7.8. Your users can select one and only one option button at a time.

An option button offers the user a choice of one and only one selected item on a form. Option buttons are sometimes
called radio buttons because they mimic the way old car radio pushbuttons used to work. One and only one pushbutton
can be pushed at once; as soon as you push in another, the first one resets by popping out.

When you place option buttons on the form, you can set the option button's Value properties all to False at runtime in
the Form_Load() event procedure. The form appears with none of the option buttons selected. After the user selects an
option, that option is selected until the user selects another option button. When you add accelerator keys to the option
button's Caption property value, the user can select an option by pressing that accelerator keystroke instead of clicking
the option button on the form.

Caution

Never place just one option button on a form because the user can select that option button but cannot deselect it.

Group Options with the Frame Control

Technically, the user can select more than one option button at a time as long as the two option buttons reside in
separate frames. You can use frames to hold groups of option buttons so that the user can select one of multiple option
button groups.

A frame, sometimes known as a container control, holds controls on a plane that differs from the form itself. Although
you can only provide one set of option buttons on a form, you can provide multiple option button sets on the screen as
long as one or more sets reside on one or more frames. Frames can hold more than option buttons. A frame can hold
any kind of control that you want to visually group with other controls.

Figure 7.9 shows an application with two option buttons selected. Visual Basic allows this because the application
contains option buttons on the form as well as set on the frame. Without the frame, only one of the five options buttons
can be selected at a time.

Figure 7.9. If you place a group of option buttons on a frame, the user can select one from the frame
as well as one from the form.

Do Don't

DO use as many frames as you need to provide multiple option button sets on a form

Frames require very little effort to add. The following properties are useful when setting frames on your
applications'forms:

• BorderStyle —Either 0-None or 1-Fixed single. As with any property with such values, you can assign the
BorderStyle property a 0 or 1 at runtime using Visual Basic assignment statements or you can select the
proper initial value from the Properties window at design time. When you select no border, the frame is
invisible and has no caption or line to differentiate the frame from the form. An unbordered frame can still
group option buttons but your user will have a difficult time knowing that the options are a group separate from
another group that might appear on the form.

• Caption —The text that appears at the top of the frame.
• Font —Determines the font values for the value in the Caption property.

The Bonus Project that appears between today's and tomorrow's lessons, "Variables and Expressions," builds a
complete project that uses a frame to hold option buttons. You will learn how to place controls on the frame properly
by drawing the form's Option button control on top of the frame that you place on the form. You must place option

buttons on the frame in this manner for Visual Basic to recognize that the option button is no longer part of the form's
group of buttons but is now part of the frame's separate group of options.

Summary
Today's lesson introduced you to internal functions. As you progress through these 21 days, you'll learn more internal
functions. Visual Basic supplies these functions so that you can call the functions by name, passing them arguments,
and use the return values without having to write the function's tedious code yourself to accomplish the same purpose.

The MsgBox() function displays messages to your users in pop-up windows. The user can respond by clicking a
command button. If you are prompting the user to continue with a selected process, you will want to give the user a
combination of command buttons that lets the user continue or cancel the process. Whereas the MsgBox() function
displays messages, you'll use the InputBox() function to ask the user questions and get responses that you can use in
your program.

Other controls, such as check boxes, option buttons, and grouped option buttons on frames, also give your users a way
to inform your program. The selected controls let your program know choices the user is making.

Tomorrow's lesson teaches more about the structure of a Visual Basic application. You'll gain more insight into local
and global variables. In addition, tomorrow's lesson teaches almost all the remaining internal functions that you'll ever
need.

Q&A
Q: Why can't an internal function return more than one value?

A: An internal function is said to become its return value. In other words, an internal function works just like an
expression works in that a single value is produced. Often, you'll pass an internal function a value or set of
values that you want the internal function to manipulate or combine in some way. The return value is the
result of that manipulation or combination. For example, the LoadPicture() function accepts a string
argument that specifies a pathname to an image, and the return value is the actual picture at that location that
you can assign to a graphic property of a control.

The nature of internal functions are such that you can use them anywhere you can use the function's return
value. Therefore, instead of displaying a string literal or variable in a message box, you can use an
InputBox() function in place of the message box's string prompt value. In this way, you nest a function
within a function. The innermost function, the InputBox(), executes first and gets a string from the user.
The MsgBox() function then displays that string in a message box as follows:

intResp = MsgBox(InputBox("What is your name?"))

How often will you embed an InputBox() function in a MsgBox() function? Possibly never, but this

assignment statement clearly shows that an internal function, in this case the InputBox()'s, becomes its
return value so that other code can then immediately use the return value.

Q: What other internal functions are available?

A: Internal functions exist that work with numbers, strings, and the other kinds data. You'll learn many of these
in tomorrow's lesson, "The Nature of VB Programs."

Workshop
The Workshop provides quiz questions to help solidify your understanding on the material covered and exercises to
provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next chapter. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: What is the difference between an argument and an internal function?

2: True/False. You can specify the default button on a message box.

3: What is an equivalent keyword for the empty string literal, ""?

4: True/False. Tables 7.1, 7.2, and 7.3 describe three different arguments that you can use in MsgBox()
functions .

5: What does Visual Basic use in the title bar of message and input boxes when you don't specify a title
argument?

6: What's the primary difference between a check box and an option button?

7: True/False. You can display a set of option buttons on a form without any being selected.

8: Which property value determines if a check box is selected or not?

9: Which property value determines if an option button is selected or not?

10: Why is a frame sometimes necessary when placing option buttons on a form?

Exercises

1: Describe how your code can determine if the user entered an input box value (or perhaps accepted the default
value you supplied) or clicked the Cancel button?

2: Write the MsgBox() function needed to produce the message box shown in Figure 7.10 .

Figure 7.10. How would you produce this message box?

3: Write a command button event procedure that asks the user for a city, then for a state name, in two separate
input boxes. Then, concatenate the names after placing a comma and space between them and display the
merged city and state string in a message box.

4: Write an application with a long form that contains five option buttons that simulate radio buttons across the
top of the form. Label each of the buttons with your city's top five radio stations. Create an event procedure
for each option button that displays the type o music or talk that station plays. Display this information in a
message box.

Bonus Project 3: User Input and Conditional Logic
This Bonus Project's code demonstrates the use of check boxes, option buttons, and frames so that you can practice
handling the user's responses using the controls you now know.

Handling so many controls and responding to them will require some Visual Basic programming, and this Bonus
Project contains the most code of any you've seen so far. Here are the goals of this application:

• To display a series of check boxes for the user to select one or more countries to see their respective flags
displayed next to their names.

• To display that same series of country names with option buttons so the user can select one and only one
country at a time.

• To issue a message box–based error if the user fails to respond correctly to the required input.
• To add a second set of option buttons, along with the country option buttons, that determines if the selected flag

displays in a small or large image box control.

In addition to teaching you about these controls, this application introduces you to a new concept: multiple forms in a
single project. This application uses a total of three forms. You'll learn how to load and display the proper form when
needed at runtime.

Note

As is the case with many applications in this 21-day tutorial, this application requires the use of graphics files that come
with Visual Basic. Depending on your installation choices, you might not have the Graphics folder on your disk in your
Visual Basic directory. If so, you'll have to change the pathname to your CD-ROM drive and insert your first VB6
installation CD-ROM pathname in place of this application's pathname. To add the graphics, insert your first Visual
Basic CD-ROM in the drive and select Add/Change Options from the screen to add the graphics to your hard disk.

Creating the Initial Form
Figure BP3.1 shows the first form you'll create.

Figure BP3.1. This form lets the user select the type of flag display desired.

Table BP3.1 lists the properties for the elements of the form.

Table BP3.1. Set these controls and properties on the form.

Control Property Name Property Value

Form Name frmSelect

Table BP3.1. Set these controls and properties on the form.

Control Property Name Property Value

Form Caption Flag Selection

Form Height 4035

Form Width 6390

Label Name lblFlags

Label BorderStyle 1-Fixed Single

Label Caption Flags

Label Font MS Sans Serif

Label Font Size 24

Label Font Style Bold

Label Height 615

Label Left 2400

Label Top 600

Label Width 1335

Option button #1 Name optCheck

Option button #1 Caption &Check Boxes

Option button #1 Left 2280

Option button #1 Top 1920

Option button #1 Width 1575

Option button #2 Name optOption

Option button #2 Caption &Option Buttons

Option button #2 Left 2280

Option button #2 Top 2520

Option button #2 Width 1695

Command button #1 Name cmdSelect

Command button #1 Caption Click when &Ready

Command button #1 Left 4560

Command button #1 Top 2040

Table BP3.1. Set these controls and properties on the form.

Control Property Name Property Value

Command button #2 Name cmdExit

Command button #2 Caption E&xit

Command button #2 Left 4560

Command button #2 Top 2760

Although the code needed for this form is simple, it does introduce a new concept. The code, shown in Listing BP3.1,
demonstrates how to load a different form than the one currently onscreen.

Listing BP3.1 Getting the user's request from the option button selection.
1: Private Sub cmdSelect_Click()
2: ' Perform error-checking then
3: ' Display the proper form according to the user's selection
4: Dim strMsg As String ' Holds message box return value
5: If ((optCheck.Value = False) And (optOption.Value = False)) Then
6: strMsg = MsgBox("You need to select an option, try again", _
 vbCritical, "Error!")
7: ElseIf (optCheck.Value = True) Then
8: frmFlagsCheck.Show ' Flags with Check boxes
9: Else
10: frmFlagsOpt.Show ' Flags with Option buttons
11: End If
12: End Sub
13:
14: Private Sub Form_Load()
15: ' Clear each of the option buttons
16: optCheck.Value = False
17: optOption.Value = False
18: End Sub
19: Private Sub cmdExit_Click()
20: ' Stop the program
21: End
22: End Sub

The Startup Form's Analysis
Lines 14 through 18 determine what happens when the application first starts and the initial form loads. (The Project,
Properties dialog box should show the form named frmSelect as the startup form.) Lines 16 and 17 set the option
buttons to False. This forces the user to select one of them.

If the user clicks the command button without selecting an option button, line 5's compound conditional statement finds
out. If both option button Value properties are still False once the user clicks the command button, line 6 displays a
message box that warns the user he or she must make a selection.

If the user has selected one of the option buttons, lines 7 through 9 determine which option button is selected and show
the proper form. Notice that the line actually shows the form with the command frmFlagsCheck.Show. Actually, this
does not look like a command but rather like some kind of property value named Show. However, there is no property
value named Show for forms. Show is a method, and a method is a command that is not a Visual Basic command (such
as Next), but rather a command you apply only to a specific object. In this case, that object is the form
frmFlagsCheck. The Show method displays whatever form you apply it to. Therefore, as soon as line 8 or 10 executes,
the user will see the appropriate form on the screen sitting atop the selection form.

Creating the Check Box Form
Figure BP3.2 shows the next form you'll design.

Figure BP3.2. The user can display the flag from any country.

The form contains six country names, and six possible flags can appear next to the country names. You'll have to create
a new form and add it to the current project. To do this, follow these steps:

1. Right-click inside the Project window.

2. Select Add, Form from the pop-up menu. Visual Basic displays a tabbed dialog box from which you can select
a new form or an existing one.

3. Double-click the icon labeled Form because you're going to create a new form for this application. The form
will appear on your screen inside the form editing area.

Table BP3.2 lists the properties for the elements of the form. Remember that you need to change the pathname for the
images'Picture properties to your PC's path for those files (and possibly to your Visual Basic CD-ROM if you did not
install the Graphics folder).

Table BP3.2. Set these controls and properties on the flag selection.

Control Property Name Property Value

Form Name frmFlagsCheck

Form Caption Flags

Form Height 7035

Form Width 7710

Check box #1 Name chkEngland

Check box #1 Caption &England

Check box #1 Left 2835

Check box #1 Top 420

Check box #2 Name chkItaly

Check box #2 Caption &Italy

Check box #2 Height 495

Check box #2 Left 2835

Check box #2 Top 1155

Check box #2 Width 1215

Check box #3 Name chkSpain

Check box #3 Caption &Spain

Check box #3 Height 495

Check box #3 Left 2835

Check box #3 Top 1905

Check box #3 Width 1215

Table BP3.2. Set these controls and properties on the flag selection.

Control Property Name Property Value

Check box #4 Name chkMexico

Check box #4 Caption &Mexico

Check box #4 Height 495

Check box #4 Left 2835

Check box #4 Top 2595

Check box #4 Width 1215

Check box #5 Name chkFrance

Check box #5 Caption &France

Check box #5 Height 495

Check box #5 Left 2835

Check box #5 Top 3375

Check box #5 Width 1215

Check box #7 Name chkUSA

Check box #7 Caption &USA

Check box #7 Height 495

Check box #7 Left 2865

Check box #7 Top 4140

Check box #7 Width 1215

Image #1 Name imgEngland

Image #1 Height 480

Image #1 Left 4440

Image #1 Picture \Program Files\Microsoft Visual Studio\Common\Graphics\Icons\Flags\Flaguk

Image #1 Top 480

Image #1 Visible False

Image #2 Name imgItaly

Image #2 Height 480

Image #2 Left 4440

Table BP3.2. Set these controls and properties on the flag selection.

Control Property Name Property Value

Image #2 Picture \Program Files\Microsoft Visual
Studio\Common\Graphics\Icons\Flags\Flgitaly

Image #2 Top 1155

Image #2 Visible False

Image #3 Name imgSpain

Image #3 Height 480

Image #3 Left 4440

Image #3 Picture \Program Files\Microsoft Visual
Studio\Common\Graphics\Icons\Flags\Flgspain

Image #3 Top 1890

Image #3 Visible False

Image #4 Name imgMexico

Image #4 Height 480

Image #4 Left 4440

Image #4 Picture \Program Files\Microsoft Visual Studio\Common\Graphics\Icons\Flags\Flgmex

Image #4 Top 2520

Image #4 Visible False

Image #5 Name imgFrance

Image #5 Height 480

Image #5 Left 4440

Image #5 Picture \Program Files\Microsoft Visual
Studio\Common\Graphics\Icons\Flags\Flgfran

Image #5 Top 3315

Image #5 Visible False

Image #6 Name imgUSA

Image #6 Height 480

Image #6 Left 4440

Image #6 Picture \Program Files\Microsoft Visual
Studio\Common\Graphics\Icons\Flags\Flgusa02

Table BP3.2. Set these controls and properties on the flag selection.

Control Property Name Property Value

Image #6 Top 4080

Image #6 Visible False

Command button Name cmdReturn

Command button
Caption

&Return to selection

Command button Left 5520

Command button Top 5040

You now must add the code to the form. Double-click the form named frmFlagsCheck and add the code in Listing
BP3.2. The goal of this application's form is to display a picture of a country's flag when the user clicks a check box.
Therefore, you need to associate a procedure with the Click event for each check box.

Listing BP3.2 Displaying a flag when the user clicks a check box control.
1: Private Sub chkEngland_Click()
2: ' Displays the flag if checked
3: If chkEngland.Value = 1 Then
4: imgEngland.Visible = True
5: Else
6: imgEngland.Visible = False
7: End If
8: End Sub
9: Private Sub chkItaly_Click()
10: ' Displays the flag if checked
11: If chkItaly.Value = 1 Then
12: imgItaly.Visible = True
13: Else
14: imgItaly.Visible = False
15: End If
16: End Sub
17: Private Sub chkSpain_Click()
18: ' Displays the flag if checked
19: If chkSpain.Value = 1 Then
20: imgSpain.Visible = True
21: Else
22: imgSpain.Visible = False
23: End If
24: End Sub
25: Private Sub chkMexico_Click()
26: ' Displays the flag if checked
27: If chkMexico.Value = 1 Then
28: imgMexico.Visible = True
29: Else
30: imgMexico.Visible = False

31: End If
32: End Sub
33: Private Sub chkFrance_Click()
34: ' Displays the flag if checked
35: If chkFrance.Value = 1 Then
36: imgFrance.Visible = True
37: Else
38: imgFrance.Visible = False
39: End If
40: End Sub
41: Private Sub chkUSA_Click()
42: ' Displays the flag if checked
43: If chkUSA.Value = 1 Then
44: imgUSA.Visible = True
45: Else
46: imgUSA.Visible = False
47: End If
48: End Sub
49: Private Sub cmdReturn_Click()
50: ' Return to the selection form
51: frmFlagsCheck.Hide
52: frmSelect.Show
53: End Sub

The Check Box Form's Analysis
The six check box event procedures are similar. You already filled in each image control's Picture property when you
designed the form and placed the controls. Therefore, the event procedure only needs to set the Visible property to
True to shows the picture. However, a problem exists: What if the user clicks the check box once again to clear the
check mark? The code must turn off the picture's display.

Lines 43 through 46 show how the code works in each event procedure. Line 43 looks at the check box's Value
property. If the Value property holds a 1, the user clicked the box to turn on the check mark, and the code, therefore,
turns on the picture's display. If Value holds a 0, the user unchecked the box; therefore, the code must turn off the
picture's display, as is done in line 46.

Finally, the command button's Click event procedure performs two tasks in lines 51 and 52. Line 51 shows a new
method called the Hide method that hides the form you apply this method to. (Hide is the opposite of Show.) Line 51
hides the check box form, and line 52 displays the startup form once again so the user can select another option.

Creating the Option Button Form
Figure BP3.3 shows the next form you'll design. The flag may be small or large, depending on which option the user
chooses.

Figure BP3.3. This form lets the user display one flag at a time and select the flag's display size.

The form contains six option buttons next to the six country names, and one of six possible flags can appear next to the
country name. In addition, a frame holds two more option buttons that determine the size of the flag displayed.

Caution

To add option buttons to a frame control, you must draw the option buttons on the frame. In other words, if you double-
click the option button tool and an option button appears in the center of the form, Visual Basic does not assume that
the option button resides on the frame. Therefore, to separate a frame's option buttons from the rest on the form's option
buttons, you must draw the option button by clicking the toolbar's option button control once and dragging the new
option button on top of the form's frame. That option button, and all others you place on the frame this way, will be
considered part of the frame and distinct from the other option buttons.

As before, you have to create a new form and add it to the current project. Once you add the form (the third form in the
project), assign the controls and properties shown in Table BP3.3 to it.

Table BP3.3. Option buttons change the way the flags display on the form.

Control Property Name Property Value

Form Name frmFlagsOpt

Form Caption Flags

Form Height 7335

Table BP3.3. Option buttons change the way the flags display on the form.

Control Property Name Property Value

Form Width 8955

Option button #1 Name optEngland

Option button #1
Caption

&England

Option button #1 Height 495

Option button #1 Left 2760

Option button #1 Top 360

Option button #1 Value True

Option button #1 Width 1215

Option button #2 Name optItaly

Option button #2
Caption

&Italy

Option button #2 Height 495

Option button #2 Left 2760

Option button #2 Top 1080

Option button #2 Width 1215

Option button #3 Name optSpain

Option button #3
Caption

&Spain

Option button #3 Height 495

Option button #3 Left 2760

Option button #3 Top 1800

Option button #3 Width 1215

Option button #4 Name optMexico

Option button #4
Caption

&Mexico

Option button #4 Height 495

Option button #4 Left 2760

Option button #4 Top 2520

Table BP3.3. Option buttons change the way the flags display on the form.

Control Property Name Property Value

Option button #4 Width 1215

Option button #5 Name optFrance

Option button #5
Caption

&France

Option button #5 Height 495

Option button #5 Left 2760

Option button #5 Top 3240

Option button #5 Width 1215

Option button #6 Name optUSA

Option button #6
Caption

&USA

Option button #6 Height 495

Option button #6 Left 2760

Option button #6 Top 3960

Option button #6 Width 1215

Frame Name fraSize

Frame Caption Size the flag

Frame Height 1215

Frame Left 1320

Frame Top 5040

Frame Width 1575

Frame option #1 Name optLarge

Frame option #1
Caption

&Large

Frame option #1 Height 255

Frame option #1 Left 360

Frame option #1 Top 360

Frame option #1 Width 1095

Table BP3.3. Option buttons change the way the flags display on the form.

Control Property Name Property Value

Frame option #2 Name optSmall

Frame option #2
Caption

Sma&ll

Frame option #2 Height 255

Frame option #2 Left 360

Frame option #2 Top 720

Frame option #2 Width 1095

Image #1 Name imgEngland

Image #1 Height 480

Image #1 Left 5280

Image #1 Picture \Program Files\Microsoft Visual Studio\Common\Graphics\Icons\Flags\Flguk

Image #1 Stretch True

Image #1 Top 2160

Image #1 Visible True

Image #2 Name imgItaly

Image #2 Height 480

Image #2 Left 5280

Image #2 Picture \Program Files\Microsoft Visual
Studio\Common\Graphics\Icons\Flags\Flgitaly

Image #2 Stretch True

Image #2 Top 2160

Image #2 Visible False

Image #3 Name imgSpain

Image #3 Height 480

Image #3 Left 5280

Image #3 Picture \Program Files\Microsoft Visual
Studio\Common\Graphics\Icons\Flags\Flgspain

Image #3 Stretch True

Table BP3.3. Option buttons change the way the flags display on the form.

Control Property Name Property Value

Image #3 Top 2160

Image #3 Visible False

Image #4 Name imgMexico

Image #4 Height 480

Image #4 Left 5280

Image #4 Picture \Program Files\Microsoft Visual
Studio\Common\Graphics\Icons\Flags\Flg\Flgmex

Image #4 Stretch True

Image #4 Top 2160

Image #4 Visible False

Image #5 Name imgFrance

Image #5 Height 480

Image #5 Left 5280

Image #5 Picture \Program Files\Microsoft Visual Studio\Common\Graphics\Icons\Flags\Flgfran

Image #5 Stretch True

Image #5 Top 2160

Image #5 Visible False

Image #6 Name imgUSA

Image #6 Height 480

Image #6 Left 5280

Image #6 Picture \Program Files\Microsoft Visual
Studio\Common\Graphics\Icons\Flags\Flgusa02

Image #6 Stretch True

Image #6 Top 2160

Image #6 Visible False

Command button Name cmdReturn

Command button
Caption

&Return to selection

Table BP3.3. Option buttons change the way the flags display on the form.

Control Property Name Property Value

Command button
Height

495

Command button Left 4920

Command button Top 5400

Command button Width 1215

Listing BP3.3 contains the code for the option buttons form module. Get ready as it gets lengthy! You'll see, however,
that the code is repetitive and primarily consists of six similar routines that go with each of the six option buttons.

Listing BP3.3 Add code that controls the flag's display using option buttons.
1: Private Sub optEngland_Click()
2: ' Displays the flag if checked
3: If optSmall.Value = True Then
4: imgEngland.Height = 480
5: imgEngland.Width = 480
6: Else ' Large image
7: imgEngland.Height = 2800
8: imgEngland.Width = 2800
9: End If
10: imgEngland.Visible = True
11: ' Turn off display of all other flags
12: imgItaly.Visible = False
13: imgSpain.Visible = False
14: imgMexico.Visible = False
15: imgFrance.Visible = False
16: imgUSA.Visible = False
17: End Sub
18: Private Sub optItaly_Click()
19: ' Displays the flag if checked
20: If optSmall.Value = True Then
21: imgItaly.Height = 480
22: imgItaly.Width = 480
23: Else ' Large image
24: imgItaly.Height = 2800
25: imgItaly.Width = 2800
26: End If
27: imgItaly.Visible = True
28: ' Turn off display of all other flags
29: imgEngland.Visible = False
30: imgSpain.Visible = False
31: imgMexico.Visible = False
32: imgFrance.Visible = False
33: imgUSA.Visible = False
34: End Sub
35: Private Sub optSpain_Click()

36: ' Displays the flag if checked
37: If optSmall.Value = True Then
38: imgSpain.Height = 480
39: imgSpain.Width = 480
40: Else ' Large image
41: imgSpain.Height = 2800
42: imgSpain.Width = 2800
43: End If
44: imgSpain.Visible = True
45: ' Turn off display of all other flags
46: imgItaly.Visible = False
47: imgEngland.Visible = False
48: imgMexico.Visible = False
49: imgFrance.Visible = False
50: imgUSA.Visible = False
51: End Sub
52: Private Sub optMexico_Click()
53: ' Displays the flag if checked
54: If optSmall.Value = True Then
55: imgMexico.Height = 480
56: imgMexico.Width = 480
57: Else ' Large image
58: imgMexico.Height = 2800
59: imgMexico.Width = 2800
60: End If
61: imgMexico.Visible = True
62: ' Turn off display of all other flags
63: imgItaly.Visible = False
64: imgSpain.Visible = False
65: imgEngland.Visible = False
66: imgFrance.Visible = False
67: imgUSA.Visible = False
68: End Sub
69: Private Sub optFrance_Click()
70: ' Displays the flag if checked
71: If optSmall.Value = True Then
72: imgFrance.Height = 480
73: imgFrance.Width = 480
74: Else ' Large image
75: imgFrance.Height = 2800
76: imgFrance.Width = 2800
77: End If
78: imgFrance.Visible = True
79: ' Turn off display of all other flags
80: imgItaly.Visible = False
81: imgSpain.Visible = False
82: imgMexico.Visible = False
83: imgEngland.Visible = False
84: imgUSA.Visible = False
85: End Sub
86: Private Sub optUSA_Click()
87: ' Displays the flag if checked
88: If optSmall.Value = True Then
89: imgUSA.Height = 480
90: imgUSA.Width = 480
91: Else ' Large image
92: imgUSA.Height = 2800

93: imgUSA.Width = 2800
94: End If
95: imgUSA.Visible = True
96: ' Turn off display of all other flags
97: imgItaly.Visible = False
98: imgSpain.Visible = False
99: imgMexico.Visible = False
100: imgFrance.Visible = False
101: imgEngland.Visible = False
102: End Sub
103: Private Sub cmdReturn_Click()
104: ' Return to the selection form
105: frmFlagsOpt.Hide
106: frmSelect.Show
107: End Sub
108: Private Sub optSmall_Click()
109: ' Hide all flags shown
110: ' Subsequent flags will be small
111: imgEngland.Visible = False
112: imgItaly.Visible = False
113: imgSpain.Visible = False
114: imgMexico.Visible = False
115: imgFrance.Visible = False
116: imgUSA.Visible = False
117: ' Reset option buttons
118: optEngland.Value = False
119: optItaly.Value = False
120: optSpain.Value = False
121: optMexico.Value = False
122: optFrance.Value = False
123: optUSA.Value = False
124: End Sub
125: Private Sub optLarge_Click()
126: ' Hide all flags shown
127: ' Subsequent flags will be large
128: imgEngland.Visible = False
129: imgItaly.Visible = False
130: imgSpain.Visible = False
131: imgMexico.Visible = False
132: imgFrance.Visible = False
133: imgUSA.Visible = False
134: ' Reset option buttons
135: optEngland.Value = False
136: optItaly.Value = False
137: optSpain.Value = False
138: optMexico.Value = False
139: optFrance.Value = False
140: optUSA.Value = False
141: End Sub

The Option Button Form's Analysis
Most of the event procedures consist of virtually the same code, except that the primary country name is different.
Taking the first set (lines 1 through 17), you can see that the code first checks to see if the small or large option button

is selected in line 3. If the small option button is selected, the control's Height and Width properties are set to 480
twips in lines 4 and 5. If the large option button is selected, the code sets the flag's Height and Width properties to
2800 twips.

The rest of the event procedure simply makes the selected country's flag visible by setting the Visible property to
True in line 10 and turning off the display of the other flags in lines 12 through 16. Again, the subsequent six event
procedures that appear in lines 17 through 102 mimic the first event procedure, except that a different country's flag is
the target.

Line 103 begins a short event procedure that works just like the one in the check box form module. It hides the option
button form and displays the selection form once again so the user can select a different form or quit the program.

Lines 108 and 125 both start virtually identical event procedures that turn off the visibility of all flags on the screen. Of
course, only one flag is visible, but instead of looking for the one that's displayed and turning its Visible property to
False, the code turns all the image controls'Visible properties to False. Although five of the six are already False,
this code ensures that no flag will be visible.

The reason that clicking the large or small option buttons turns off the flag display is so the next flag the user clicks can
appear in the large or small size. The application could be rewritten to change the size of the displayed flag, but that
would have made this project even longer, and you have enough to type as it is!

Tip

Without a doubt, this application is tedious! Its code is repetitive—the same section of code is repeated twice for each
of the six option buttons and check boxes. Before you finish this 21-day tutorial, you'll learn a way to streamline such
code. When several similar controls appear on a form and the controls mimic each other almost identically, you'll learn
to use a control array, which shortens the code and makes it easier to maintain.

Week 1 In Review
Now that you've finished your first week, you can be proud of yourself because you are on your way to becoming a
full-fledged, official Visual Basic programmer!

As you now realize, Visual Basic programming involves much more than learning a programming language. In a way,
the programming language itself is secondary to Visual Basic's visual programming. Much of creating a Windows
application requires placing graphic elements on a form. Once you place the visual objects, you must set properties to
make those properties look and behave in a certain way.

Your Week's Worth
In this week, you have mastered the following:

• Visual Basic's history— How Visual Basic got its roots from the BASIC language (Day 1).
• Program maintenance— Why clear and concise programming makes subsequent changes and bug fixes much

easier (Day 1).

• Program structure— The visual elements, known as controls, have properties that you must set. These
controls interact with the user at runtime by responding to Windows events (Day 1).

• Application Wizard— Visual Basic creates a program skeleton for you. You must fill in the details to
customize the skeleton and hone your application (Day 1).

• Visual Basic's environment— Visual Basic's environment includes all the windows and toolbars you need to
work within the Windows visual programming mode (Day 2).

• Form Layout window— Adjust the form's location on your screen by clicking and dragging with your mouse
(Day 2).

• Visual Basic Online Help— Visual Basic offers all the online help that you'll ever need. From within Visual
Basic, you can access the MSDN (assuming you install MSDN) books online and read complete reference
books on the Visual Basic language and programming environment (Day 2).

• Creating applications— You don't have to use the Application Wizard to create applications. Instead, you can
control every aspect of your program's creation by starting with a blank slate (actually, a blank Form window)
and adding all the controls and code yourself (Day 2).

• Property values— Understanding and setting control properties is simple, especially with help from the
Properties window (Day 3).

• Label controls— The Label control holds the text that you want to appear on your forms (Day 3).
• Text box controls— Let your users enter text into your application in text boxes that your provide (Day 3).
• Command button controls— Your users will trigger actions and indicate when they are ready by using the

command buttons you place on your forms (Day 3).
• Menus— Windows applications that require menus use a standard menu bar with pull-down menu options that

you can add to your own Visual Basic applications (Day 4).
• The Menu Editor— The Menu Editor is a dialog box that enables you to create menus quickly and easily (Day

4).
• Menu response— Menu options trigger Click events that are easy to program (Day 4).
• The Code window— Use the editing tool inside Visual Basic's Code window to create the most accurate code

possible (Day 5).
• Visual Basic data— Numeric, string, and special kinds of data exist and Visual Basic supports all kinds (Day

5).
• Variables— Store temporary values and results in named storage locations called variables (Day 5).
• Operators— Perform math and data-manipulation with Visual Basic's extensive collection of operators (Day

5).
• Operator hierarchy— Visual Basic computes mathematical expressions in a pre-defined order (Day 5).
• Conditional operators— Visual Basic makes decisions, at runtime, based on data by using the conditional

operators to analyze results (Day 6).
• The selection statements— The If and Select Case programming statements take advantage of the

conditional operators and execute certain lines of code based on the data (Day 6).
• Loops— Visual Basic has as many or more kinds of loops available as any computer language in existence

(Day 6).
• Keyboard control— The Toolbox window's controls are not the only way your users interact with your

applications. You can take control of the keyboard (Day 7).
• Check box controls— When your users need to select from among several choices, check box controls enable

them to select options simply by clicking the mouse (Day 7).
• Option buttons— Use option buttons when your users have to choose one, and only one, option from a set of

options (Day 7).

• Frame control— By placing several frames on a form, you can group option buttons together to offer your
users a more complete set of choices (Day 7).

Part 2: At a Glance

Congratulations on finishing your first week of Visual Basic programming! As you have seen, Visual Basic
programming is fun. In addition, Visual Basic makes programming simple. Whereas programmers before Visual Basic
had to write code that drew controls and made the controls respond to the user, Visual Basic programmers can leave
those trivial details to Visual Basic and concentrate on the application's specific requirements. The fun has just begun
because this week you spice up your applications even more.

Where You're Going
The next week continues to hone your Visual Basic skills. Over the next few days, you'll master virtually all of the
Visual Basic programming language that you'll ever use. In Day 9, "The Dialog Box Control," you learn how to access
the many internal functions that Visual Basic supplies so that you can get more done with less code. When you tap into
Visual Basic's internal routines, you let Visual Basic handle common details such as calculations and data
manipulations.

This week is not just about coding, however. You learn how to place dialog boxes inside your applications so that your
users see a familiar interface when they open a file or send something to the printer. By using standard dialog boxes,
your applications will be more familiar to users and they will adapt to your programs more quickly.

In your first week, you learned how to interact with the user through controls on the screen. This week teaches
additional ways you can interact with the user. You learn how to trap and analyze keystrokes so that you can provide
more control over the user's entered responses. In addition, you will learn how to respond to mouse clicks, double-
clicks, and movements so that your programs interact with the user in every way possible. If you want to offer a drag-
and-drop operation for a control, you will see in Day 10, "Adding Power with the Mouse and Controls," that Visual
Basic's methods make quick work of drag-and-drop operations.

Data input is not the only skill that will improve this week. Your programs will become more flexible and usable as you
add printing capabilities to your applications. You will be able to produce reports from the data that you process. On
Day 14, "Introducing VB Graphics and Multimedia," you learn to liven your screens with graphics and even
multimedia presentations. Visual Basic includes controls that provide the graphics and multimedia support. With these
controls'properties, events, and methods, your applications will seem to come alive.

Mastering Program Structure
You already have a good idea of how Visual Basic programs operate. When the user interacts with controls, events take
place. If the application contains event procedures that match the control and event combination, that event procedure
executes. The Visual Basic program code is, for the most part, one long set of event procedures with a Declarations
section at the beginning of the code.

Note

Remember that each form has a set of code, located in the Form module, for the controls on that form. Therefore, when
you display a form inside the Form window editing area, the code is available for that form when you click the Project
window's View Code button.

It's time to turn your attention to other program content that a Visual Basic application might hold. Event procedures
are not the only procedures that can appear in code. Figure 8.1 reviews the code that can appear in a Form module. In
addition to declarations and event procedures, the Form module might contain general procedures and class
procedures.

Figure 8.1. A Form module can contain several kinds of code.

A general procedure is a procedure that is not linked to a control event but performs general calculations and routine
processing.

A class procedure defines a special object in Visual Basic that you create. In a way, a class defines a new data type or
variable that you can use.

You might recall the two drop-down list boxes in the Code window that determine the object and procedure that you
are viewing in the Code window. When you select the Object drop-down list box, you'll see an entry for each control
on the current form (the form whose Form module you are viewing). In addition, you'll see, at the top of the list, a
special object listed as (General). (The parentheses around the name indicates that the entry is not a control named
General but a special section.) The general section holds both the declarations code that appears at the top of a Code
window and general procedures you write.

Calling General Procedures
General procedures can be function or subroutine procedures. Why would you need a general procedure? In Bonus
Project 2 ("Variables and Expressions"), the following code appeared in two event procedures (optLarge_Click() and
optSmall_Click()):

imgEngland.Visible = False
imgItaly.Visible = False
imgSpain.Visible = False
imgMexico.Visible = False
imgFrance.Visible = False
imgUSA.Visible = False
'Reset option buttons
optEngland.Value = False
optItaly.Value = False
optSpain.Value = False
optMexico.Value = False
optFrance.Value = False
optUSA.Value = False

That's a lot of typing to have to repeat. Of course, you can use copy and paste commands inside the Code window to
keep from typing the code twice but there's a problem with doing that. What if you must make a change to the code? If
so, you must remember to make the change everywhere the code appears. Repetitive code is not just a bad thing
because of extra typing but because of subsequent maintenance hassles that arise.

When you have this situation, you can place the code in its own general procedure, similar to that in the following code.
Notice that you give general procedures a name.

(Procedure names follow the same rules as variable names.) In addition, a general procedure can be a function or a
subroutine procedure:

1: Private Sub Clear_Flags()
2: 'Hide all flags shown
3: 'Subsequent flags will be small

4: imgEngland.Visible = False
5: imgItaly.Visible = False
6: imgSpain.Visible = False
7: imgMexico.Visible = False
8: imgFrance.Visible = False
9: imgUSA.Visible = False
10: 'Reset option buttons
11: optEngland.Value = False
12: optItaly.Value = False
13: optSpain.Value = False
14: optMexico.Value = False
15: optFrance.Value = False
16: optUSA.Value = False
17: End Sub

When you get to the place in another procedure that needs to execute this code, you can call the general procedure like
this:

Call Clear_Flags()

To call a procedure means to execute one procedure from inside another procedure.

The Call statement tells Visual Basic to temporarily put on hold the currently running procedure (whether it's an event
procedure or general procedure does not matter) and execute the code inside the called procedure. After the called
procedure is through, the calling procedure's code continues executing from the line that follows the Call statement.

Private and Public Procedures

Using Call can be a time-saver and make your programs much more maintainable because you put common code in a
procedure and call that procedure from anywhere in the program when you need the code to execute. You might even
write a routine in one application that you will want to use elsewhere in another application. For example, perhaps you
write a report title that includes your company's name and address, and you want to place that title at the top of other
reports generated in other applications.

If the procedure is located in the general section of a Form module, no other application can use that procedure without
that Form module. Therefore, you can place that procedure inside a Code module. Over time, you might fill a particular
reporting Code module with several routines that you will use for reporting. Then, any application that produces reports
can use those procedures without your having to rewrite them for each application. All you must do is right-click over
the application's Project window and select Add, Module from the pop-up menu to bring your general procedure
module into whatever application that can use the code.

Tip

In a way, after you write general procedures and bring them into other applications, you build your own library of
internal functions. They aren't actually internal (or, more accurately, they are not called intrinsic functions) because

they are not part of the Visual Basic system; but you have added them to whatever applications you load the procedures
into. You never have to write code again to perform those same procedures. To use them, you only need to call those
procedures from the application.

Code inside a Form module can use the code inside an added Code module. All you need to do is call the procedure
from the Form module code with one exception: You can call public procedures from outside the current module, not
private procedures. Consider the following procedure declaration statement:

Private Sub ReportIt()

This procedure can only be called from the module in which it resides. If you wrote the procedure as a public
procedure, by defining it as follows, any procedure from any module in that application can call the procedure:

Public Sub ReportIt()

Therefore, the general-purpose procedures that you write should all be public if you want those procedures to be
callable from other modules.

Therefore, you now can understand these rules:

• A procedure declared as Private can be used only within its own module.
• A procedure declared as Public can be used by any procedure within its application.

Variable Scope

Not only can code be public or private, but variables also can also have public and private scope, although
programmers usually refer to them as global and local. The difference is based on how available the variables are from
surrounding code.

A local variable can be used only by code to which it is visible.

A global variable can be used by code outside its declared area.

The term scope refers to the availability of a variable from within the application's code.

Note

All controls are always visible and public to all code within the application. Controls on the form are never hidden
from view.

Suppose you are a contract programmer for a local video store. You might write a general-purpose procedure that
computes sales tax using your state, county, and city percentages. The code computes sales tax on the current total sale.
You then decide that the sales tax computation will be rather common because you'll compute sales tax on video
purchases, as well as other kinds of sales made such as soft drink purchases which are handled from a different module.
Instead of putting the same calculations twice in the application, you place the sales tax calculation in a Code module
file you have created for the video applications you write. The sales tax procedure will be public so that any procedure
in any application that you add the module to can call it and compute sales tax.

One problem exists, however. Procedures cannot always share data. Consider the following code fragment:

Private Sub GetSalesTotal()
' Subroutine that adds each item's
' price text box and computes a
' total amount for the sale
 Dim curTotal As Currency
 '
 ' Rest of procedure continues here

The GetSalesTotal() procedure adds together all text boxes on a sales form and stores them in the variable named
curTotal. You then want to use a sales tax procedure to compute the sales tax on this procedure's curTotal amount.
You cannot do so with the tools you know so far because curTotal is a local variable!

Note

Only code within a procedure can use a local variable you declare within that procedure. The variable is visible only
within the procedure that declared it.

The term visible refers to a variable's usage. A variable is visible only to procedures that have access to that variable.
For example, a local variable is visible only within the procedure that declared it, and a global variable is visible within
the module in which you declare it.

You can declare curTotal as a variable that's global to the module, however, by pulling out the Dim statement from the
procedure and declaring the variable in theForm module's Declarations section like this:

Option Explicit
' All public variable declarations go here
Dim curTotal As Currency

Any code within the Form module can now access the variable named curTotal. Has that helped you at all? The
answer might surprise you. You have made the situation even worse. You might recall from Day 5 that local variables
are almost always preferred over global variables because procedures should have access only to data they need. If you
make the variable global, as you do when you declare the variable in a module's Declarations section (in the (General)
section of the Code window), you have made that variable visible to all procedures in the module, even to many that
don't need the variable, but the variable is still not visible to other modules!

Note

With Visual Basic applications containing more than one module, the terms local and global actually do not properly
define all situations. Therefore, you might more accurately define a variable as being local if it is visible to a procedure
in which you declare it, a module-level variable if the variable is visible from the module in which you declare it, and
global—or public—if the variable is visible from anywhere in the entire application.

To make a variable truly global to an entire project, you must use the Public keyword instead of Dim to declare the
variable. Also, you must place the Public declaration in a module's Declarations section for the variable to be public,
and hence global, to the entire application.

Caution

Two public variables can have the same name. You can declare them with Public in two separate modules. To ensure
that you are using the proper public variable, if you ever use a public variable, qualify the variable name with the
module's name. Therefore, MyLibrary.curSales refers specifically to a variable named curSales in the Code module
named MyLibrary. If a public variable named curSales exists in any other module, MyLibrary.curSales guarantees
that Visual Basic will use the correct one.

As a review of the concepts discussed so far, study Figure 8.2 to see how public, module-level, and local variables
relate to one another and within applications. Each rectangular box within the two modules represents a procedure. The
callouts show which variables are available to which procedures.

Figure 8.2. A variable's scope affects which procedures can use that variable.

All this talk about public variables really saddens the die-hard programmers who want maintainable code. They have a
point when they say something like, "If module-level variables are not good, then publicly declared variables available
to an entire application are even worse because they are visible from all procedures within all modules within the
application."

You might see the dilemma here. Except in rare cases when the same variable must be used in almost every procedure
within a module, you should declare only local variables using Dim inside their procedures. However, other procedures
often have need of those variables, especially general procedures located in outside Code modules. There must exist a
means for the sharing of local data, and Visual Basic gives you the means as you'll see in the next section.

Passing Data

When two procedures need to share data values, the calling procedure can send its local variables to any called
procedure. To pass the variables, you need to list the variables within the procedure's parentheses. You've already
passed arguments to procedures, for example, when you used InputBox(). The prompt string inside the InputBox()
parentheses was local data to the procedure that called InputBox(), and InputBox() received the data and worked
with the data you passed it.

The requirement of the called procedure is that it must declare, inside the receiving parentheses, all passed arguments.
A simple example will clarify everything. Listing 8.1 contains two procedures. One sends two values, a total and a
discount amount, to the second procedure which computes sales tax of the total less the discount. The sales tax
procedure uses the data passed to it from the first procedure and displays a message box with the total tax.

Listing 8.1 The first procedure sends arguments to the second.
1: Private Sub GetTotal()
2: ' This procedure collects totals from a form
3: ' and sends the grand total and a discount
4: ' percentage to a sales tax procedure
5: Dim curTotal As Currency
6: Dim sngDisc As Single 'Special tax discount
7: '
8: ' Collect the totals from the form's text boxes
9: curTotal = txtSale1.Text + txtSale2.Text + txtSale3.txt
10: '
11: ' Send the total to a sales tax procedure
12: Call SalesTax(curTotal, sngDisc)
13: End Sub
14:
15: Public Sub SalesTax(curTotal As Currency, sngRateDisc As Single)
16: ' Compute sales tax and deduct percentage discount
17: Dim curSalesTax As Currency
18: Dim intMsg As Integer ' For MsgBox()
19: '
20: ' The following computes a tax based
21: ' on 3% plus a millage of 1/2 percent
22: curSalesTax = (curTotal * .03) + (curTotal * .005)
23: '
24: ' Now, deduct percentage discount
25: curSalesTax = curSalesTax - (sngRateDisc * curTotal)
26: '
27: ' Display Tax
28: intMsg = MsgBox("The sales tax is " & curSalesTax)
29: '
30: ' Procedures automatically return to their
31: ' calling procedure when finished
32: End Sub

Note

Notice that the passed variable and the receiving argument's names do not have to match (as in sngDisc in line 12 and
sngRateDisc in line 15) but the number of arguments and data types must match in both the sending and receiving
argument lists. The called procedure refers to the arguments by whatever names it received them as.

The SalesTax() procedure might reside in a different Code module from the GetTotal() procedure which could
reside in a Form module's general section. Line 12 calls the sales tax computing procedure that begins in line 15.
Notice that the two variables passed are local to GetTotal() and yet GetTotal() makes them available to SalesTax()

by passing the variables as arguments. The arguments are required because SalesTax() must receive two arguments of
the data type specified.

After the two values get to SalesTax(), the SalesTax() procedure can treat them as if they were local variables to
SalesTax(). Computations are performed with the values, and line 28 displays the computed sales tax in a message
box.

Figure 8.3 shows how GetTotal() sends its values to SalesTax().

Figure 8.3. GetTotal() sends two arguments to SalesTax() for further computations.

Note

Line 28 seems to mismatch data types but Visual Basic handles such a mismatch accurately. Although MsgBox()
requires an initial string argument, and although the & operator concatenates strings, if you concatenate a string to a
number (or vice versa), Visual Basic converts the number to a string to make the proper concatenation.

Do Don't

DO use Exit Sub if you ever need to terminate a subroutine earlier than its normal End Sub statement. (End
Function works the same for function procedures.) Always use Exit Sub inside an If or other conditional
statement because you would not want the procedure to end there every time or the code that follows Exit Sub
would never execute.

Visual Basic supports a secondary way to call subroutines. You can omit both the Call statement and the parentheses.
The following two statements are equivalent:

Call PrintTitle (Title)
PrintTitle Title

By Reference and By Value

Listing 8.1 passes its variables using a method called by reference, meaning that the called procedure can change the
arguments in the calling procedure. If, however, you precede the arguments in the receiving function's argument list
with the ByVal keyword, Visual Basic receives arguments by value, meaning that the called procedure cannot change
the arguments in the calling procedure. (ByRef is an optional argument qualifier because all arguments are passed by
reference by default.)

For example, if the SalesTax() procedure in Listing 8.1 modified the value in either the curTotal or the
sngRateDisc argument, that same variable in GetTotal() would also be modified. The default method for passing
arguments, by reference, means that the calling procedure's arguments are unprotected from change by the called
procedure.

If line 15 in Listing 8.1 were written like the following line, however, the calling procedure GetTotal()'s variables are
safe because nothing that SalesTax() can do will harm the original argument values after the program control resumes
in the GetTotal() procedure:

Public Sub SalesTax(ByVal curTotal As Currency, ByVal sngRateDisc As _
Single)

Therefore, unless it is a procedure's goal to modify one of the arguments in the calling procedure, pass all arguments by
value to help protect them. Although the called procedure can use the modified values, those values don't stay modified
when control returns to the calling procedure.

Tip

You can use the ByVal keyword before all, one, or some of a receiving function's argument list variables.

How Function Procedures Differ

A function differs from a subroutine, not only by its first and last statement (the wrapper statements) but also by the
way that a function returns a single value back to the calling procedure. In the previous section, you saw code that
called a subroutine procedure. Calling a function procedure differs only slightly. You call a function procedure just as
you call an internal function—that is, you use the function name and arguments but you don't use the Call statement.
The function call becomes its return value, and you use that value in an expression or statement.

A function procedure's first line, known as the function declaration, must follow this format:

Public|Private Function FuncName([Arg As dataType][, ...]) As dataType

The vertical bar between Public and Private indicates that a function can be either private to its module or public to
the whole application. A function does not have to have arguments, and if it does not, you can omit the parentheses, but
most functions receive at least one argument. The As dataType clause, not found on subroutine procedures, declares
the data type of the function's return value. A function can return one and only one value, and that value's data type is
determined by the data type you specify for the dataType.

The previous SalesTax() procedure, if rewritten to be a function that returns the computed sales tax, might have the
following declaration line:

Public Sub SalesTax(curTotal As Currency, sngRateDisc As Single) As _
Currency

Note

As with subroutine procedures, you can pass arguments by value or by reference depending on how much protection
you want to provide for the calling function's arguments.

Somewhere in the function, you must assign the return value to a variable that has the same name as the function name.
You don't declare this variable but you can use it. Therefore, if the final statement in SalesTax() assigned a value to a
variable named SalesTax, that would be the return value of the function. When the function ends, either at the End
Function or by an Exit Function statement, whatever value is in the return variable is the function's return value.

The calling procedure must therefore supply a place for the return value. Generally, you assign the returned value to a
variable. In a calling procedure, it's not unusual to see a statement such as the following:

curDailyNet = CalcNetAdj(curGrSls, sngTaxRt, curGrRate, curStrExp)

CalcNetAdj() is a function; the four values are passed to it, computed, and a variable named CalcNetAdj is assigned a
value somewhere inside CalcNetAdj(). That value is assigned to this calling procedure's variable named
curDailyNet as soon as the function ends.

The exercise section at the end of today's lesson gives you the opportunity to change Listing 8.1's CalcTax() procedure
from a subroutine procedure to a function procedure. For study, take a moment to look at Listing 8.2 to help seal your
understanding of the way functions work.

Listing 8.2 Functions return a single value back to the calling procedure.
1: ' Calling procedure is next
2: Private Sub CP()
3: Dim varR As Variant ' Local variables that help produce
4: Dim varV As Variant ' the function's return value
5: Dim intI As Integer ' Holds the return value
6:
7: varR = 32 ' Initial values
8: varV = 64
9:
10: intI = RF(varR, varV) ' Call the function and pass varR
11: ' and varV. intI gets return value
12: MsgBox("After return, intI holds " & intI)
13: MsgBox("After return, varR holds " & varR)
14: MsgBox("After return, varV holds " & varV)
15:
16: End Sub
17: ' Receiving function is next
18: Public Function RF (varR As Variant, ByVal varV As Variant) As Integer
19: ' Received one by reference and one by value
20: varR = 81 ' Change both arguments
21: varV = varV + 10
22: ' Set the return value
23: RF = varR + varV
24: End Function

Line 10 passes varR and varV (32 and 64) to the function. The function immediately changes the arguments to hold 81
and 74 in lines 20 and 21. Due to the fact that varR was passed by reference, varR will now be 81 in the calling
procedure (CP()) as well. Line 23 adds the function's arguments of 81 and 74 together and assigns the sum to the
function name setting up the function's return value. When the End Function executes, the calling procedure's line 10's
assignment completes assigning 155 to intI. Line 12 displays the value. Line 13 shows that varR was changed by the
called function by displaying 81 in a message box. Line 14 displays 64 in the message box because it was protected
from change by the called function.

Passing Controls as Arguments

Variables aren't the only kind of data you can pass between procedures. You can pass control values as well. You might
write a procedure that works with the value of a control but you need to know which kind of control was passed.
Perhaps the procedure is called from several different modules and different kinds of controls might be passed
depending on the processing requirements. You can use the If TypeOf statement set to check for an argument's data
control type.

Here's the format of the typical If statement that uses TypeOf:

If TypeOf object Is objectType Then
 Block of one or more Visual Basic statements
Else
 Block of one or more Visual Basic statements
End If

The object can be any control variable or argument and objectType can be any one of the following values:

CheckBox Image OptionButton Rectangle
ComboBox Label OptionGroup Shape
CommandButton Line PageBreak TextBox
Graph ListBox PictureBox ToggleButton

A control variable, sometimes known as an object variable, is a variable declared as a control. Not only can variables
take on the data type of integers, strings, and currency amounts, but you can also declare a variable to be Object that
can be any possible object in Visual Basic, including controls. The following variable declarations declare control
variables:

Dim objCmdFirst As CommandButton
Dim objNameList As ListBox
Dim objPhoto As Image

In addition, a receiving argument list might receive a control variable like this:

Public Function FixControls (objIncoming As Object)

If a function receives an argument declared as the Object data type, you can test the kind of control the argument holds
with code such as this:

If TypeOf objIncoming Is CommandButton Then
 MsgBox("You sent a command button")
ElseIf TypeOf objIncoming Is CheckBox Then
 MsgBox("You sent a check box")
ElseIf TypeOf objIncoming Is TextBox Then
 MsgBox("You sent a text box")
End If

Internal Functions
You've seen these three internal functions: LoadPicture(), MsgBox(), and InputBox(). Visual Basic supplies
scores of other internal functions. In the rest of today's lesson, you'll learn the most important internal functions so that
you can use them to build more powerful programs. After you complete today's lesson, you will not only know how to
write your own subroutines and procedures but you'll also understand most of Visual Basic's internal functions as well.
The tools you are developing today strengthen your Visual Basic programming skills considerably. Starting tomorrow,
you can begin to put these new language skills to work by building more advanced applications than were possible
before you mastered the Visual Basic language.

Note

After you finish today's lesson, you will understand about as much of the Visual Basic programming language as you'll
need for a while. Although subsequent lessons teach additional commands, you've already learned the bulk of the
language that you need as a beginning and intermediate programmer. That's good news because you'll think the rest of
Visual Basic is a snap! Much of the next several lessons describe more controls and properties that you can use on your
applications'forms.

The Numeric Functions

The simplest place to begin learning the internal functions is with the integer conversion functions. The format for the
two most common appear here:

Int(numericValue)
Fix(numericValue)

The numericValue can be any numeric literal, variable, or expression, including another embedded function that
returns a number. Whatever numeric data type you pass, both functions return that data type, but you can use the return
value as an integer.

Do Don't

 DON'T pass a non-numeric argument to Int() or Fix() or Visual Basic displays a runtime error when you
execute your application.

Both functions appear to round their arguments down to the nearest integer. The difference lies in how they treat
negative values. In the following statements, the remark shows each function's return value:

intAns1 = Int(6.8) ' 6
intAns2 = Fix(6.8) ' 6
intAns3 = Int(-6.8) ' -7
intAns4 = Fix(-6.8) ' -6

Caution

Notice that neither Int() nor Fix() rounds values up. Int() returns the next- lowest integer portion of its argument.
Therefore, negative numbers round down to the next lowest negative number. Fix() returns the truncated integer
portion of the argument and keeps whatever whole number portion exists in the argument.

To truncate means to remove. Fix() truncates the decimal portion from its argument. A truncated 5.23 would become 5
and a truncated –5.23 would become –5.

The absolute value function is useful when you want to compute the differences between values such as distances and
temperatures.

Absolute value is the positive value of any number. The absolute value of 19 is 19 and the absolute value of –19 is also
19.

The Abs() function is the internal function that computes absolute value. Suppose you need to know how many years
two employees differ in age. You can compute the absolute value of their age difference to find out as shown here:

intAgeDiff = Abs(intEmpAge1 - intEmpAge2)

No matter which employee is older, this statement ensures that the positive age difference is stored in the variable
named intAgeDiff. Without the Abs() function, the calculation would produce a negative number if the first
employee were younger than the second.

The Sqr() function returns the square root of any positive number. The remarks in the following statements describe
the results of each Sqr() function call:

intVal1 = Sqr(4) ' 2
intVal2 = Sqr(64) ' 8
intVal3 = Sqr(4096) ' 16

Note

Sqr() returns the approximate square root of decimal values as well.

Visual Basic supports several advanced scientific and trigonometric functions. Here is a partial list:

• Exp() returns the base of a natural logarithm (a value known as e which is approximately 2.718282) raised to
the power found in the argument.

• Log() returns the natural logarithm of the argument.
• Atn() returns the arctangent of its argument in radians.
• Cos() returns the cosine of its argument in radians.
• Sin() returns the sine of its argument in radians.
• Tan() returns the tangent of its argument in radians.

Tip

If you need to use trigonometric functions that use an argument valued in degrees and not radians, multiply the
argument by (pi / 180). pi is approximately equal to 3.14159.

Data Type Functions

Visual Basic supports several functions that work with the data type of their arguments instead of the argument values:

• The data-inspecting functions IsDate(), IsNull(), and IsNumeric(), and VarType()
• The IIf() and Choose() shortcut functions
• The data type conversion functions

The Data-Inspection Functions

The data-inspection functions inspect data types and special contents of variables. Your programs work with many
different kinds of data, and you sometimes don't know in advance what kind of data you have to work with. Before you
make a calculation, for example, you want to make sure that the data is numeric.

Table 8.1 lists the Is() data inspection functions and provides a description of what they do. Each function receives
one argument of the Variant data type.

Table 8.1. The Is() data-inspection functions test for variable and control contents.

Function
Name

Description

IsDate() Determines whether its argument is a date data type (or whether the data can be converted to a valid
date)

IsEmpty() Determines whether its argument has been initialized
IsNull() Determines whether its argument holds a Null value
IsNumeric() Determines whether its argument holds a number (or whether the data can be converted to a valid

number)

Note

Each Is...() function accepts the Variant data type because they must be able to inspect any data and determine
what type it is.

The code section shown in Listing 8.3 is rather simple but demonstrates what happens when you apply the IsEmpty()
function to variables that have and haven't been initialized. You can use IsEmpty() to determine if the user has entered
a value into a field.

Listing 8.3 Testing for empty variables.
1: ' Code that tests the Is() functions
2: Dim var1 As Variant, var2 As Variant,
3: Dim var3 As Variant, var4 As Variant
4: Dim intMsg As Integer ' MsgBox return
5: ' Fill variables with sample values to test
6: var1 = 0 ' Zero value
7: var2 = Null ' Null value
8: var3 = "" ' Null string
9: ' Call each Is() function
10: If IsEmpty(var1) Then
11: intMsg = MsgBox("var1 is empty", vbOKOnly)
12: End If
13: If IsEmpty(var2) Then
14: intMsg = MsgBox("var2 is empty", vbOKOnly)
15: End If
16: If IsEmpty(var3) Then
17: intMsg = MsgBox("var3 is empty", vbOKOnly)
18: End If
19: If IsEmpty(var4) Then

20: intMsg = MsgBox("var4 is empty", vbOKOnly)
21: End If

The only output from this code is a message box that displays the following:

var4 is empty

You receive this response because all the other variables have some kind of data (they've been initialized).

Tip

Use IsNull() to see whether a control or field on a report or form contains data. Use IsEmpty() just for variables.

IsNull()checks its argument and returns true if the argument contains a Null value. The value Null is a special value
that you can assign to variables to indicate either that no data exists or that there's an error. (The way your program
interprets a Null value depends on how you code the program.)

Caution

Given that you can assign a Null value to a variable (as in varA = Null), you might be tempted to test for a Null
value like this:

If (varA = Null) Then

Be warned that such an If always fails. Using IsNull() is the only way to check for a Null value in a variable.

Checking for data is simple. If your Visual Basic procedure needs to know whether a form's text box named
txtHoursWorked has data, the procedure can check it with an If statement, as follows:

If IsNull(txtHoursWorked) Then
 intMsg = MsgBox("You didn't enter hours worked!", vbOKOnly)
Else ' Thank them for the good hours
 intMsg = MsgBox("Thanks for entering hours worked!", vbOKOnly)
End If

This If statement checks to ensure that users typed something in the field before the program continues.

IsNumeric()checks its argument for a number. Any Variant value that can be converted to a number returns a true
result in the IsNumeric() function and a false result otherwise. The following data types can be converted to numbers:

• Empty (converts to zero)
• Integer
• Long integer
• Single-precision
• Double-precision
• Currency
• Date (returns false always)
• String, if the string "looks" like a valid number

The following code asks users for their age by using a Variant variable. The program displays an error message if a
user enters a non-numeric number:

1: Dim varAge As Variant
2: Dim intMsg As Integer ' MsgBox() return
3: varAge = InputBox("How old are you?", "Get Your Age")
4: If IsNumeric(varAge) Then
5: intMsg = MsgBox("Thanks!", vbOKOnly)
6: Else
7: intMsg = MsgBox("What are you trying to hide?", _
 vbOKOnly+vbQuestion)
8: End If

Line 4 ensures that the user entered a numeric age and did not type a word or phrase for the answer.

If you need to know what data type a variable is, use the VarType() function. Table 8.2 lists the return values from the
VarType() function, and VarType() returns no other values than the 16 listed in the table.

Table 8.2. VarType() return values determine data types.

This Value
Returned… Named Literal If the Variant Contains This Data Type…

0 vbEmpty Empty

1 vbNull Null

2 vbInteger Integer

3 vbLong Long

4 vbSingle Single

Table 8.2. VarType() return values determine data types.

This Value
Returned… Named Literal If the Variant Contains This Data Type…

5 vbDouble Double

6 vbCurrency Currency

7 vbDate Date

8 vbString String

9 vbObject Object

10 vbError An error value

11 vbBoolean Boolean

12 vbVariant Variant (for Variant arrays, see Day 10's lesson)

13 vbDataObject A data-access object

14 vbDecimal Decimal

17 vbByte Byte

8192 vbArray An array (VB adds 8192 to the data type to indicate an array so 8194 indicates
an integer array)

The procedure in Listing 8.4 uses aSelect Case statement to print the data type of whatever data is passed to it.

Listing 8.4 Use VarType() to determine the data type passed.
1: Private Sub PrntType(varA) ' Variant if you don't specify otherwise
2: Dim intMsg As Integer ' MsgBox() return
3: Select Case VarType(varA) ' VarType() returns an integer
4: Case 0
5: intMsg = MsgBox("The argument is Empty")
6: Case 1
7: intMsg = MsgBox("The argument is Null")
8: Case 2
9: intMsg = MsgBox("The argument is Integer")
10: Case 3
11: intMsg = MsgBox("The argument is Long")
12: Case 4
13: intMsg = MsgBox("The argument is Single")
14: Case 5
15: intMsg = MsgBox("The argument is Double")
16: Case 6
17: intMsg = MsgBox("The argument is Currency")
18: Case 7
19: intMsg = MsgBox("The argument is Date")
20: Case 8

21: intMsg = MsgBox("The argument is String")
22: Case 9
23: intMsg = MsgBox("The argument is an Object")
24: Case 10
25: intMsg = MsgBox("The argument is an Error")
26: Case 11
27: intMsg = MsgBox("The argument is Boolean")
28: Case 12
29: intMsg = MsgBox("The argument is a Variant array")
30: Case 13
31: intMsg = MsgBox("The argument is a Data Access Object")
32: Case 14
33: intMsg = MsgBox("The argument is Decimal")
34: Case 17
35: intMsg = MsgBox("The argument is Byte")
36: Case Else
37: intMsg = MsgBox("The argument is an Array")
38: End Select
39: End Sub

The IIf() and Choose() Shortcut Functions

A kinder, gentler If...Else statement equivalent exists in the form of a function that you can always substitute for
single-body If...Else statements. The IIf() function works a lot like the @If() function in popular worksheet
programs. The format for IIf() follows:

IIf(condition, TrueBody, FalseBody)

IIf() works well only for short If...Else statements such as the following:

If (curSales < 5000.00) Then
 curBonus = 0.00
Else
 curBonus = 75.00
End If

Each of the two bodies of this If...Else is a single line long so you can rewrite the If...Else like this using a
shorter IIf() function and assigning the return value to curBonus:

curBonus = IIf(curSales < 5000.00, 0.00, 75.00)

Figure 8.4 shows how this IIf() operates.

Figure 8.4. One of two values is assigned to the value at the left of IIf().

Tip

Although IIf() is shorter than an equivalent multi-line If...Else, IIf() is not as clear as the multi-line
If...Else. In addition, if you ever have to add to the body of either the true or false side of the IIf(), you have to
convert the function to a multi-line If...Else at that time. Therefore, in most cases, you are better off using the multi-
line format of the If...Else statement.

You can't divide by zero (division by zero is undefined in mathematics). Therefore, the following IIf() function
returns an average sale price or a Null value if division by zero results:

curAveSales = IIf(intQty > 0, curTotalSales / intQty, Null)

Tip

Visual Basic interprets zero values as false results in all situations. Knowing this, you can rewrite the preceding
statement as follows:

curAveSales = IIf(intQty, curTotalSales / intQty, Null)

The Choose() function provides a shortcut for some Select Case statements. Choose() can have many arguments—
more arguments than any other built-in function. Depending on the value of the first argument, Choose() returns only
one of the remaining arguments. Here's the format of Choose():

Choose(intIndexNum, expression[, expression] ...)

After the second argument (expression), you can have as many expression arguments as needed. intIndexNum must
be a variable or field that equates to a number from 1 to the number of expressions in the function.

If, for example, you need to generate a small table of price codes, abbreviations, or product codes, using Choose() is
more succinct than using an If or Select Case statement. Choose(), however, is more limited in scope than If
because Choose() selects on an integer value only, not on a more complete comparison.

Caution

Choose() returns Null if intIndexNum isn't between 1 and the number of expressions inclusive.

The first argument of Choose() can be an expression. Therefore, you have to adjust the first argument so that it falls
within the range of the number of arguments that follow. If the values possible for the index go from 0 to 4, for
example, add 1 to the index so that the range goes from 1 to 5 and selects from the Choose() list properly.

Suppose that a form contains a Price Code label. When users enter a new product, they should also enter a price code
from 1 to 5, which corresponds to the following codes:

1 Full markup

2 5% discount

3 10% discount

4 Special order

5 Mail order

The following Choose() function assigns to a description field the correct description based on the price code:

Descript = Choose(lblProdCode, "Full markup", "5% discount", "10% discount",
"Special order", "Mail order")

The Data Type Conversion Functions

Table 8.3 describes the data type conversion functions, denoted by their initial letter C (for convert). Each function
converts its argument from one data type to another.

Table 8.3. The data type conversion functions convert one data type to another.

Function Name Description
CBool() Converts its argument to the Boolean data type
CByte() Converts its argument to the Byte data type
CCur() Converts its argument to the Currency data type
CDate() Converts its argument to the Date data type
CDbl() Converts its argument to the Double data type
CDec() Converts its argument to the Decimal data type
CInt() Converts its argument to the Integer data type
CLng() Converts its argument to the Long data type
CSng() Converts its argument to the Single data type
CStr() Converts its argument to the String data type
CVar() Converts its argument to the Variant data type

Caution

You must be able to convert the argument to the target data type. You can't convert the number 123456789 to a Byte
data type with CByte(), for example, because the Byte data type can't hold a number that large.

Unlike Int() and Fix(), CInt() returns the closest rounded integer to the argument. For negative numbers, CInt()
also rounds to the closest whole integer. Look at the remarks to the right of each of the following statements to see
what's stored in each variable:

intA1 = CInt(8.5) ' Stores an 8 in intA1
intA2 = CInt(8.5001) ' Stores a 9 in intA2

The following code converts each argument to different data types. Remember that you also can pass these functions
expressions that produce numeric results so that you can control the data types of your calculated results before storing
them in a field or variable:

curVar1 = CCur(123) ' Converts 123 to currency data type
dblVar2 = CDbl(123) ' Converts 123 to double-precision data type
sngVar3 = CSng(123) ' Converts 123 to single-precision data type
varVar4 = CVar(123) ' Converts 123 to the variant data type

The String-Related String Functions

The string-related functions manipulate and analyze string data. One of Visual Basic's greatest strengths over other
programming languages, thanks to Visual Basic's BASIC background, is the strong support for string data.

Len() Determines Length

Len() is one of the few functions that can take either a numeric variable or a string for its argument—although you'll
use Len() primarily for string data. Len() returns the number of memory bytes needed to hold its argument. Here's the
format of Len():

Len(Expression)

Note

Len() accepts any string value (variable, literal, or expression). However, only numeric variables, not numeric literals
or expressions, work as Len() arguments.

Len() returns the length (number of characters) of the string variable, string constant, or string expression inside its
parentheses. The following MsgBox() function displays a 6 as its output:

intMsg = MsgBox(Len("abcdef"))

Tip

If the string contains Null, Len() returns a value of 0. Testing for a null string lets you test to see whether a user
entered data in response to an InputBox() function or a control value.

Converting Strings

Several conversion functions work with string data. Table 8.4 describes each string- conversion function used in the
following examples.

Table 8.4. The string-conversion functions convert to and from the String data type.

Function
Name

Description

CStr() Changes its argument to a string
Str() Converts its numeric argument to a string (actually, to a Variant data type that you can use as a

string)
Val() Converts its string argument to a number, assuming that you pass Val() a string-like number

CStr() and Str() convert their arguments to string values. The only difference is that CStr() doesn't add a leading
blank before positive numbers converted to strings; Str() does. Listing 8.5 demonstrates the difference between
CStr() and Str().

Listing 8.5 Str() adds a leading blank before positive numbers that CStr() does not add.
1: Private Sub convStr ()
2: Dim str1 As String, s2 As String
3: Dim intMsg As Integer ' For button clicked
4: str1 = CStr(12345)
5: str2 = Str(12345)
6: intMsg = MsgBox("***" & str1 & "***")
7: intMsg = MsgBox("***" & str2 & "***")
8: End Sub

Line 6 produces a message box that displays ***12345***, and Line 7 displays *** 12345***. Notice the blank
before the number that Str() added.

The ASCII Functions

Use Chr()and Asc() to convert strings to and from their numeric ASCII values. The ASCII table lists every possible
character available on the PC and assigns a sequential number (an ASCII code) to each character.

By putting a number inside the Chr() parentheses, you can produce the character that corresponds to that number in the
ASCII table. By using Chr(), you can generate characters for variables and controls that don't appear on your
computer's keyboard but that do appear in the ASCII table.

The Asc() function is a mirror image of Chr(). Whereas Chr() takes a numeric argument and returns a string
character, Asc() requires a string argument and converts that argument to its corresponding ASCII table number.

Therefore, an A is stored in strVar in the following assignment statement because the ASCII value of A is 65:

strVar = Chr(65) ' Stores an A in aVar

Of course, it makes more sense to store an A directly in the strVar variable in the preceding example's statement. But
what if you want to ask a Spanish question inside a message box? Spanish questions always begin with an upside-down
question mark, and no upside-down question mark appears on your keyboard. Therefore, you can resort to using Chr()
as follows:

' Chr(241) produces an n with a tilde over it
strMyQuest = Chr(164) & "Se" & Chr(169) & "or, como esta?"
intMsg = MsgBox(strMyQuest)

Figure 8.5 shows the message box displayed from this code.

Figure 8.5. Use ASCII characters to display characters not on the keyboard.

Asc() returns the ASCII number of the character argument you give it. You can find the ASCII numbers by searching
Visual Basic's online help. The argument must be a string of one or more. If you pass Asc() a string of more than one
character, it returns the ASCII number of the first character in the string.

The following code demonstrates a good use for Asc():

strAns = InputBox("Do you want to see the name")
If ((Asc(strAns) = 89) Or (Asc(strAns) = 121)) Then
 b = MsgBox("The name is " + aName)
End If

The user can answer the prompt with y, Y, Yes, or YES. The If...Then test works for any of those input values
because 89 is the ASCII value for Y, and 121 is the ASCII value of y. Asc() returns the ASCII value of its string
argument's first letter.

The Substring Functions

The substring functions return parts of strings. Right() returns characters from the right side of a string. Right()'s
cousin, Left(), returns characters from the left side of a string. Mid() takes up where Right() and Left() fail—
Mid() lets you pick characters from the middle of a string.

Here are the formats of the substring functions:

Left(stringValue, numericValue)
Right(stringValue, numericValue)
Mid(stringValue, startPosition[, length])

The following section of code demonstrates Left():

strA = "abcdefg"
partSt1 = Left(strA, 1) ' Stores a
partSt2 = Left(strA, 3) ' Stores abc
partSt3 = Left(strA, 20) ' Stores abcdefg

Note

If you try to return more characters from the left of the string than exist, Left() returns the entire string.

Right() works in the same manner as Left(), except that it returns the rightmost characters from a string:

strA = "abcdefg"
partSt1 = Right(strA, 1) ' Stores g
partSt2 = Right(strA, 3) ' Stores efg
partSt3 = Right(strA, 20) ' Stores abcdefg

Mid() accomplishes what Left() and Right() can't—it returns characters from the middle of a string. Mid() uses
three arguments: a string followed by two integers. The first integer determines where Mid() begins stripping
characters from the string (the position, starting at 1), and the second integer determines how many characters from that
position to return. If you don't specify two integers, Mid() uses 1 as the starting position.

Mid() can pull any number of characters from anywhere in the string. The following example shows how the Mid()
function works:

strA = "Visual Basic FORTRAN COBOL C Pascal"
lang1 = Mid(strA, 1, 12) ' Stores Visual Basic
lang2 = Mid(strA, 14, 7) ' Stores FORTRAN
lang3 = Mid(strA, 22, 5) ' Stores COBOL
lang4 = Mid(strA, 28, 1) ' Stores C
lang5 = Mid(strA, 30, 6) ' Stores Pascal

If you don't specify the length argument, VB returns all the characters to the right of the starting position. If the length
is longer than the rest of the string, VB ignores the length argument.

Note

Mid() works both as a command and a function. It works as a command when it appears on the left side of an
assignment statement's equal sign; it's a function when it appears anywhere else. Following is its format:

Mid(string, start[, length])

When you use the Mid() statement, Mid() changes the contents of the string used inside the statement's parentheses.
The following code initializes a string with three words and then changes the middle word with Mid():

strSentence = "Rain in Spain"
' Change the middle word
Mid(strSentence, 6, 2) = "on"
' After the change
intMsg = MsgBox("After change: " & strSentence)
' Prints Rain on Spain

Converting to Uppercase and Lowercase

The UCase() function returns its string argument in all uppercase letters. LCase() returns its string argument in all
lowercase letters. The following MsgBox() function displays VISUAL BASIC:

intMsg = MsgBox(UCase("Visual Basic"))

Justifying and Trimming Strings

LTrim() and RTrim() trim spaces from the beginning or end of a string. LTrim() returns the argument's string without
any leading spaces. RTrim() returns the argument's string without any trailing spaces. The Trim() function trims
leading and trailing spaces.

Here are the formats of the string-trimming functions:

LTrim(stringExpression)
RTrim(stringExpression)
Trim(stringExpression)

The following statements trim spaces from the beginning, end, or both sides of strings:

st1 = LTrim(" Hello") ' Stores Hello
st2 = RTrim("Hello ") ' Stores Hello
st3 = Trim(" Hello ") ' Stores Hello

Without the trimming functions, the spaces are copied into the target variables as well as the word Hello.

Str() always converts positive numbers to strings with a leading blank (where the imaginary plus sign appears);
therefore, you can combine LTrim() with Str() to eliminate the leading blank. The first of the following two
statements stores the leading blank in str1. The second uses LTrim() to get rid of the blank before storing the string
into str2:

str1 = Str(234) ' Stores " 234"
str2 = LTrim(Str(234)) ' Stores "234"

The following ReverseIt() function includes several of the string functions described in today's lesson. This function,
shown in Listing 8.6, reverses a certain number of characters within a string.

Listing 8.6 This function reverses a string by using the string functions.
1: Public Function ReverseIt (strS As String, ByVal n As Integer) As _ String
2: ' Accepts: a string and an integer indicating the number of
3: ' characters to reverse
4: ' Purpose: reverses the specified number of characters in the
5: ' specified string
6: ' Returns: the modified string
7:
8: ' Reverses the first n characters in s.
9:
10: Dim strTemp As String, intI As Integer
11:
12: If n > Len(strS) Then n = Len(strS)
13: For intI = n To 1 Step -1
14: strTemp = strTemp + Mid(strS, intI, 1)
15: Next intI
16: ReverseIt = strTemp + Right(strS, Len(strS) - n)
17: End Function

Suppose that the ReverseIt() function is called with the following statement:

newStr = ReverseIt ("Visual Basic", 6)

If all goes well, the string named newStr will hold the characters lausiV Basic (the first six characters are reversed).
Line 10 declares two local variables, the first of which, a string variable named strTemp, holds the reversed string as
it's being built. The second variable, intI, is used in the For loop.

Tip

Starting with version 6, Visual Basic now includes a string function named StrReverse() that returns the reversed
string of its single string argument. Listing 8.6, although certainly not as efficient as using StrReverse(), does help
demonstrate the Mid() function.

Line 12's If statement ensures that the integer passed to ReverseIt() isn't larger than the length of the string passed.
It's impossible to reverse more charactersthan exist in the string. If more characters are passed, the If statement ensures
that the entire string is reversed by changing the length to reverse to the exact length of the string via the Len()
function.

In line 13, the For loop then counts down, from the position to reverse (stored in n) to 1. By using the Mid() function
in line 14, Visual Basic concatenates one character from the string, at position n, to the new string being built. As n
reaches 1, the reversed characters are sent to the new string in line 14. After all the characters that need to be reversed
are reversed, the rightmost portion of the passed string is concatenated as is to the reversed characters.

Special Functions

Visual Basic offers date and time functions that help you analyze and manipulate date and time values. Such functions
are critical for recording exactly when a field was edited for security or verification purposes. Also, all printed reports
should have the date and time (often called date- and time-stamping) printed on the report, showing exactly when the
report was produced. In a stack of like reports, the date and time stamps show when the latest report was printed.

In addition to the date and time functions, Visual Basic supports a special data- formatting function that you can use to
display formatted strings.

Working with Dates and Times

Your Windows settings determine the format of the Date and Time return values. For example, on many systems the
Date function returns the system date in the Variant data type in the following format:

mm-dd-yyyy

where mm is a month number (from 01 to 12), dd is a day number (from 01 to 31), and yyyy is a year number (from
1980 to 2099). The Date requires no parentheses because Date is one of the few functions that accepts no arguments.

Time returns the system time in the Variant data type in the following format:

hh:mm:ss

where hh is the hour (from 00 to 23), mm is the minute (from 00 to 59), and ss is the second (from 00 to 59).

Time uses a 24-hour clock. Therefore, all hours before 1:00:00 in the afternoon equate to a.m. time values, and all times
from 1:00:00 until midnight have 12 added to them so 14:30 is 2:30 in the afternoon.

Now combines the Date and Time functions. Now returns a Variant data type in the following format (if you were to
print the Variant return value of Now in a message box, you'd see this format):

mm/dd/yy hh:mm:ss AM|PM

where the placeholder letters correspond to those of the Date and Time functions, with the exception that a 12-hour
clock is used and either AM or PM appears next to the time. The vertical line in the format indicates that either AM or PM
appears, but not both at once.

The most important thing to remember about all three date and time retrieval functions is that they return date and time
values that are stored internally as double-precision values (with enough precision to ensure that the date and time
values are stored accurately). The best way to format date and time values is to use Format(), which you learn about
in today's final section.

Assuming that it's exactly 9:45 in the morning, the statement

currentTime = Time

stores 9:45:00 in the variable currentTime. If the date is 2/23/99, the statement

currentDate = Date

stores 2/23/99 in the variable currentDate. The statement

currentDateTime = Now

stores 2/23/99 9:45:00 AM in the variable currentDateTime.

Note

When you enter date and time values, you must enclose them between pound signs such as the following:

#11/21/1993#

Because there are several date formats, just about any way you're used to specifying the date is recognized by Visual
Basic. As long as you enclose the date between pound signs, you can use any of the following formats when specifying
a date:

mm-dd-yy

mm-dd-yyyy
mm/dd/yy
mm/dd/yyyy
monthName dd, yyyy
mmm dd, yyyy (where mmm is an abbreviated month name, _ as in Dec)
dd monthName yy
dd-mmm-yy (where mmm is an abbreviated month name, as in Dec)

Here are some of the ways you can express the time:

hh
hh:mm
hh:mm:ss

You must use a 24-hour clock with Time.

Computing the Time Between Events

The Timer function returns the number of seconds since your computer's internal clock struck midnight. The format of
Timer is simple:

Timer

As you can see, Timer is a function that accepts no arguments and is one of the rare times that you don't specify the
parentheses after a function. Timer is perfect for timing an event. For example, you can ask users a question and
determine how long it took them to answer. First, save the value of Timer before you ask users; then subtract that value
from the value of Timer after they answer. The difference of the two Timer values is the number of seconds users took
to answer. Listing 8.7 shows a procedure that does just that.

Listing 8.7 You can time the user's response.
1: Public Sub CompTime ()
2: ' Procedure that times the user's response
3: Dim intMsg As Integer ' MsgBox() return
4: Dim varBefore, varAfter, varTimeDiff As Variant
5: Dim intMathAns As Integer
6: varBefore = Timer ' Save the time before asking
7: intMathAns = Inputbox("What is 150 + 235?")
8: varAfter = Timer ' Save the time after answering
9: ' The difference between the time values
10: ' is how many seconds the user took to answer
11: varTimeDiff = varAfter - varBefore
12: intMsg = MsgBox("That took you only" + Str(varTimeDiff) & " seconds!")

13: End Sub

Line 6 stores the number of seconds since midnight before asking for an answer. Line 7 asks for an answer and, as soon
as the user types an answer, line 8 immediately stores the number of seconds since midnight at that point. The
difference, computed in line 11, determines how long the user took to answer.

Timer finds the number of seconds between time values, but only for those time values that fall on the same day.
DateAdd(), DateDiff(), and DatePart() take up where Timer leaves off. Table 8.4 lists these three date arithmetic
functions and their descriptions.

Table 8.4. The date arithmetic functions compare date values.

Function Name Description
DateAdd() Returns a new date after you add a value to a date
DateDiff() Returns the difference between two dates
DatePart() Returns part (an element) from a given date

All three date arithmetic functions can work with the parts of dates listed in Table 8.5. Table 8.5 contains the parts of
dates these functions work with, as well as their interval values that label each part. You use the interval values inside
the date arithmetic functions to get to a piece of a date or time.

Table 8.5. The date arithmetic functions work with these time period values.

Interval Value Time Period
yyyy Year
q Quarter
m Month
y Day of year
d Day
w Weekday (Sunday is 1, Monday is 2, and so on for Day(), Month(), Year(), and DateDiff())
ww Week
h Hour
n Minute (note that it's not m)
s Second

Despite its name, DateAdd() works with both dates and times (as do all the date functions) because the date passed to
DateAdd() must appear in a Date data type format. Here's the format of DateAdd():

DateAdd(interval, number, oldDate)

The interval must be a value (in string form) from Table 8.5. The interval you specify determines what time period is
added or subtracted (a second value, minute value, or whatever). The number value specifies how many of the interval
values you want to add. Make interval positive if you want to add to a date; make interval negative if you want to
subtract from a date. The oldDate is the date or time from which you want to work (the date or time you're adding to or
subtracting from). The oldDate doesn't change. The DateAdd() function then returns the new date.

Suppose that you buy something today with a credit card that has a 25-day grace period. The following statement adds
25 days to today's date and stores the result in intStarts:

intStarts = DateAdd("y", 25, Now)

The date stored in intStarts is the date 25 days from today.

Note

You can use either "y", "d", or "w" for the interval if you're adding days to a date.

Suppose that you work for a company that requires 10 years before you're vested in the retirement program. The
following statement adds 10 years to your start date and stores the vested date in vested:

vested = DateAdd("yyyy", 10, hired)

Notice that the interval string value determines what's added to the date.

Tip

For any of the date arithmetic functions, if you don't specify a year, the current year (the year set on the system's clock)
is returned.

DateDiff()returns the difference between two dates. Embed DateDiff() inside Abs() if you want to ensure a positive
value. The difference is expressed in the interval that you specify. Here's the format of DateDiff():

DateDiff(interval, date1, date2)

The following statement determines how many years an employee has worked for a company:

beenWith = Abs(DateDiff("yyyy", hireDate, Now))

DatePart() returns a part of a date (the part specified by the interval). With DatePart(), you can find what day,
month, week, or hour (or whatever other interval you specify) that a date falls on. Here's the format of DatePart():

DatePart(interval, date)

The following statement stores the day number that an employee started working:

DatePart("w", hireDate)

The date and time functions you've been reading about work with serial values. These values actually are stored as
double-precision values to ensure the full storage of date and time and that accurate date arithmetic can be performed.

A serial value is the internal representation of a date or time, stored in a VarType 7 (the Date data type) or a Variant
data type.

The following is the format of the DateSerial() function:

DateSerial(year, month, day)

year is an integer year number (either 00 to 99 for 1900 to 1999, or a four-digit year number) or expression; month is
an integer month number (1 to 12) or expression; and day is an integer day number (1 to 31) or expression. If you
include an expression for any of the integer arguments, you specify the number of years, months, or days from or since
a value. To clarify the serial argument expressions, you use the following two DateSerial() function calls, which
return the same value:

d = DateSerial(1998, 10, 6)

and

d = DateSerial(1988+10, 12-2, 1+5)

The DateSerial() functions ensure that your date arguments don't go out of bounds. For example, 1996 was a leap
year, so February 1996 had 29 days. However, the following DateSerial() function call appears to produce an invalid
date because February, even in leap years, can't have 30 days:

d = DateSerial(1996, 2, 29+1)

Nothing is wrong with this function call because DateSerial() adjusts the date evaluated so that d holds March 1,
1996, one day following the last day of February. The function in Listing 8.8 contains an interesting use of the
DateSerial() function.

Listing 8.8 This code calculates the next weekday value after a specified date.
1: Function DueDate (dteAnyDate) As Variant
2: ' Accepts: a Date value
3: ' Purpose: Calculates the first non-weekend day of the month
4: ' following the specified date
5: ' Returns: the calculated date
6:
7: Dim varResult As Variant
8:
9: If Not IsNull(dteAnyDate) Then
10: varResult = DateSerial(Year(dteAnyDate), Month(dteAnyDate) + 1, 1)
11: ElseIf Weekday(varResult) = 7 Then ' Saturday, so add two days.
14: DueDate = varResult + 2
15: Else
16: DueDate = varResult
17: If Weekday(varResult) = 1 Then ' Sunday, so add one day.
12: DueDate = Result + 1
13: End If
18: Else
19: varResult = Null
20: End If
21: End Function

When this function is called, it's passed a date value stored in the Variant or VarType 7 Date data type. As the
remarks tell, the function computes the number of the first weekday (2 for Monday through 6 for Friday) of the next
month (the first business day of the month following the argument).

The DateValue() function is similar to DateSerial(), except that DateValue() accepts a string argument, as the
following format shows:

DateValue(stringDateExpression)

stringDateExpression must be a string that VB recognizes as a date (such as those for the Date statement described
earlier in this section). If you ask the user to enter a date a value at a time (asking for the year, then the month, and then
the day), you can use DateValue() to convert those values to an internal serial date. If you ask the user to enter a full
date (that you capture into a string variable) such as October 19, 1999, DateValue() converts that string to the serial
format needed for dates.

The TimeSerial() and TimeValue() functions work the same as their date counterparts. If you have three individual
values for a time of day, TimeSerial() converts those values to an internal time format(the Variant or VarType 7).
Here's the format of TimeSerial():

TimeSerial(hour, minute, second)

TimeSerial() accepts expressions for any of its arguments and adjusts those expressions as needed, just as
DateSerial() does.

If you have a string with a time value (maybe the user entered the time), TimeValue() converts that string to a time
value with this format:

TimeValue(stringTimeExpression)

Day(), Month(), and Year() each convert their date arguments (of Variant or VarType 7 data type) to a day
number, month number, or year number. These three functions are simple:

Day(dateArgument)
Month(dateArgument)
Year(dateArgument)

Also, Weekday() returns the number of the day of the week (refer to Table 8.5) for the date argument passed to it.

Pass today's date (found with Now) to Day(), Month(), and Year() as shown here:

d = Day(Now)
m = Month(Now)
y = Year(Now)

The current date's day of month number (refer to Table 8.5), month number, and year are stored in the three variables.

The Format() Function

One of the most powerful and complex functions, Format(), returns its argument in a different format from how the
argument was passed. Here's the format of the Format() function:

Format(expression, format)

Format() returns a Variant data type that you'll almost always use as a string. The expression can be any numeric or
string expression. You can format all kinds of data—numbers, strings, dates, and times—to look differently. For
example, you might want to print check amounts with commas and a dollar sign.

The format is a string variable or expression that contains one or more of the display- format characters shown in
Tables 8.6 through 8.8. The table that you use depends on the kind of data (string, numeric, or date) that you want to
format. The tables are long, but after looking at a few examples, you'll learn how to use the display-format characters.

Table 8.6. These characters format string displays.

Symbol Description
@ A character appears in the output at the @ position. If there's no character at the @'s position in the string, a

blank appears. The @ fills (if there are more than one) from right to left.
& This character is just like @, except that nothing appears if no character at the &'s position appears in the string

being printed.

! The exclamation point forces all placeholder characters (the @ and &) to fill from left to right.

< Less-than forces all characters to lowercase.

> Greater-than forces all characters to uppercase.

Table 8.7. These characters format numeric displays.

Symbol Description

Null
string, ""

This string displays the number without formatting.

0 A digit appears in the output at the 0 position if a digit appears in the number being formatted. If no digit is
at the 0's position, a 0 appears. If not as many zeros in the number are being formatted as there are zeros in
the format field, leading or trailing zeros print. If the number contains more numeric positions, the 0 forces
all digits to the right of the decimal point to round to the display-format's pattern and all digits to the left
print as is. You mostly use this display-format character to print leading or trailing zeros when you want
them.

The pound-sign character works like 0, except that nothing appears if the number being formatted doesn't
have as many digits as the display-format has #s.

. The period specifies how many digits (by its placement within 0 or #s) are to appear to the left and right of
a decimal point.

% The number being formatted is multiplied by 100, and the percent sign (%) is printed at its position inside
the display-format string.

, If a comma appears among 0s or #s, the thousands are easier to read because the comma groups every three
places in the number (unless the number is below 1,000). If you put two commas together, you request that
the number be divided by 1,000 (to scale down the number).

E-, E+,
e-, e+

The number is formatted into scientific notation if the format also contains at least one 0 or #.

: The colon causes colons to appear between a time's hour, minute, and second values.
/ The slash ensures that slashes are printed between a date's day, month, and year values.
-, +, $,
space

All these characters appear as is in their position within the formatted string.

\ Whatever character follows the backslash appears at its position in the formatted string.

Table 8.8. These characters format date displays.

Symbol Description
c Displays either the date (just like the ddddd symbol if only a date appears), the time (just like ttttt if only a

time appears), or both if both values are present.
d Displays the day number from 1 to 31.
dd Displays the day number with a leading zero from 01 to 31.
ddd Displays an abbreviated three-character day from Sun to Sat.

Table 8.8. These characters format date displays.

Symbol Description
dddd Displays the full day name from Sunday to Saturday.
ddddd Displays the date (month, day, year) according to your settings in the International section of your Control

Panel's Short Date format (usually m/d/yy).
dddddd Displays the date (month, day, year) according to your settings in the International section of your Control

Panel's Long Date format (usually mmmm dd, yyyy).
w, ww Refer to Table 8.5.
m Displays the month number from 1 to 12. The m also means minute if it follows an h or hh.
mm Displays the month number with a leading zero from 01 to 12. The mm also means minute if it follows an h or

hh.
mmm Displays the abbreviated month name from Jan to Dec.
mmmm Displays the full month name from January to December.
q Displays the quarter of the year.
y Displays the year's day number from 1 to 366.
yy Displays the two-digit year from 00 to 99 (when the year 2000 hits, yy still returns only the 2-digit year).
yyyy Displays the full year number from 1000 to 9999.
h, n,
s

Refer to Table 8.5.

ttttt Displays the time according to your settings in the International section of your Control Panel's Time format
(usually h:nn:ss).

AMPM Uses the 12-hour clock time and displays AM or PM.
ampm Uses the 12-hour clock time and displays am or pm.
AP Uses the 12-hour clock time and displays A or P.
ap Uses the 12-hour clock time and displays a or p.

The following statements demonstrate the string display-format characters. The remarks to the right of each statement
explain that the target variable (the variable on the left of the equal sign) is receiving formatted data:

strS = Format("AbcDef",">") ' ABCDEF is assigned
strS = Format("AbcDef", "<") ' abcdef is assigned
strS = Format("2325551212", "(@@@) @@@-@@@@") ' (232) 555-1212

As the last statement shows, you can put string data into the format you prefer. If the data to be formatted, such as the
phone number in the last line, is a string variable from a table's text field, the Format() statement works just the same.

Suppose that it's possible to leave out the area code of the phone number that you want to print. Format() fills from
right to left, so the statement

strS = Format("5551212", "(@@@) @@@-@@@@")

stores the following in strS:

() 555-1212

If you had included the area code, it would have printed inside the parentheses.

Only use the ! when you want the fill to take place from the other direction (when data at the end of the string being
formatted might be missing). The statement

strS = Format("5551212", "!(@@@) @@@-@@@@")

incorrectly stores the following in strS:

(555) 121-2

Listing 8.9 demonstrates how numeric formatting works. The remark to the right of each statement describes how the
data is formatted.

Listing 8.9 You can learn how Format() works by studying examples.
1: strS = Format(9146, "|######|") ' |9146| is stored
2: strS = Format(2652.2, "00000.00") ' 02652.20 is stored
3: strS = Format(2652.2, "#####.##") ' 2652.2 is stored
4: strS = Format(2652.216, "#####.##") ' 2652.22 is stored
5: strS = Format(45, "+###") ' Stores a +45
6: strS = Format(45, "-###") ' Stores a -45
7: strS = Format(45, "###-") ' Stores a 45-
8: strS = Format(2445, "$####.##") ' Stores a $2445.

9: strS = Format(2445, "$####.00") ' Stores a $2445.00
10: strS = Format(2445, "00Hi00") ' Stores 24Hi45

Listing 8.10 demonstrates how date and time formatting works. The remark to the right of each statement describes
how the data is formatted.

Listing 8.10 Use Format() to format date and time values.
1: Dim varD As Variant
2: varD = Now ' Assume the date and time is
3: ' May 21, 1999 2:30 PM
4: strND = Format(varD, "c") ' Stores 5/21/99 2:30:02 PM
5: strND = Format(varD, "w") ' Stores 6 (for Friday)
6: strND = Format(varD, "ww")' Stores 22
7: strND = Format(varD, "dddd") ' Stores Friday
8: strND = Format(varD, "q") ' Stores 2
9: strND = Format(varD, "hh") ' Stores 14
10: strND = Format(varD, "h AM/PM") ' Stores 2 PM
11: strND = Format(varD, "hh AM/PM") ' Stores 02 PM
12: strND = Format(varD, "d-mmmm h:nn:ss") ' Stores 21-May 14:30:02

Summary
Today's lesson explained the overall Visual Basic program structure. When writing programs with several modules and
procedures, you must keep in mind the variable scope so that procedures have access to the data they need. In most
cases, a variable should be local, so you'll have to pass arguments between procedures that need access to one another's
data. In writing procedures, you'll write both subroutine and function procedures. In creating these procedures, you'll
create your own library of routines that you can load into other applications.

In addition to the procedures you write, Visual Basic contains an extensive collection of internal functions that analyze
and manipulate numbers, strings, and other data values. The internal functions are available from any module at any
time so you can use them when you want them.

Tomorrow's lesson returns to the visual nature of Visual Basic and shows you how to add standard dialog boxes to your
applications.

Q&A
Q: Why aren't there local and global controls?

A: All controls must be available to all code and therefore, in a sense, all controls are public to all code. The
controls are public because they truly are separate from code. Unless you create control variables and store
the contents of a control's properties in a control variable, you never have to worry about the scope of
controls.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next chapter. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: Which variable—scope-local, module-level, or public—has the broadest scope?

2: Which variable—scope-local, module-level, or public—has the narrowest scope?

3: True/False. The keyword ByRef is optional .

4: How many values can a subroutine procedure return?

5: Name two functions that act as shortcuts to the If statement .

6: What happens if the first argument of Choose() is less than 1?

7: What does Abs() do?

8: What's stored in the variable named strS in each of the following statements?

a.strS = Format("74135", "&&&&&-&&&&")
b.strS = Format(d, "h ampm")
c.strS = Format(12345.67, "######.###")

9: Without looking at an ASCII table, what does intN hold after the following assignment statement
completes?

intN = Asc(Chr(192))

10: What's the difference between the Now function and the Time function?

Exercises

1: Rewrite Listing 8.1 so that SalesTax() is a function procedure that returns the computed sales tax to the
calling procedure. Have the calling procedure, GetTotal(), use a MsgBox() function to print the sales tax
computed by SalesTax().

2: Rewrite the following If statement as an IIf() function :

If (intTotal >1000) Then
 strTitle = "Good job!"
Else
 strTitle = "Didn't meet goal"
End If

3: Rewrite the following If statement as a Choose() function :

If (ID = 1) Then
 intBonus = 50
ElseIf (ID = 2) Then
 intBonux = 75
ElseIf (ID = 3) Then
 intBonus = 100
End If

4: What values are assigned in these statements?

intN = Int(-5.6)
intO = Fix(-5.6)
intP = CInt(-5.6)

Day 9. The Dialog Box Control
Today's lesson shows you how to add dialog boxes to your applications. You won't just randomly create dialog boxes,
however. Instead, you'll take advantage of a special control called the Common Dialog Box control that produces six
different common dialog boxes that you can use in your applications. When your user needs to select from a file list or
print a report from within your Visual Basic application, the Common Dialog Box control helps you display a standard
dialog box that the user will recognize.

Today, you learn the following:

• Why common dialog boxes are important for user acceptance

• How to place the Common Dialog Box control
• The Common Dialog Box control methods needed to produce dialog boxes
• Properties you assign that set up the proper dialog box options
• How to respond to a dialog box
• The On Error Goto statement that lets you know when the user clicks the dialog box's Cancel button

The Need for a Common Dialog Box
The more your application matches the look and feel of popular Windows applications, such as Microsoft Word, the
more likely your users will adapt quickly to your application. If you write software to sell, you know the importance of
user acceptance, especially when it comes to convincing the user to purchase future upgrades. If you don't write
software to sell but you write programs for a company whom you work for, happy users means fewer maintenance calls
and more productivity points for you.

Therefore, when you write an application that opens a file or prints to the printer, you can do one of the following:

• Mimic the style of other applications'dialog boxes that perform the same tasks
• Write your own dialog boxes hoping to improve upon the style of standard dialog boxes

Although you can probably improve upon the style of a dialog box that appears when a user selects File, Open, it is not
prudent to do so. For one thing, your application will then not be standard! Your users will have a learning curve when
they must master a dialog box to do exactly what they already know how to do in most other Windows applications. In
addition, your programming requirements will be heavier because it will take you longer to write programs that don't
use standard dialog boxes for common tasks.

Do Don't

DO create standard applications that have the same menu and dialog box structure as most Windows
applications.

The reason you will take longer to create the application is because Visual Basic includes a Common Dialog Box
control with which you can add the following dialog boxes to your applications and you don't have to design the dialog
boxes yourself. These dialog boxes will look and behave exactly like the dialog boxes in standard Windows programs:

• Color selection— Displays a dialog box in which users can select a color from a palette of colors and even
customize colors.

• Font selection— Displays a dialog box in which users can select font styles and sizes.
• Open File— Displays a dialog box that lets users select a filename to open from folders, drives, and even from

network PCs.
• Print selection— Displays a dialog box that lets users select a printer and print settings for any Windows

printer.
• Save File— Displays a dialog box that lets users specify a filename to save to from folders, drives, and even

from network PCs.
• WinHelp— Starts the Windows help engine and displays an initial dialog box the user can select from to get

help you've provided for your application.

The Common Dialog Box control is a control you can add to your applications that produce one of several standard
dialog boxes with very little effort on your part.

Note

Without the Common Dialog Box control, you can create dialog boxes that mimic the standard dialog boxes, but you
are then responsible for placing all the text boxes, scroll bars, list boxes, and other dialog box elements exactly where
they go on a form. Writing dialog boxes can be tedious even though they are little more than controls on forms. If you
use the Common Dialog Box control, your time is better used elsewhere in the application.

The dialog boxes that the Common Dialog Box control produce are modal.

A modal dialog box is one that the user must close, by clicking OK or Cancel, before he or she can continue with any
other part of the application.

Adding the Common Dialog Box Control
If you look through the controls on the toolbox, you won't find the Common Dialog Box control. Visual Basic does not
place all possible controls on the toolbox because the Toolbox window would take up too much room and you just
don't need all the possible controls available at all times. Nevertheless, when you want to place a dialog box in an
application that matches one of the common dialog boxes, you'll have to add the Common Dialog Box control to your
Toolbox window.

To add the control, perform these steps:

1. Press Ctrl+T (the shortcut keystroke for Project, Components) to display the Components dialog box shown in
Figure 9.1.

Figure 9.1. The Components dialog box lists the available controls on your system that you
can add to your toolbox.

2. Scroll to the control labeled Microsoft Common Dialog Control 6.0.

3. Select the entry and click OK. The last control in your toolbox will now be the Common Dialog Box control.

Tip

Look through the items in the Project, Components menu option for other controls you can add. These are all ActiveX
controls. Most of them are named so that you recognize what the controls do from their names. For example, the
Microsoft Calendar Control 8.0 is a control that lets you add calendar operations to your application, such as you might
need if you were writing a personal information organizer or a time billing application. You can search through the
controls'properties after you add them to see which properties are available. Check the online documentation for more
help on the events and methods they support. You can find additional controls in programming magazines and on the
Internet that you can add to your projects to help speed up your application development. In Day 17's lesson, you'll
learn how to write your own ActiveX controls that you can add to your toolbox.

Working with the Common Dialog Box Control
Figure 9.2 shows a Common Dialog Box control placed in the center of a form. As you can see, the control doesn't look
like any of the dialog boxes listed earlier. Instead, the control looks too small to be any good at all. If you try to resize
the control, Visual Basic ignores your request, despite the eight sizing handles that appear around the control.

Figure 9.2. The Common Dialog Box control doesn't look like much on your form.

When you run the program, the Common Dialog Box control takes on the appearance on one of the dialog boxes listed
earlier. As a matter of fact, Visual Basic takes care of the dialog box display by putting the dialog box in the center of
the screen no matter where you place the Common Dialog Box control on the form. Therefore, you can place the
Common Dialog Box control out of the way from other controls so that you can concentrate on your form's regular
controls and their design. Know that, when the Common Dialog Box control is finally triggered, Visual Basic takes
care of placing the control in the center of the screen. Until the Common Dialog Box control is displayed, Visual Basic
hides the control so it does not appear on top of other controls on your running application's form.

When your program triggers one of the Common Dialog Box control's specific dialog boxes, the appropriate dialog box
appears on the screen because you'll write your Visual Basic application to display the correct dialog box.

The way you determine which form of the Common Dialog Box control displays is by setting appropriate properties
and executing the correct method that prompts the control to display the dialog box. As you might recall from earlier
lessons, a method is an internal procedure that you apply to a specific control. You must apply one of the following
methods to the Common Dialog Box control to display a specific dialog box:

• ShowColor displays the Color selection dialog box.
• ShowFont displays the Font selection dialog box.

• ShowHelp displays the Windows Help dialog box.
• ShowOpen displays the File Open dialog box.
• ShowPrinter displays the Print dialog box.
• ShowSave displays the File Save dialog box.

Therefore, if you named a Common Dialog Box control dbFont, you can apply the ShowFont method to the control
like this in code to display the Font selection dialog box after setting some initial properties:

dbFont.ShowFont ' Display the Font dialog box

If you later need to display a File Open dialog box, you could apply the ShowOpen method to the dbFont control,
perhaps in response to a File, Open menu selection, like this:

dbFont.ShowOpen ' Display the File Open dialog box

As you can see, you only need one Common Dialog Box control to produce one or more of the dialog boxes. The
method triggers the control, although you should set properties before activating any of the six dialog boxes as
described in the next few sections.

Note

When you need to display more than one of the common dialog boxes in an application, you can place one Common
Dialog Box control and apply the different methods to it, as shown here, or place multiple Common Dialog Box
controls and use them solely for one kind of dialog box each. Although one control is easier to manage than several,
you might want to place several so that you only set their property values once for each dialog box. With only one
control, you have to change its properties as you change the dialog boxes that you display.

None of the dialog boxes produced by the Common Dialog Box control do any actual work other than provide
selections for the user. In other words, if the user selects a font from the Font selection dialog box and then clicks OK,
the screen fonts don't change. If the user selects a file from the File Open dialog box and clicks OK, that file does not
then open. The goal of the Common Dialog Box control is only to provide a common interface for the common dialog
boxes and set properties in response to the user's selection. You will, through Visual Basic code, have to analyze the
Common Dialog Box control's property values when the user closes the dialog box and perform any action necessary.

Producing the Color Dialog Box
Due to the large numbers of colors that Windows can produce, a Color dialog box provides a simple way for your users
to specify color values. For example, if you were going to let your user change the background color for a form, you
would not be advised to ask the user for a color in an input box like this:

strAns = InputBox("What color do you want the background? ")

Remember that the BackColor property requires a hexadecimal color code (as do all the other color-related properties
such as ForeColor). If your user typed Red in response to the InputBox(), you could not then assign the answer to the
BackColor property like this:

frmTitle.BackColor = strAns ' Will NOT work!

Not only does the Color dialog box offer a standard way for your user to select a color, but the Color dialog box also
converts the user's selected color to its hexadecimal value. Therefore, after the user closes a Color selection dialog box,
you can assign one of the dialog box's properties to the form's BackColor property to change the form's background.

To turn a Common Dialog Box control into the Color selection dialog box and display the Color selection dialog box,
follow these steps:

1. Set the Common Dialog Box control's DialogTitle property to the title you want to appear in the Color
selection's title bar, such as Select a background color.

2. Set the Common Dialog Box control's Flags property to one of Table 9.1's values. The table describes the way
the Color selection dialog box first appears. If you want to set more than one of Table 9.1's flags, such as an
initial color as well as providing a Help button, you can add the flag values together.

3. Trigger the Font selection dialog box's display by applying the ShowFont method to the Common Dialog Box
control in code.

Table 9.1. You can combine one or more of these Flags property values to set up the Color selection
dialog box.

Named Literal Flags Value Description
cdlCCRGBInit 1 Sets the initial color value
cdlCCFullOpen 2 Displays the entire dialog box, including the Define Custom Colors

section

Table 9.1. You can combine one or more of these Flags property values to set up the Color selection
dialog box.

Named Literal Flags Value Description
cdlCCPreventFullOpen 4 Prevents users from defining custom colors
cdlCCHelpButton 8 Displays a Help button in the dialog box

Suppose you want to display the Color selection box, let the user select a custom color, if desired, and provide a help
button on the color selection dialog box. If you placed a Common Dialog Box control named cdbColor on the form,
you could produce the Color selection dialog box with the following code:

' Set the Color Flags property.
cdbColor.Flags = cdlCCFullOpen + cdlCCHelpButton ' Display complete Color DB
' Display the Color dialog box.
cdbColor.ShowColor

Figure 9.3 shows the dialog box that appears.

Figure 9.3. The color selection dialog box appears from the ShowColor method.

If you want to limit the user to an initial smaller set of colors, requiring the user to click the Define Custom Colors
button to customize colors, omit the cdlCCFullOpen flag value. Figure 9.4's smaller Color dialog box appears.

Figure 9.4. You can limit the size of the Color selection dialog box that appears.

When the user closes the dialog box, the dialog box's properties are set according to the user's selection. The most
important property is the Color property which will then hold the hexadecimal value of the color the user selected or
created. You could write the following code that follows the dialog box's display:

' Set a form's background color
' to the Color dialog box's selected color
frmTitle.ForeColor = cdbColor.Color

Handling the Cancel Button
Your code needs to be able to determine if the user selected a color and clicked OK or if the user clicked the Cancel
button which means that the user does not want to change any color value. Not only do you need to be able to capture
the Cancel click on the Color dialog box but also on the other common dialog boxes as well.

To test to see whether users have clicked Cancel, you need to learn a new Visual Basic command—the On Error Goto
statement. This statement jumps the program execution down to a code label if an error occurs during subsequent
statements. Therefore, the statement

On Error Goto dbErrHandler

tells Visual Basic to jump to the code labeled dbErrHandler if an error occurs during any line that follows the On
Error Goto statement (until the end of the procedure).

A code label is a label inside your Code window's code that you name using the same naming rules used for variables.
A label, however, must end in a colon to distinguish it from a variable name. With the example just given, the
procedure must have the following code label somewhere after the On Error Goto statement (generally, programmers
put the error code label toward the bottom of the procedure) :

dbErrHandler:

The statements after the error-handling code label are executed if an error occurs in the procedure and an Exit
statement can terminate the procedure early. Visual Basic triggers an error condition if users click the Cancel button
and you've set the CancelError property to True. Although clicking Cancel isn't a real error, treating it like an error
condition lets you write code like that in Listing 9.1 to handle it.

Listing 9.1 You can control the user's Cancel selection.
1: Private Sub mnuViewColor_Click()
2: cdbColor.CancelError = True ' Forces an error if
3: ' user clicks Cancel
4: On Error Goto dbErrHandler ' Jump if an error occurs
5:
6: ' Set the Color Flags property.
7: cdbColor.Flags = cdlCCFullOpen + cdlCCHelpButton ' Display complete
8: Color DB
9: ' Display the Color dialog box.
10: cdbColor.ShowColor
11:
12: ' Set a form's background color
13: ' to the Color dialog box's selected color
14: frmTitle.ForeColor = cdbColor.Color
15: Exit Sub ' The regular procedure is done

16: dbErrHandler:
17: ' The user clicked cancel so ignore
18: ' the procedure and change no color
19: Exit Sub
20: End Sub

If the user selects a color and clicks OK, line 14 assigns the selected color to the form's background. Rather than end
the procedure if users click Cancel, you might choose to set default values (between lines 16 and 19) for the form's
background rather than retain the current values and exit the procedure.

Caution

The error-handler in line 16 will execute if any error takes place, not just the Cancel button click. In Day 16's lesson,
you learn how to check the Err system object to determine exactly which error occurred by the error number triggered.

Producing the Font Dialog Box
The Common Dialog Box control produces the Font dialog box that you've seen in your Windows applications. The
reason that you will want to use the Font dialog box, as opposed to writing your own, is not just because the dialog box
is standard. You don't know exactly which fonts your application's PC will contain. The Common Dialog Box control's
Font dialog box searches the user's system for all the fonts on the computer and displays those fonts inside the Font
dialog box.

Figure 9.5 shows the typical Font dialog box that appears when you apply the ShowFont method to the Common Dialog
Box control.

Figure 9.5. Users can select a font style and size from your application's Font dialog box.

As with the Color dialog box, you must set the Common Dialog Box control's Flags property to a certain value. The
Flags property values differ from those of the Color dialog box because the Font dialog box is actually more complex
than the Color dialog box.

Note

The Font dialog box's Flags values can get large. Therefore, Visual Basic programmers assign either named constants
or hexadecimal values to the Flags property. Table 9.2 contains the Flags property values you can set. As in most
areas of Visual Basic programming, program maintenance is simpler if you use the named constants because their
names suggest their purpose, whereas the hexadecimal values don't document their purpose well.

Table 9.2. Set these Font dialog box Flags values before calling the ShowFont method.

Named Literal
Flags
Value Description

cdlCFANSIOnly &H400 Ensures that the dialog box allows only fonts from the Windows character set and
not a symbol-based font

Table 9.2. Set these Font dialog box Flags values before calling the ShowFont method.

Named Literal
Flags
Value Description

0cdlCFApply &H200 Enables the dialog box's Apply button
cdlCFBoth &H3 Lists the available printer and screen fonts in the dialog box; the hDC property

identifies the device context associated with the printer
cdlCFEffects &H100 Lets the dialog box enable strikethrough, underline, and color effects
cdlCFFixedPitchOnly &H4000 Ensures that the dialog box selects only fixed-pitch fonts
cdlCFForceFontExist &H10000 Displays an error message box if users try to select a font or style that doesn't

exist
cdlCFHelpButton &H4 Displays the dialog box's Help button
cdlCFLimitSize &H2000 Ensures that the dialog box selects only font sizes within the range specified by

the Min and Max properties
cdlCFNoFaceSel &H80000 No font name is selected as the default
cdlCFNoSimulations &H1000 Disallows graphic device interface (GDI) font simulations
cdlCFNoSizeSel &H200000 No font size is selected as the default
cdlCFNoStyleSel &H100000 No font style is selected as the default
cdlCFNoVectorFonts &H800 Disallows vector-font selections
cdlCFPrinterFonts &H2 Lists only the fonts supported by the printer, specified by the hDC property
cdlCFScalableOnly &H20000 Allows only the selection of scalable fonts
cdlCFScreenFonts &H1 Lists only the screen fonts supported by the system
cdlCFTTOnly &H40000 Allows only the selection of TrueType fonts
cdlCFWYSIWYG &H8000 Specifies that the dialog box allows only the selection of fonts available on the

printer and onscreen (if you set this flag, you should also set cdlCFBoth and
cdlCFScalableOnly)

Caution

You must at least set one of these three Flags property values before the Font dialog box will appear:
cdlCFScreenFonts, cdlCFPrinterFonts, and cdlCFBoth. If you don't set one of these Flags values, Visual Basic
issues an error message when you apply the ShowFont method.

Listing 9.2 shows how you can set up, show, and respond to the Font dialog box.

Listing 9.2 Display the Font dialog box when your users must select from a list of font styles and
sizes.
1: ' Set the Font Flags property.
2: CdbFont.Flags = cdlCFBoth Or cdlCFEffects
3: CdbFont.ShowFont ' Display the Font DB
4: ' Set a label's properties to the
5: ' user's selected font information
6: LblMessage.Font.Name = CdbFont.FontName
7: LblMessage.Font.Size = CdbFont.FontSize
8: LblMessage.Font.Bold = CdbFont.FontBold
9: LblMessage.Font.Italic = CdbFont.FontItalic
10: LblMessage.Font.Underline = CdbFont.FontUnderline
11: LblMessage.FontStrikethru = CdbFont.FontStrikethru
12: LblMessage.ForeColor = CdbFont.Color

Pay attention to the multipart assignments in lines 6 through 10. You've not seen two periods separating property names
before now. Remember when you click the ellipses on the Font property inside a control's Properties window, the Font
dialog box appears in which you can set several values. Therefore, a Font property holds much more than a single
value and you must further qualify the Font property value that you want to set. There are several Font property
values, each of which indicates a different kind of font style, size, color, and so on. Read such multipart names from
right to left. Consider the following statement from line 8:

LblMessage.Font.Bold = CdbFont.FontBold

Line 8 tells Visual Basic to assign the dialog box's FontBold property (which is either True or False provided by the
Font dialog box) to the Bold attribute of the Font property of the label named lblMessage.

Help with Setting Controls
Although you can set all the common dialog box control properties at runtime, Visual Basic provides an ingenious way
to set many properties at design time.

The common dialog box control contains a property named Custom. When you click the ellipsis for this property
setting in the Properties window, Visual Basic displays the Property Pages dialog box. (Figure 9.6 shows the dialog
box's Font page.)

Figure 9.6. You can set properties at design time from the Property Pages dialog box.

This Property Pages dialog box makes it easy for you to set some initial dialog box properties. Here you can review the
most important properties for each style of common dialog box. For example, if you want the Font dialog box's default
font to be 12-point Bold, type 12 in the FontSize text box and click to select the Bold check box.

Producing File Open Dialog Boxes
Table 9.3 shows the Flags property values that you can assign before applying the ShowOpen method. The File Open
dialog box, shown in Figure 9.7, offers a standard interface for your users when they must select a file to open. The
dialog box handles the folder and network selections if the user wants to make any before selecting a file.

Figure 9.7. The Common Dialog Box control can display the File Open dialog box.

Tip

You'll also use Table 9.3 when setting the Flags property value for the File Save dialog box.

Table 9.3. The File Open and Save dialog box's Flags values.

Named Literal
Flags
Value Description

cdlOFNAllowMultiselect &H200 Lets the File Name list box accept multiple file selections. The FileName
property then returns a string that contains all the selected filenames (names
in the string are delimited by spaces).

cdlOFNCreatePrompt &H2000 Prompts users to create a file that doesn't currently exist. This flag
automatically sets the cdlOFNPathMustExist and cdlOFNFileMustExist
flags.

cdlOFNExplorer &H80000 Uses the Explorer-like Open a File dialog box template.
cdlOFNExtensionDifferent &H400 Indicates that the extension of the returned filename is different from the

extension specified by the DefaultExt property. This flag isn't set if the
DefaultExt property contains Null, if the extensions match, or if the file
has no extension. You can inspect this flag's value after the dialog box is
closed.

cdlOFNFileMustExist &H1000 Lets users enter only names of existing files. If this flag is set and users
enter an invalid filename, a warning is displayed. This flag automatically

Table 9.3. The File Open and Save dialog box's Flags values.

Named Literal
Flags
Value Description

sets the cdlOFNPathMustExist flag.
cdlOFNHelpButton &H10 Displays the dialog box's Help button.
cdlOFNHideReadOnly &H4 Hides the Read Only check box.
cdlOFNLongNames &H200000 Allows long filenames.
cdlOFNNoChangeDir &H8 Forces the dialog box to set the current directory to what it was when the

dialog box was opened.
cdlOFNNoDereferenceLinks &H100000 Disallows dereferencing of shell links (also known as shortcuts). By

default, choosing a shell link causes it to be dereferenced by the shell.
cdlOFNNoLongNames &H40000 Disallows long filenames.
cdlOFNNoReadOnlyReturn &H8000 Specifies that the returned file won't have the Read Only attribute set and

won't be in a write-protected directory.
cdlOFNNoValidate &H100 Allows invalid characters in the returned filename.
cdlOFNOverwritePrompt &H2 Causes the Save As dialog box to generate a warning message box if the

selected file already exists. (Users then choose whether to overwrite the
existing file.)

cdlOFNPathMustExist &H800 Lets users enter only valid paths. If this flag is set and the users enter an
invalid path, a warning message is displayed.

cdlOFNReadOnly &H1 Selects the Read Only check box when the dialog box is created. This flag
also indicates the state of the Read Only check box after the dialog box is
closed.

cdlOFNShareAware &H4000 Indicates that possible sharing violation errors will be ignored.

Often, when you see a File-related dialog box such as the File Open dialog box, a filter is applied to the filename
extensions so that the dialog box shows files of a certain extension only, such as all files that meet the *.doc wildcard
selection. Although the user can override the default filter by entering a different filter, or by typing *.* and showing all
files in the File dialog box, you can specify the initial filter if you assign theFilter property a value that follows this
format:

"FilterDescrip1 | extension1 | FilterDescrip2 | extension2 | _
FilterDescrip3 | extension3"

For example, the following statement assigns a filter that shows only Word and Excel documents when the Open dialog
box appears:

cdbFiles.Filter = "Word Docs (*.doc)|*.doc|Excel Docs (*.xls)|*.xls"

Caution

Don't confuse the file extensions in the description with the actual extensions in the filter. In the example, Word Docs
(*.doc) is text to be displayed to users, and the *.doc following the first pipe symbol is the dialog box's first actual
filtering instruction.

You can supply multiple filters by including multiple strings for the Filter property. If you specify more than one
filter, you must set the FilterIndex property to the filter you want to use for the current File Open dialog box. The
first filter has a FilterIndex of 1; this number is incremented if you supply additional filters.

The common dialog box control's FileName property holds the selected filename after users close the dialog box.

Producing the File Save Dialog Box
The File Save dialog box is virtually identical to the File Open dialog box except for the title and a few other options
such as the command button titles. For example, if an application is a Multiple-Document Interface (MDI) application,
you might allow the user to select multiple files to open from within a File Open dialog box because each data file will
be able to appear in its own document window. If you were to offer a File Save dialog box, however, your user can
select or enter only a single filename.

Figure 9.8 shows you that the File Save dialog box looks almost exactly like the File Open dialog box. Use Table 9.3's
Flags property values to set up the File Save dialog box just as you did the File Open, including the filter setting
procedure that you learned at the end of the previous section.

Figure 9.8. The Common Dialog Box control can display the File Save dialog box.

Producing the Print Dialog Box
Figure 9.9 shows the Print dialog box that the Common Dialog Box control produces when you apply the ShowPrinter
method to a Common Dialog Box control. Your users can select the printer type, number of copies, range of pages, and
several other printing options. Each printer setup for the users'system displays a different set of Print dialog box
options. When users enter the desired values, your application can use that information (taken from the Common
Dialog Box control's properties) to direct the print output properly.

Figure 9.9. The Print dialog box lets users select printer options.

Caution

Your Print dialog box will vary from Figure 9.9, depending on your printer type.

Listing 9.3 shows code that opens the Print dialog box in response to a menu selection.

Listing 9.3 Use the common dialog box to direct the printed output.
1: Private mnuFilePrint_Click()
2: Dim intBegin As Integer, intEnd As Integer
3: Dim intNumCopies As Integer, intI As Integer
4: ' Assumes Cancel is set to True
5:
6: On Error Goto dbErrHandler
7: ' Display the Print dialog box
8: cbdPrint.ShowPrinter
9: ' Get user-selected values from the dialog box
10: intBegin = cbdPrint.FromPage
11: intEnd = cbdPrint.ToPage
12: intNumCopies = cbdPrint.Copies
13: '
14: ' Print as many copies as needed
15: For intI = 1 To intNumCopies
16: ' Put code here to send data to your printer
17: Next intI

18: Exit Sub
19:
20: dbErrHandler:
21: ' User pressed Cancel button
22: Exit Sub
23: End Sub

As Listing 9.3 shows, you don't have to set any properties before displaying the Print dialog box (except perhaps for a
DialogTitle property if you want a specific title to appear in the Print dialog box's title bar), but you can check the
dialog box's return values stored in properties such as Copies, FromPage, and ToPage to determine how the user
wants to print a report that you are about to print.

The Help Dialog Box
Day 20, "Providing Help," explains how to integrate the Windows Help dialog box, produced by the Common Dialog
Box control, into your applications.

Summary
Today's lesson explained how you can set up common dialog boxes to perform standard tasks. When you must display
a dialog box to open a file, for example, you'll want to use the standard dialog box so that your users will feel
comfortable with your application and have less of a learning curve.

The Common Dialog Box control requires that you set some property values and then apply the correct method to the
Common Dialog Box control. The Common Dialog Box control does no work except to set properties; your code must
ensure, when the user closes the dialog box, that you interpret the user's selections as well as handle the potential
Cancel click properly.

Tomorrow's lesson teaches you how to monitor the user's mouse movements so that your applications acquire yet
another way to interact with your users. In addition, you'll learn how to program the list box-related controls that let
you offer your users several choices to choose from.

Q&A
Q: Why doesn't the Common Dialog Box control support other dialog boxes I see in applications, such as the

View, Zoom dialog box in Word and Excel?

A: The Common Dialog Box control cannot do everything or the control would be unwieldy and consume too
many resources to be efficient. Nevertheless, you'll work with many dialog boxes in popular Windows
programs and, although you can create any dialog box in Visual Basic using forms and controls, not every
dialog box is common enough to be a Windows standard. For example, most Windows applications do not
have a View, Zoom menu option even though Word and Excel do.

Q: What kinds of controls can I add to my Toolbox window?

A: You can add ActiveX controls to your collection of tools. These include ActiveX controls you write yourself
(as described in Day 17's lesson) and those you obtain elsewhere. You'll find such controls on Microsoft's
Web site as well as other places on the Internet. You'll find several good programming magazines and
journals on the computer magazine racks. These often have many advertisements that offer Visual Basic
controls that you can order and add to your system.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next chapter. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: What must you do to the Toolbox window before you can place a Common Dialog Box control onto the
form?

2: Name the specific dialog boxes that the Common Dialog Box control displays.

3: What purpose does the Common Dialog Box control serve?

4: Why can't you adjust the size of the Common Dialog Box control on the form?

5: True/False. The Open dialog box doesn't really open any file.

6: What role does the Filter property play in the file-related dialog boxes?

7: What does the Flags property do?

8: True/False. You must set a Flags value or Visual Basic won't display the Fonts dialog box .

9: True/False. You must set a Flags value or Visual Basic won't display the Print dialog box .

10: True/False. The Show method displays a Common Dialog Box control .

Exercises

1: Change the code in Listing 9.2 to handle the Cancel command button selection. Make sure that the code
changes no properties if the user clicks Cancel .

2: Write a procedure that produces the File Open dialog box shown in Figure 9.10. Use the same *.txt filter
shown in the figure. Add code to ignore the dialog box settings if the user clicks the Cancel button .

Figure 9.10. Create this File Open dialog box.

Day 10. Adding Power with the Mouse and
Controls
Today's lesson expands your Visual Basic knowledge by showing you how to write programs that respond to mouse
movements, clicks, and drags. The use of the mouse is vital to Windows programs and, depending on your program's
requirements, you'll want to add mouse support to give your users yet another way to interact with your form's controls.

The mouse discussion makes a good transition into a new set of controls that you'll learn about today—the list controls.
You've worked with list boxes in other applications, and today's lesson teaches you how to create and manage your
own application's list controls. More than one kind of list control exists, and you'll master each one today.

The list controls provide your users with lists of items from which to choose. The controls have many similarities to
variable arrays, which you'll learn about today as well. By learning about arrays, you'll be able to make your programs
more efficient when they must process large data sets.

Today, you learn the following:

• About mouse events

• How to determine which mouse button the user clicked
• How to program drag-and-drop operations
• How to use the timer control
• About list and combo box controls
• How to initialize, add to, and delete items from the list controls
• How to declare and use arrays
• About control arrays

Responding to the Mouse
One of the foundations of Windows applications is that they respond to the mouse. Windows sends mouse events to
your program when the user works with the mouse while running your application. When you write your programs,
you'll want it to inspect for mouse events and respond to them if necessary. If your user uses the mouse to click an
option button or check box, your program doesn't need to respond to the mouse, of course, but the click will trigger an
event for those controls.Visual Basic also monitors mouse events when the user drags and drops an item on the screen
or copies and pastes information.

Note

Actually, you should write your Windows programs to respond to both the keyboard and the mouse. The Windows
standard states that all programs should be accessible from the keyboard alone, if necessary. This lets a user who
prefers the keyboard or whose mouse is broken to run Windows applications. Nevertheless, some programs by their
very nature do not function well without mouse support. For example, a drawing program would be quite hard to use
without a mouse.

Caution

Visual Basic includes no mouse control for your toolbox window because your application responds to a mouse only
through events, not control properties.

Mouse Events

You have full control over how your application responds to mouse events. A mouse event can be triggered by any of
the following actions:

• Mouse movement
• A button click
• A double-click
• A right-click
• A drag-and-drop operation

Adjusting the Mouse Cursor

As the user moves the mouse, the mouse cursor, sometimes called the mouse pointer (due to its default arrow shape),
travels across the screen to show the movement. Often, an application changes the mouse pointer during a drag-and-
drop operation, or perhaps when the user moves the mouse over an object on the screen that cannot be activated by the
mouse. The changed mouse pointer can show an hourglass, for example, to indicate that processing is taking place such
as a sort of data.

Your application can control the mouse cursor's shape. Table 10.1 lists the possible mouse cursors you can set. To
change the mouse cursor's shape when it passes over a control on your form requires that you set the control's
MousePointer property. Almost every control you place on a form contains the MousePointer property, which can
take any of the values shown in Table 10.1. You can set these values at runtime by assigning the named constants or at
design time by selecting one of the values in a control's MousePointer property.

Table 10.1. You can control the mouse pointer's shape.

Named Constant Description
VbArrow Regular mouse pointer arrow
VbCrosshair Crosshair
VbIbeam I-beam
VbIconPointer Small square within a square
VbSizePointer Four-pointed arrow pointing up, down, left, and right
VbSizeNESW Double-arrow pointing northeast and southwest
VbSizeNS Double-arrow pointing up and down
VbSizeNWSE Double-arrow pointing northwest and southeast
VbSizeWE Double-arrow pointing left and right
VbUpArrow Up arrow
VbHourglass Hourglass (indicating wait)
VbNoDrop Not drop (the international Not sign with a red slash through a circle)
VbArrowHourglass Arrow with an hourglass
vbArrowQuestion Arrow with a question mark
vbSizeAll Double-pointing arrow that appears when you resize a window
vbCustom The shape indicated by the MouseIcon property

Tip

You can make up your own mouse cursor. The cursor must be in the same 16-by-16 pixel resolution as other icons
(icons have the .ICO filename extension; most drawing programs will let you create standard icons). If you want to
display your own icon graphic file in place of one of the predefined mouse pointers from Table 10.1, set the MouseIcon
property to your custom icon file and set the MousePointer property to 99 - Custom. The mouse pointer will remain
your custom shape until you once again change the cursor. Bonus Project 5, "Practice with the Mouse," appears before
Day 11 ("Working with Forms") and explains further how to change the mouse pointer.

When the User Moves and Clicks the Mouse

Windows generates mouse movement and click events and sends them to your program. Your program might choose to
ignore these events if you omit event procedures for them; however, you can place code in any events you want to
respond to. Table 10.2 describes what happens at each mouse event.

Table 10.2. Windows generates these mouse events as the mouse is used.

Event Description
Click The user clicked a mouse button.
DblClick The user double-clicked a mouse button.
MouseDown The user pressed and held a mouse button.
MouseMove The user moved the mouse.
MouseUp The user released the mouse button.

All the mouse events are associated with controls. You'll find mouse events listed for almost every control (by
displaying the Object drop-down list box in the Code window) as well as forms. For example, if you want to test for a
mouse button click on your form named frmTest, the event procedure would be named frmTest_Click().

Note

Some events related to mouse button clicks require that you test an event procedure argument to see which button the
user clicked.Only the MouseDown and MouseUp event procedures pass arguments that specify which mouse button the
user clicked.

Is a double-click a single event or two click events? That answer depends on how accurately the user performs the
double-click. Windows provides click-related mouse events in the following order:

1. MouseDown
2. MouseUp

3. Click
4. DblClick
5. MouseUp

Therefore, a MouseDown event occurs first when the user clicks the mouse button; then a MouseUp occurs and then a
Click event occurs. When a user double-clicks a mouse button, the DblClick and MouseUp events occur also.
(Windows doesn't trigger a MouseDown event if user the double-clicks the mouse.)

The MouseDown, MouseMove, and MouseUp event procedures always require these four arguments:

• intButton. Describes the button pressed: 1 for the left button, 2 for the right button, and 4 for both buttons (or
for a center button if you have a three-button mouse).

• intShift. Describes the shift state value by showing, through a bit comparison, whether the user pressed Alt,
Ctrl, or Shift while moving or clicking the mouse.

• sngX. The horizontal twip value where the user clicked or moved the mouse.
• sngY. The vertical twip value where the user clicked or moved the mouse.

Visual Basic generates a movement event after the user moves the mouse every 10 to 15 twips, which is an extremely
small portion of the window. Visual Basic doesn't generate a mouse movement event for each twip.

The following statement declares a MouseDown event procedure so that you can see how the arguments arrive:

Private Sub imgMouse_MouseDown(intButton As Integer, intShift As Integer, _
sngX As Single, sngY As Single)

Upon entering this procedure, sngX and sngY hold the twip coordinates of the mouse click. intButton contains 1, 2,
or 4, which describes which button was pressed. You don't always need to know which button the user pressed, but if
you were to respond differently to a left-click than to a right-click, you would use the MouseDown event to determine
the button. If the user pressed Shift, Ctrl, or Alt, and you need to know which key the user pressed in conjunction with
the mouse button, you can perform a test similar to the shown in Listing 10.1.

Listing 10.1 Analyzing the shift value to see which key the user pressed in conjunction with a mouse
event.
1: Private Sub imgMouse_MouseDown(intButton As Integer, intShift As _
 Integer, sngX As Single, sngY As Single)
2: Dim intShiftState As Integer
3: intShiftState = intShift And 7 ' Special bitwise And
4: Select Case intShiftState
5: Case 1
6: ' Code for Shift combinations
7: Case 2
8: ' Code for Ctrl combinations
9: Case 3
10: ' Code for Alt combinations
11: Case 4
12: ' Code for Shift+Ctrl combinations

13: Case 5
14: ' Code for Shift+Alt combinations
15: Case 6
16: ' Code for Ctrl+Alt combinations
17: Case 7
18: ' Code for Shift+Ctrl+Alt combinations
19: End Select
20: End Sub

The special And comparison in line 3 tests an internal bit flag value to determine which key the user pressed along with
the mouse event.

Do Don't

DO test for a keystroke and mouse click combination if your application allows for the selection of text by
dragging while holding down the Ctrl key or the selection of multiple items by clicking while holding down the
Ctrl key. Many controls, such as the list box control you'll learn about in today's lesson, automatically handle
"Ctrl+mouse" combinations when you select values from the list; so you do not need to worry about keystrokes
that occur in combination with the mouse inside list box controls.

Note

Bonus Project 5 that appears before Day 11's lesson demonstrates a complete application that shows how to respond to
mouse clicks and movements.

Following Drag-and-Drop Operations

When your user drags one object from a form to another location, your application needs to know about it! Drag-and-
drop is a process where the user, with the mouse, clicks an object onscreen, holds down the mouse button, and drags
that object to another location onscreen. Surprisingly, programming for drag-and-drop operations is relatively simple
thanks to the Windows operating system, which generates appropriate information along with drag-and-drop events
that occur.

Visual Basic supports two kinds of drag-and-drop operations:

• Automatic drag-and-drop
• Manual drag-and-drop

The first method is the simplest. You trigger automatic drag-and-drop through control properties. Almost every control
in the toolbox contains the property DragMode. This property lets the user move the control with the mouse. When the
user moves the control, Visual Basic displays an outline of the control. Your job is to move the control to the place
where the user releases the mouse button. Although the automatic mode shows the moving control's outline, it doesn't
actually move the object.

The form's DragDrop event controls the placement of the drop. To set up the drag, you only need to change the
control's DragMode property to 1 - Automatic. The control can then be dragged and show the moving outline. The
Form_DragDrop() event procedure takes care of the second half of the drag-and-drop operation by placing the dragged
control in its new location.

Although the control's outline normally appears as the user drags the mouse, you can change the icon used as the
outline by changing the DragIcon property to point to any icon file (such as the icon files in the \Graphics folder if you
installed graphics with Visual Basic). When a user drags the control, the icon replaces the mouse pointer during the
drag. After the user completes the drag, a Form_DragDrop() procedure can take care of moving the object to its final
location. The DragDrop event takes care of moving the control from the first location and to the placed location. Here's
the code that performs such a movement:

1: Private Sub frmTitle_DragDrop(Source As Control, X As Single, Y As _
 Single)
2: ' This code receives as an argument the actual control that
3: ' the user dragged.
4: Source.Move X, Y ' Move to the dropped location
5: End Sub

The Move method in line 4 moves the control from its original location to the coordinates of the dropped location
(where the user releases the mouse button).

Tip

The DragOver event occurs when the user drags one control over another. If you want to change the mouse pointer
over items that you don't want the user to drop another control on top of, change the mouse cursor inside the DragOver
event procedures for those controls that don't accept dropped objects. DragOver receives four arguments:

• The control
• The mouse pointer's x-coordinate
• The mouse pointer's y-coordinate
• The state of the drag, which takes on one of three possible values: 0 (when the drag first covers the object), 1

(when the drag leaves the object), and 2 (when the control is being dragged through the object)

Manual drag-and-drop works just like automatic drag-and-drop, with these three differences:

• You must set the DragMode property to 0 - Manual.
• Manual drag-and-drop lets the control respond to a MouseDown event before beginning the drag so that the

control's original location coordinates can be recorded.
• You must add code to the MouseDown event procedure to invoke the drag.

The MouseDown event procedure can perform the special Drag method on the object if you want to continue the drag-
and-drop process. The following code drags the image if the image control's DragMode property is set to 0 - Manual:

Private Sub imgMouse_MouseDown(Button As Integer, Shift As Integer, X As _
Single, Y As Single)
 ' Clicked over the image
 txtMouse.Text = "Clicked over the image at " & X & ", " & Y
 imgMouse.Drag
End Sub

The Drag method turns on drag-and-drop. Without the Drag method, the MouseDown() event procedure couldn't initiate
the drag-and-drop operation. Use manual drag-and-drop operations if you want to set up drag-and-drop limitations
before and during the drag-and-drop process.

Note

In Bonus Project 7, "Working with Scrollbars," that appears after Day 14's lesson, "Introducing VB Graphics and
Multimedia," you'll create an application that allows you to right-click to display a pop-up menu.

List Box Controls
You're now ready to learn about the additional controls that appear in your toolbox window. Many of the controls you
have yet to master require programming to make them work. You cannot just place them on a form, as you can a
command button, because they require initialization, which can only be performed with code. For example, you can't
fill a drop-down list box with items until runtime. Although you can initialize some controls, such as labels, you can't
initialize many of the multivalue controls. The multivalue controls (such as list boxes) require some programming.

Here's a list of the different types of list boxes:

• The simple list box
• The drop-down list box
• The drop-down combo box
• The simple combo box

Simple List Boxes

The simple list box control gives your users a way to select one or more items from a list of choices. To add a simple
list box to your form, use the list box control on the toolbox window.

Note

You'll initialize some list box control properties from the Properties window, such as the location, size, and color
properties, but you'll generally not initialize the list box control's list of values from within the Properties window.

Tip

The preceding note states that you will generally not initialize the list box control's list of values from within the
Properties window because Visual Basic does give you the means to initialize the list at runtime. If you open the List
property in a list box control's Properties window, a blank scrolling list opens in which you can add values. List box
controls, however, almost always store values that come from the user and other data sources. You'll only initialize
small list boxes whose values do not change directly from the Properties window. The rest of today's material focuses
on the most common way to initialize the list controls: using methods that build the list at runtime.

You use the AddItem method to add items to a list (see Listing 10.2).

Listing 10.2 Initializing the list box is best done in the Form_Load() event procedure.
1: Private Sub Form_Load()
2: ' Initialize the list control values
3: lstColors.AddItem "Red"
4: lstColors.AddItem "Blue"
5: lstColors.AddItem "Green"
6: lstColors.AddItem "Yellow"
7: lstColors.AddItem "Orange"
8: lstColors.AddItem "White"
9: End Sub

The Form_Load() event procedure is a good place to load initial list values, although more values will probably be
added as the user uses the program. The Form_Load() event procedure ensures that the initial values, if any are known
when the program first begins, load before the user sees a form that contains the list box. When you run your
application, the runtime module initially loads the form (or forms, if you have multiple forms). Forms support the Load
event, which occurs when a form loads. Through the Load and Unload Visual Basic form commands, you can specify
exactly when a form is to be loaded as well as when the form should be unloaded to free up resources.

Once you add the initial items, you can use the AddItem method to add more items to the list box. For example, if your
list box is named lstColors, you can specify that list box's AddItem method as shown in the preceding Form_Load()
subroutine; you add an item to the list by specifying the AddItem method followed by the item to add. Visual Basic
adds items to the list in the same order your code adds the items, unless you change the list box's Sorted property to
True, in which case Visual Basic sorts the items in the list alphabetically or numerically as they are added.

Note

You can add initial values in the Properties window's List property, but doing so makes maintenance more difficult.
Putting the initial values in the code makes the items much easier to change in the future.

The following statement adds the color "Aqua" to the list that the Form_Load() event procedure sets up:

lstColors.AddItem "Aqua"

Tip

Sometimes it's difficult to distinguish Visual Basic's commands, declarations, methods, properties, and controls. Think
of a method as a request that an item makes to itself. In other words, lstColors.AddItem "Aqua" is saying, "Add an
item named Aqua to me." As a list box, lstColors knows how to fulfill this request because Visual Basic's designers
added this method to the repertoire of methods for a list box. Most controls have their own set of methods available.
You can learn the names of each control's methods from documentation that comes with each control that you obtain.

Assuming that a list box control named lstColors appears in the center of a form that contains the previous
Form_Load() form procedure, the list box will appear, with its color names, as shown in Figure 10.1.

Figure 10.1. The list box holds the added color values.

Caution

Unless you're initializing one or more list box values at designtime, you'll need to empty the List property from within
the Properties window after you name the list box control you've placed on the form. Visual Basic uses the name of the
list box as the first item in the list, unless you erase the list.

The list box shown in Figure 10.1 is known as a simple list box.

A simple list box is a list box that displays items from a list. The programmer initializes the list, and the user cannot
directly add items to the list.

If needed, vertical and horizontal scrollbars appear in the list box if the height (or width) of the list box isn't sufficient
to display all the items added to the list. Also, if the list box can display all the items but the application later adds more
items, Visual Basic adds the scrollbars when they become needed, during the program's execution.

Users can select items from the list box. That's the purpose of a list box: to let users select from a list of choices rather
type the values. When a user selects an item in the list, the following actions happen:

• The item changes color to highlight the selection.
• Visual Basic copies the selection into the list box's Text property. Therefore, lstColors.Text changes during

the application's execution, depending on which item the user selects.

Text can hold one, and only one, value. To demonstrate the list box's Text property, consider what would happen if
you added a text box named txtColor to the application shown in Figure 10.1. The following procedure sends the
selected list box item to the text box as soon as the user selects an item in the list box (lstColors):

Private Sub lstColors_Click()
 ' Copy the selected item to the text box
 txtColor.Text = lstColors.Text
End Sub

When you place a text box on a form to hold a selected list box item, you should erase the text box's Text property in
the Properties window at designtime so that nothing appears in the text box until the user selects an item. The text box's
default Font property almost always needs to be changed because the setting is too small. In addition, you'll have to
increase the size of the list box if you want to see more than two items at a time. Figure 10.2 shows the result of
selecting one of the list box items and sending that selected item to the text box.

Figure 10.2. The text box now holds the list box's selected item.

List box items have index values, and you distinguish each list box item from the others by its index. The index starts at
zero for the first item and increases without any duplicates in the list. The list box's ListIndex property holds the value
of the currently selected list box item. Therefore, you can determine which value is selected. Other list box methods,
such as the RemoveItem method, uses the ListIndex property to remove items you want removed from the list. For
example, to remove the third list box item, your program would do this:

lstColors.RemoveItem 2

As the program removes items, the index values automatically renumber. Therefore, the fourth item in a list will have
the index value 3 (due to the indexes starting at 0), but if you remove an item that comes before it, the fourth item
becomes the third item and, therefore, takes on the index value 2. If you've set the Sorted property to True, Visual
Basic re-sorts the index values after each add or remove operation.

Tip

Once in a while, you'll want to let the user select multiple items from a list box, when appropriate. The user holds down
the Ctrl key while selecting several items in the list box to specify the multiple values. Obviously, the list box's Value
property cannot hold all the selected values, so other provisions must be made when you allow for multiple selections.
Bonus Project 5, which appears before Day 11's lesson, demonstrates how you can set up a list box to allow for, and
recognize, multiple user selections.

Note

List box index values work a lot like arrays, as you'll see in the final section of today's lesson.

Users cannot directly add values to a list box. A list box gains items only when the code inside the application uses the
AddItem method to add additional items. Users also cannot directly delete items. The code's RemoveItem method has to
do the removal. Suppose you needed the application to remove all the items added so far to a list box. Although you
could apply the RemoveItem method to each list box item, a For loop makes more sense. You can code the loop as
follows (given the previous example's list box):

1: ' Removes the first 5 items from the list
2: For intI = 0 To 5
3: lstColors.RemoveItem 0
4: Next intI

When using a For loop, you must keep track of how many items are in the list. Because your code is what adds those
items to the list, you should have no trouble keeping track of the count.

If, through programming, you give users a chance to add items to the list (by giving a data-entry text box and a
command button that, when clicked, triggers the AddItem method), the list could grow, but you can still keep track of
the count through a variable that is added to or decreased every time an item goes into or comes off the list. (The user
simply cannot directly add or remove items from a simple list box.)

Although you can keep track of a counter variable every time an item goes on or off a list, you don't have to keep track
of your list's items, because Visual Basic internally keeps a count of the number of items for you. The ListCount
property keeps a running total of the number of items in the list. ListCount is always one greater than the highest
ListIndex, because ListIndex starts at zero. Therefore, any time you want to reference the entire list box with a For
loop, or any time you need to know the current total of list box items, you can use the ListCount property, as shown in
this loop:

1: ' Removes all the items from the list
2: intTotal = lstColors.ListCount ' Save number
3: For intI = 1 To intTotal
4: lstColors.RemoveItem 0
5: Next intI

Tip

The list box control's Clear method clears all items immediately without requiring a loop. Therefore, if you want to
clear all the contents at once, instead of using a range (which you'd normally use for a For loop), you can erase the
entire list by using lstColors.Clear.

Combo Box Controls

The combo box control comes in the following three flavors:

• The drop-down list combo box
• The simple combo box
• The drop-down combo box

Whereas a simple list box appears on the form in the size you designate, the drop-down list combo box always takes a
single line on the form until the user opens the list to display its values.

The simple combo box looks and operates like a simple list box with an attached text box. Users can add values to a
simple combo box by entering them in the control's attached text box.

The drop-down combo box saves screen space by remaining closed, looking like a one-line list box, until the user
selects the control. Then, the drop-down combo box opens to display a list of items. The user can select from the list or
enter a new value. into the text box that your code can then add to the list.

All the combo box controls are similar to the list box in the way you initialize and access them from your code. Their
primary differences lie in the way they appear on the screen and the way they allow your users to select and enter data.

All three types of combo boxes come from a single source: the toolbox's combo box control. When you place a combo
box control on a form, you must tell Visual Basic, through the combo box's Style property, which combo box you
want to use. The default style when you first place a combo box on a form is 0 - Dropdown Combo. This is the
simplest combo box to begin with.

Tip

Remember that the Sorted property automatically keeps lists sorted for you, alphabetically or numerically, even when
users add new values to the list. If you don't specify True for the Sorted property, the list remains unsorted in the order
that items are put into it.

The drop-down list combo box acts and works just like a list box, except that a list box commonly takes up more room
on a form than a drop-down list combo box. When a user clicks the drop-down list combo box's arrow, however, the
drop-down list combo box opens up to display a list of values.

Figure 10.3 shows a form with two drop-down list combo boxes that each hold the same values. Before the right combo
box was pulled down, both boxes took up the same amount of space on the form. A user, by clicking the right drop-
down list combo box's arrow, can open the combo box to see the entries and to select one or more values from the
combo box.

Figure 10.3. A drop-down list combo box takes up only a small part of the form until a user selects it.

Use drop-down list combo boxes when you need to offer a list of choices but also need to save room on the form. As
you can see from Figure 10.3, a drop-down list combo box displays no text until a user selects the control. Therefore,
you need to make sure you explain to your users, via a label or a message box, exactly what the drop-down list combo
box contains.

Use the AddItem method to add entries to the drop-down list combo box just as you did with the list box. The following
code adds the six colors to the controls on Figure 10.3:

Private Sub Form_Load()
' Initialize both combo boxes
 cboColor1.AddItem "Red"
 cboColor1.AddItem "Blue"
 cboColor1.AddItem "Green"
 cboColor1.AddItem "Yellow"
 cboColor1.AddItem "Orange"
 cboColor1.AddItem "White"

 cboColor2.AddItem "Red"
 cboColor2.AddItem "Blue"
 cboColor2.AddItem "Green"
 cboColor2.AddItem "Yellow"
 cboColor2.AddItem "Orange"
 cboColor2.AddItem "White"
End Sub

The drop-down list combo box supports the same methods and properties as the list box.

The next combo box, the simple combo box, works like a list box with a text box at the top of the list. In other words,
users can select from a list or enter new values in the list. When you add a combo box control to a form and set the
Style property to 1 - Simple Combo, Visual Basic changes the control so that you can size it the same way you'd
size a list box. If you don't give the simple combo box more width and height than is needed to display its values at any
time during the application's execution, the simple combo box displays scrollbars to let users scroll through the items.

Figure 10.4 shows the colors listed in a simple combo box control. Your code can load the box with names by using the
AddItem method, and users can enter additional items. Be sure to blank out the simple combo box's Text property
when you place the control on the form; otherwise, the control's name will appear in place of the users'data-entry space.
If you specify a Text property at design time, the simple combo box control uses that value for the default, which users
can accept or change.

Figure 10.4. A user can enter a color value or select one from the list of existing colors.

The colors listed in the simple combo box in Figure 10.4 appear alphabetically due to the Sorted property. To ensure
that the items appear alphabetically, no matter in which order they entered in the list, set the Sorted property to True.

Note

When you place a simple combo box control on a form and set its Style property to 1 - Simple Combo, you must
change the control to the size in which you want it to appear. Unlike a drop-down list, the simple combo box always
stays the same size.

A simple combo box doesn't add user entries automatically. You must supply code that adds the entries to the combo
box when the user is allowed to add values. Although most programmers place simple combo boxes on forms to let the
user select or enter a new value, if you want to add the user's value to the simple combo box list, you must provide the
following code inside the simple combo box's LostFocus() event procedure:

Private Sub cboColor_LostFocus()
 cboColor2.AddItem cboColor1.Text
End Sub

The LostFocus() event procedure executes when the control loses focus, which happens when the user clicks another
control or moves the focus away from the simple combo box with the Tab key. Right as the focus moves to another
control, the LostFocus() event procedure executes and the code saves the simple combo box's value entered by user
(stored in the Text property) into the simple combo box's list using the AddItem method. Figure 10.4 shows a
command button because after the user enters a new color name, he or she must shift the focus to another control.
Otherwise, the simple combo box won't be able to add the new entry.

The best of all list and combo controls seems to be the drop-down combo box. The drop-down combo box saves screen
space by remaining closed until users select the control. Then, the drop-down combo box opens to display a list of
items. Users can select from the list or enter a new value. The Selected and ListCount properties, as well as other list
box properties, work for drop-down combo boxes, so your code can always determine whether the user entered a new
value or selected an existing one. Unlike the drop-down list box, the drop-down combo box can be added to.

Make sure the combo box's Style property is set to 0 - Dropdown Combo (the default) when you want to work with a
drop-down combo box. To continue using this lesson's familiar color list example, Figure 10.5 shows the color list—
except this list appears as a drop-down combo box.

Figure 10.5. The user can select a value or enter a new value.

As with the simple combo box, be sure to clear the drop-down combo box's Text property when you place the control
on the form so that nothing appears in the text box at the top of the drop-down combo box. Users can enter new values
(adding those values when the focus leaves the control, as was done in the previous example) or open the drop-down
combo box to display and select from the list.

The Timer Control
The timer control enables you to generate responses based on the value of the computer's internal clock. You can write
code that executes after a certain amount of time passes, and you can use the timer control to perform background
processing. Your computer's clock triggers a timer event 18 times a second. The clock is vital to the workings of your
CPU, memory, and disk, because data must flow in an orderly and timed manner.

Note

Your PC generates a timer event 18 times a second, no matter how fast or how slow your PC is.

Visual Basic applications can respond to the clock's time events. Although the user does not generate timer events, your
PC does, and Windows passes those events onto every running program. You can set up a preset interval of time after
which Windows sends an event message to your application. As with all events, you can write event procedures that
execute each time the timer event takes place. The bottom line is that you can write code that executes whenever a
fixed amount of time passes, and you don't have to rely on the user's PC speed in any way because the time is constant.

The timer control receives the timer events and responds according to the properties you set. When you place the
Visual Basic timer control on a form, you set up the time interval that determines the frequency of timer events. That
time interval is one of the timer control's properties. When the interval of time passes, the timer control triggers the
event procedure that you've set up to handle the timer events.

Note

You can add multiple timer controls to your application the same as you can add several instances of other controls. For
example, your application can perform an event procedure every minute, every half hour, and every hour (as might be
required of a time and billing application) if you place three timer controls on the application's form and set the three
time intervals.

Tip

You'll think of many uses for the timer control as you become more familiar with it. For example, you can use timer
event procedures to perform background processing. Also, you can animate graphics by redrawing the graphic image
every time your preset timer event occurs, such as every half a second.

The best way to place a timer control on your form is to double-click the timer control icon in the toolbox and then
move the control that appears on the form out of the way of the other objects. The timer control is similar to the
common dialog box control in that you cannot resize it and it doesn't appear on your form at runtime.

Figure 10.6 shows a timer control placed in the center of a new form.

Figure 10.6. You can move a timer control around on the form, but you cannot resize it.

The timer control supports very few properties. Of the six design time properties you can set, five aren't particularly
unique:

• Left and Top determine the timer control's location.
• Enabled determines the timer's activated state.
• Tag holds remark information that you might want to include with the control.
• Index determines the control's subscript in a control array.

Tip

If you set the timer control's Enabled property to False at designtime, the timer control won't begin responding to
events until your code sets Enabled to True.

The only property critical and truly unique to the timer control is the Interval property. The Interval property
determines the frequency with which you want the timer control to generate events. You enter at design time or runtime
the number of milliseconds that have to pass before the timer control responds to an event. For example, if you set the
Interval property to a value of 1000, the timer events will occur every 1,000 milliseconds, or roughly once per
second.

The timer control seems to have some drawbacks at first. The Interval property can hold values only from 0 to
64,767. Therefore, you can set a time interval that spans only about 65 seconds and no more. If you need to set an
event interval greater than 65 seconds, you simply can't do so. However, in the timer control's Timer event procedure,
you can ignore events and return to the application without responding to the event until a certain amount of time
passes. In other words, although the event procedure you've set up for the timer control might trigger every 60 seconds,
you can place code at the top of the event procedure to return to the application and not respond to the event unless a
fixed amount of time has passed (such as an hour or whatever) since the previous execution of the event procedure.

Caution

The timer control isn't actually extremely accurate. Although the crystal inside your computer's clock is highly
accurate, by the time Windows sends a timer event to your application, some accuracy is lost. Also, other events that
occur can slow down the timer, such as a network access or modem update. Your computer can't do two things at once,
and a timer control inside a running Visual Basic application doesn't always get high priority. Therefore, the timer
control works well when time sensitivity is important to the nearest second; however, no control exists in Visual Basic
that provides higher precision.

The timer control supports only a single event: the Timer event. Therefore, if your timer control is named tmrClock,
you'll write only a single event procedure for the timer control: tmrClock_Timer(). You'll put the code inside
tmrClock_Timer() that you want Visual Basic to execute once every time the interval passes.

For practice, you can follow these steps to create a simple application that demonstrates the timer control:

1. Create a new project and place a timer control on the form.

2. Set the timer control's Interval property to 1000 so that the it responds to the timer event procedure every
second.

3. Name the timer tmrTimer1 and move it to the lower-left corner of the form window.

4. Place another timer control named tmrTimer2 on the form next to the first one. Set its Interval property value
to 500 so that it responds to its timer event procedures every half second.

5. Add two text boxes to the form named txtTimer1 and txtTimer2. Position the text boxes as shown in Figure
10.7.

Figure 10.7. The timer-based application is almost finished.

6. Type 1 for both text box controls'Text properties and set the text box font size to 18. Set both text box
Alignment properties to 2 - Center so that their text appears centered inside the boxes at runtime. Set both
text box Width properties to 1000.

7. Double-click the first timer to switch to the Code window and enter the following code for the
tmrTime1_Timer() procedure (Visual Basic already types the first and last lines for you):

Private Sub tmrTimer1_Timer()
 ' Add one to the display
 txtTime1.Text = txtTime1.Text + 1
End Sub

8. Add the following code for the second timer's event procedure:

Private Sub tmrTimer2_Timer()
 ' Add one to the display
 txtTime2.Text = txtTime2.Text + 1
End Sub

This code adds a numeric 1 to the text box values because Visual Basic stores the values with the Variant data
type.

9. Add a couple labels beneath the text boxes. One should read Slow and the other should read Fast.

10. Run the application. Your form should look something like the one shown in Figure 10.8. Two things are
happening: The first text box updates every second, and the second text box updates every half a second.
Depending on the accuracy of the timer events, the second text box should update twice as fast as the first text
box.

Figure 10.8. The two timers update at different time intervals.

Working with Arrays
The list box controls demonstrated the use of index values. Each item in a list box has an index that begins at 0. The
subsequent list box items have an index that have an index of 1, 2, 3, and so on. The list box has just one name but can
have many items in the list. You distinguish the items by their index values.

The indexed items in a list box provide a good analogy for the new concept you'll learn in this section: arrays. Whereas
a list box is a control that contains indexed items, an array is a list of variables that contains indexed items. In
programming terminology, an array's index value is called a subscript.

An array is a list of variables, all with the same data type and name. Programmers distinguish between the individual
variables in the list by the list's subscript.

A subscript is the numeric index value of the elements in an array.

The following variables are individual variables and are not part of an array:

intCount curPay sngLength strDeptCode

If you need to store individual values in variables, such as a bonus amount for a salesperson, individual variables work
well. However, if you need to store a list of similar values, you'll want to use an array.

Not all your Visual Basic data will be stored in arrays once you learn how to declare and use them. Arrays are for lists
of data. You still use individual variables (such as those you've seen throughout these lessons) for loop control and user

input. When you have multiple occurrences of data that you must be tracked within your application (such as fields
from a table that you read into memory), an array is the perfect holder for that data.

Tip

What if you had to process 100 salespeople's bonus payment statistics and needed to find the average bonus, the
maximum, the minimum, and the standard deviation between the values? One way to keep track of all 100 salespeople's
bonus amounts is to declare 100 variables, all with different names, such as curBonus1, curBonus2, and so on. Think
of how you would add together those bonuses! You would have to list, every time you added or compared the bonuses,
100 variable names inside a single statement. Such a situation lends itself perfectly to arrays. Instead of 100 variable
names, you only need to declare one array. The array will contain the list of 100 bonuses. The array has only one name.
To step through the array values, you don't need a list of 100 variable names, you only need a simple For loop, which
steps through the subscripts from 1 to 100. Are you beginning to see how arrays will help in such situations?

To make things even clearer, here's a fragment of the code used to add 100 separate variables together if they had
different names:

curTotal = curBonus1 + curBonus2 + curBonus3 + curBonus4 + ...

Here's the code that adds together 100 elements from an array:

For intCtr = 1 To 100
 curTotal = curTotal + curBonus(intCtr)
Next intCtr

You can also loop backwards through the bonuses if you want. In addition, you never have to access the array elements
in order. Suppose to want to average the first and last bonuses in the array. The following statement does just that:

curAvgBonus = (curBonus(1) + curBonus(100)) / 2.0

Just from this code, you can glean the following information about arrays:

• Array subscripts go inside parentheses after the array name.
• All elements of an array have the same data type.
• You can access any array element in any order by specifying its subscript.
• The subscripts range from 1 to the total elements in the array.

Actually, that last item shows my bias toward a starting subscript of 1. Visual Basic allows a subscript of 0, but Visual
Basic programmers (unlike C and C++ programmers) seem to prefer starting with the 1 subscript and ignoring the 0
subscript. In reality, all subscripts begin at 0 unless you insert the following statement in the module's Declarations
section:

Option Base 1

Visual Basic offers yet another way to specify the lower range value of the subscript, as you'll see in the next section
when you learn how to declare arrays.

Tip

Some Visual Basic programmers like to use an additional variable name prefix for array names, such as strar as the
prefix for a string array and intar as the prefix before the name of an array of integers.

Note

Visual Basic supports two kinds of arrays: static arrays and dynamic arrays. This book discusses static arrays, which
are fixed in size and can't be changed at runtime. (You can change dynamic array sizes during the program's execution.)
Static arrays are much more efficient and more utilized in Visual Basic programming.

In one respect, accessing an array value works like a set of boxes in a post office. The address of all the boxes is the
same (they're all located in the same building), but mail is inserted into the appropriate box number.

Declaring Arrays

As with individual variables, you must tell Visual Basic that you're going to use an array by declaring the array before
you use it. You use the Public or Dim statement to declare arrays just as you would use them for declaring individual
variables. Your choice of statements depends on the kind of array scope you need and where you want to declare the
array.

Use Public to declare a public array that can be used throughout the entire application (across all modules). The
Public statement must appear in the standard module's Declarations section. If you use a Dim statement in a
module's Declarations section, you create a module-level array that can be used throughout the module. You can
declare local arrays with Dim at the top of any procedure.

The only difference between declaring arrays and individual variables is the introduction of subscripts in the
declaration statements. Here are the respective formats of the two statements:

Public arName(intSub) [As dataType][, arName(intSub) [As dataType]]...

Dim arName(intSub) [As dataType][, arName(intSub) [As dataType]]...

Name arrays just as you would regular variables (with the exception of using the extra ar prefix characters if you
wish). You can create an array of any data type, so dataType can be Integer, Single, or any of the data types with
which you're familiar. The intSub portion of the commands describes the number of elements and how you refer to
those array elements. In the preceding statement formats, intSub can take on the following format:

[intLow To] intHigh

Note

This lesson teaches you how to declare single-dimension arrays, which are arrays with only one subscript. You can
declare multidimensioned arrays, better known as tables, with Visual Basic as well.

Unlike other programming languages, Visual Basic offers one exception to the rule that says all elements of an array
must be the same data type. Although an array can hold only one data type, you can declare an array to be of the
Variant data type, and, if you do, the array elements can hold values of different data types because variant data can be
any type of data.

The following statement declares an integer array with five elements (assume an Option Base 1 statement appears in
the Declarations section):

Dim intCounts(5) As Integer

Figure 10.9 shows what this array looks like in memory.

Figure 10.9. The intCounts array has five elements with a starting subscript of 1.

Note

Without the Option Base 1 statement, the Dim statement that declares the intCounts array would have declared a six-
element array with the subscripts 0 through 5.

What is in intCounts(1) through intCounts(5)? You don't know and neither does the programmer. Like any other
variable, the program must initialize the array elements before they are used. As long as you use the subscript, you can
use array elements anywhere you use other variables, as in the following statements:

intNumber = intCounts(2) * intFactor / 15

txtValue.Text = intCounts(4)

intCounts(5) = 0

Both of the following statements are equivalent:

Dim intCounts(5) As Integer

Dim intCounts(1 To 5)

You can, with the To clause, specify the starting and ending subscript values. Consider the following three array
declarations:

Public varCustNumber(200 To 999) As Variant

Public strCustName(200 To 999) As String

Public curCustBalance(200 To 999) As Currency

The first subscript in each array is 200, and the last is 999. With this declaration, if you attempted to use
strCustName(4), Visual Basic would generate an error because the subscripts don't begin until 200.

Caution

The highest subscript doesn't necessarily specify the number of array elements when you use the To clause. These three
arrays, for example, have a total of 800 elements each (subscripted from 200 to 999).

You may find that your data fits within subscript ranges that differ from the defaults (those that start at 0 or 1). The
previous declarations might be good to use, for example, if you were storing customer information and your lowest
customer number is 200. Therefore, it makes sense to begin the array subscripts at 200 and store the first customer at
his or her array subscript number, 200.

The highest subscript that you declare should leave you ample room so that you have enough elements for the data list
you want to hold.

Visual Basic includes a special built-in function called Array(). The Array() function lets you declare and initialize
an array quickly.

Tip

The Array() function works somewhat like the old BASIC READ and DATA statements. You can quickly initialize small
arrays if you know the array data values at programming time.

A Variant data type can contain any other data type, including arrays. Suppose you want to store the number of days
in each month (ignoring leap year) in an array named Days. You can declare a Variant variable like this:

Dim Days As Variant

You can then initialize the array in one step with the Array() function (rather than using a For loop), like this:

Days = Array(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)

If the Option Base 1 statement appears in the module's Declarations section, the first subscript of Array() is 1, or 0
otherwise. You can declare and initialize strings and dates as well by using the simple Array() function assignment to
a Variant value.

Using Arrays

As you saw in the previous section, you may use arrays in calculations, just as you use non-array variables, as done in
the following statement:

curFamilyDues(5) = curFamilyDues(4) * 1.5

To use data in an array, you have to use only the subscript of the array element you want to work with.

The best way to learn how to use subscripts is to see examples of them in use. Although the following example shows
array elements being filled up by an InputBox() function, most programs get most of their input data from files and
forms. Because arrays can store very large amounts of data, you don't want to have to type that data into the variables
every time you run a program. Assignment statements don't suffice either, because they aren't good statements to use
for extremely large amounts of data and interactive programs.

In Listing 10.3 is a program that declares two arrays for a neighborhood association's 35 family names and their annual
dues. The program prompts for the input and then prints the data.

Note

If you run this program, you may want to change the number from 35 down to 5 or so to keep from having to type so
much input.

Listing 10.3 Arrays simplify data storage.
1: Private Sub association ()
2: ' Procedure to gather and print 35 names and dues
3: Dim strFamilyName(35) As String ' Reserve the array elements
4: Dim curFamilyDues(35) As Currency
5: Dim intSub As Integer
6: Dim intMsg As Integer ' MsgBox() return
7:
8: ' Loop getting all of the data
9: For intSub = 1 To 35
10: strFamilyName(intSub) = InputBox("What is the next family's name")
21: curFamilyDues(intSub) = InputBox("What are their dues?")
22: Next intSub
23:
24: ' You now can display all the data
25: ' This example uses a series of message boxes simply
26: ' because that's what you know at this point
27: intSub = 1 ' Initialize the first subscript
28: Do
29: intMsg = MsgBox("Family " & intSub & " is " & strFamilyName(intSub))
30: intMsg = MsgBox("Their dues are " & curFamilyDues(intSub))
31: intSub = intSub + 1
32: Loop Until (intSub > 35)
33: End Sub

Notice that the program can input and print all the names and dues with simple routines. The input routine in lines 9
through 22 uses a For loop, and the printing routine in lines 28 through 32 uses a Do loop. The method you use to
control the loop isn't critical. The important thing to see at this point is that you can input and print a great deal of data
without having to write a lot of code. The array subscripts and loop-controlling statements make the printing possible.

This example illustrates parallel arrays—that is, two arrays working side by side. Each element in one array
corresponds to an element in the other array. Parallel arrays work in memory like joined fields work together in tables.

The neighborhood association program is fine for an illustration, but it works only if there are exactly 35 families.
What if the association grows? If it were to grow, you would have to change the program. Therefore, most programs
don't have a set limit size for data, as the preceding program did. Most programmers declare more than enough array
elements to handle the largest array ever needed. The program then allows users to control how many of those elements
are really used.

The program in Listing 10.4 is similar to the one in Listing 10.3, except that it declares 500 elements for each array.
This number reserves more than enough array elements for the association. Users then input only the actual number
(from 1 to 500 maximum). The program is very flexible, allowing a variable number of members input and printed
each time it's run. It does need an eventual limit, however, but that limit is reached only when there are 500 members.

Caution

Declare enough array space for your estimated needs, but don't declare more array space than you can possibly use. For
every extra array element that you reserve but don't use, memory is wasted.

Listing 10.4 You can reserve more elements than you currently need.
1: Private Sub varyNumb ()
2: ' Procedure to gather and print names and dues
3: Dim strFamilyName(500) As String ' Reserve enough array elements
4: Dim curFamilyDues(500) As Currency
5: Dim intSub As Integer, intNumFam As Integer
6: Dim intMsg As Integer ' MsgBox() return
7: intNumFam = 1
8:
9: ' The following loop asks for family names and dues until the
10: ' user presses Enter without typing a name. Whenever a zero-length
11: ' string is entered (just an Enter keypress), the Do-Loop exits
12: ' early with sub holding the number input to that point.
13: Do
14: strFamilyName(intNumFam) = InputBox("What is next family's name?")
15: If (strFamilyName(intNumFam) = "") Then Exit Do ' Exits early
16: curFamilyDues(intNumFam) = InputBox("What are their dues?")
17: intNumFam = intNumFam + 1 ' Add one to the subscript variable
18: Loop Until (intNumFam > 500)
19:
20: ' When the last loop finishes, intSub holds one
21: ' more than the actual number input
22:
23: ' Displays all the input data
24: For intSub = 1 To intNumFam - 1
25: intMsg = MsgBox("Family" & intSub & "is " & strFamilyName(intSub))
26: intMsg = MsgBox("Their dues are " & curFamilyDues(intSub))
27: Next intSub
28: End Sub

Line 15's empty Enter keypress is a good way to trigger the early exit of the loop. Just because 500 elements are
reserved for each array doesn't mean that you have to use all 500 of them.

The program in Listing 10.5 shows how to access various elements from an array in random order. The program
requests salary data for the last 12 months. It then waits until a user types the month he or she wants to see. That
month's sales are then printed, without the surrounding months getting in the way. This is how you begin to build a
search program to find requested data that's stored in arrays; store the data in an array, and then wait for a request from
the users to see only specific pieces of that data.

Listing 10.5 Use arrays for data-searching code.
[View full width]
1: Private Sub salary ()
2: ' Store 12 months of salaries, and print selected ones
3: Dim curSal(1 To 12) As Currency ' Reserve elements for 12 salaries
4: Dim intSub As Integer ' Loop subscript
5: Dim intNum As Integer ' User's month number

6: Dim intMsg As Integer ' MsgBox() return
7: Dim strAns As String
8:
9: For intSub = 1 To 12
10: curSal(intSub) = InputBox("What is salary for month" & Str(intSub) _ &
"?", 0.00)
11: Next intSub
12:
13: ' Request the month number
14: Do
15: intNum = InputBox("For what month (1-12) do you want a salary?")
16: intMsg = MsgBox("The salary for month" & Str(intNum) & " is " & _
curSal(intNum))
17: strAns = InputBox("Do you want to see another (Y/N)?")
18: Loop While (strAns = "Y" Or strAns = "y")
19: End Sub

After a user enters the 12 salaries into the array in lines 9 through 11, he or she can request any or all of them, one at a
time, simply by supplying the month number (the number of the subscript).

The program in Listing 10.6 shows some of the math operations you can perform on arrays. Study the program to see
how it asks for a list of temperatures and keeps asking for them until the user enters –99 to signal that there are no more
temperatures. The program then computes the average temperature by adding all the temperatures and dividing by the
total number of temperatures.

Listing 10.6 Let the user tell your program when no more data remains to be entered.
1: Private Sub tempAvg ()
2: ' Prompt the user for a list of temperatures and average them
3: Dim sngTemp(1 To 100) As Single ' Up to 100 temps
4: Dim sngTotalTemp As Single ' Holds totals as user enters temps
5: Dim sngAvgTemp As Single
6: Dim intSub As Integer ' Subscript
7: Dim intMsg As Integer ' MsgBox() return
8:
9: ' Prompt user for each temperature
10: For intSub = 1 To 100 ' Maximum limit
11: sngTemp(intSub) = InputBox("What is next temperature (-99 ends)?")
12: ' If user wants to stop, decrease count by 1 and exit loop
13: If (sngTemp(intSub) = -99) Then
14: intSub = intSub - 1 ' Adjust for early exit
15: Exit For
16: End If
17: sngTotalTemp = sngTotalTemp + sngTemp(intSub) ' Add to total
18:
19: Next intSub
20: ' Compute average
21: sngAvgTemp = sngTotalTemp / intSub
22: intMsg = MsgBox("The average temperature was " & sngAvgTemp)
23: End Sub

Preparing for Control Arrays

Throughout the rest of this 21 day tutorial, you'll see the term control array used. A control array is nothing more than
a list of controls, just as a variable array is a list of variables. The advantage to using a control array is the same as for
using a variable array: You can step through several variables using a loop instead of having to name each individual
control.

You now have the foundation laid for control arrays. Different topics, such as Day 16's object discussion ("Objects and
Visual Basic"), will return to the concept of control arrays and show you how they fit in with that subject's discussion.

Summary
Today's lesson explained how you integrate the mouse into your Visual Basic applications. The mouse events inform
your program of clicks, double-clicks, and the buttons pressed. By using the appropriate methods, you can provide
drag-and-drop operations that let users drag one item, such as a control, from one part of the form to another.

Today's lesson also explained how to use the timer control to add time-sensitive processing to your applications. The
timer control keeps track of the milliseconds that pass between PC clock ticks. When a certain amount of time has
passed, the timer control triggers an event.

The list controls come in several varieties. You access the list controls via the toolbox window's combo box control and
list box control. The difference between them can get confusing, but the examples in today's lesson showed all four
combinations so that you can learn which ones work best for your particular applications.

Today's lesson concluded by springboarding from the list controls into variable arrays, which are similar in structure to
the items in a control's list. A variable array holds multiple values, and you get to those values by the array's numeric
subscript.

Tomorrow's lesson explores how you can manage forms from Visual Basic applications.

Q&A
Q: How do I determine which list control to use?

A: The list controls all work a bit differently, and you apply them with the list box control and the combo box
control from the toolbox window. The list box control places a list box that the user can select from. The list
retains the same width and height as when you placed the control on the form. Also, the user cannot add
values to the list, and scrollbars appear, if needed, to display all the items in the list.

The combo box control is the control that, through its Style property, can mimic one of three kinds of list
controls. The drop-down combo box remains closed to give your form more room until the user opens the
box to display its items. The simple combo box offers a location for the user to enter new values in the list.
The drop-down list box combines the space-saving feature of the drop-down combo box with the ability to
have items added to the list.

Q: Should I use one of the list boxes or arrays when I must present my users with a list of values?

A: You don't choose between the list controls and arrays when you must offer your user a list of values. Perhaps
you'll use both in the same application. The array can hold the data while your application collects and
processes the data, and then you can use one of the list controls to display the data.

Workshop
The Workshop provides quiz questions to help you solidify your understanding on the material covered and exercises
to provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next chapter. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: Which mouse events respond to specific mouse buttons? Which mouse events respond to either mouse
button?

2: How can you determine the button clicked when a MouseDown event occurs?

3: How can you change the icon that appears during a drag operation?

4: How can you set up an event procedure to respond to a time interval greater than 65 seconds (the
approximate limit for the timer control)?

5: How do you initialize a list control?

6: How does a program determine which item the user has selected?

7: Name two ways to remove all the items from a list control.

8: When using a combo box control that lets users enter new values, why must you offer at least one additional
focus control on the form?

9: How can you ensure that a list control's list holds sorted values no matter how many items are added or
removed from the list at runtime?

10: How many elements are reserved by the following Dim statement?

Dim varStaff(-18 To 4) As Variant

Exercises

1: Write a program that lists members of your family in a list box. Include enough so that the list box requires
scrollbars. Keep the list sorted at all times.

2: Run the sample Visual Basic project Listcmbo, which comes with Visual Basic. The application provides a
database containing computer book publishers. Click the option button labeled Use Standard Combo Box and
then click to open the State field. Click the option button labeled Use Standard List Box and then click to
open the State field again. You'll quickly see how the two kinds of lists differ .

3: Modify the application you wrote in Exercise 1 so that all three kinds of combo boxes appear on the form
and display the same data. When one combo box changes (when the user enters a new value in the list),
reflect that change in the other combo boxes.

Bonus Project 4: Multiple List Boxes
This Bonus Project's application demonstrates how you can set up list boxes so that the user can select multiple items.
In addition, studying this Bonus Project's application helps cement your knowledge of arrays. Part of any such
application involves allowing multiple selections by setting the appropriate property value, as well as being able to
determine if the user has selected more than one value and then picking the selected values out of the list to use
elsewhere.

Multiple selections are often needed. For example, a community college entrance program might display a list box with
a list of schools in your area, and users are to select one or more of the schools they attended. Perhaps, instead, a
business might offer customers several products in a list and let the customer click one to buy it or, preferably, click
several to buy a lot.

Preparing for Multiple Selections
To set up a list box control to accept multiple selections, you need to change the MultiSelect property. When you set
this property to 1 - Simple (as opposed to the default value, 0 - None), users can select multiple values. If you set the
MultiSelect property to 2 - Extended, users can hold down the Shift key while clicking to select a range of items;
also, users can hold down the Ctrl key while clicking to select disjointed items (just as you can do inside Windows
Open dialog boxes).

Figure BP4.1 shows an application that contains several text boxes that display "Selected" when the corresponding
city's list box item is selected, and "Not Selected" when the list box item isn't selected. The top list labeled
"Destination" has its MultiSelect property set to 2 - Extended to allow for the multiple selections.

Figure BP4.1. Multiple selections in the list box are now possible.

The first thing you must do is add the controls to the form. Follow Table BP4.1 to do just that.

Table BP4.1. Set these controls and properties on the form.

Control Property Name Property Value

Form Name frmDest

Form Caption List Box Demo

Form Height 6600

Form Width 7230

Label #1 Name lblListBoxCap

Label #1 Caption Destination

Label #1 FontStyle Bold

Label #1 FontSize 24

Label #1 Height 600

Label #1 Left 2190

Label #1 Top 120

Label #1 Width 3060

Label #2 Name lblChicago

Label #2 BorderStyle Fixed Single

Label #2 Caption Chicago

Label #2 FontStyle Bold

Label #2 FontSize 18

Label #2 Height 495

Label #2 Left 360

Label #2 Top 1995

Label #2 Width 2655

Label #3 Name lblWashington

Label #3 Caption Washington

Label #3 BorderStyle Fixed Single

Label #3 FontStyle Bold

Label #3 FontSize 18

Label #3 Height 495

Label #3 Left 4035

Label #3 Top 1980

Label #3 Width 2655

Label #4 Name lblDallas

Label #4 Caption Dallas

Label #4 BorderStyle Fixed Single

Label #4 FontStyle Bold

Label #4 FontSize 18

Label #4 Height 495

Label #4 Left 360

Label #4 Top 3480

Label #4 Width 2655

Label #5 Name lblHouston

Label #5 Caption Houston

Label #5 BorderStyle Fixed Single

Label #5 FontStyle Bold

Label #5 FontSize 18

Label #5 Height 495

Label #5 Left 4035

Label #5 Top 3480

Label #5 Width 2655

Label #6 Name lblSeattle

Label #6 Caption Seattle

Label #6 BorderStyle Fixed Single

Label #6 FontStyle Bold

Label #6 FontSize 18

Label #6 Height 495

Label #6 Left 360

Label #6 Top 4920

Label #6 Width 2655

Label #7 Name lblDayton

Label #7 Caption Dayton

Label #7 BorderStyle Fixed Single

Label #7 FontStyle Bold

Label #7 FontSize 18

Label #7 Height 495

Label #7 Left 4035

Label #7 Top 4920

Label #7 Width 2655

List box Name lstFirstList

List box Height 840

List box Left 2865

List box MultiSelect 2-Extended

List box Top 870

List box Width 1335

Text box #1 Name txtChicago

Text box #1 FontSize 24

Text box #1 FontStyle Bold

Text box #1 Height 495

Text box #1 Left 120

Text box #1 Text Not selected

Text box #1 Top 2520

Text box #1 Width 3105

Text box #2 Name txtWashington

Text box #2 FontSize 24

Text box #2 FontStyle Bold

Text box #2 Height 495

Text box #2 Left 3840

Text box #2 Text Not selected

Text box #2 Top 2520

Text box #2 Width 3105

Text box #3 Name txtDallas

Text box #3 FontSize 24

Text box #3 FontStyle Bold

Text box #3 Height 495

Text box #3 Left 120

Text box #3 Text Not selected

Text box #3 Top 3960

Text box #3 Width 3105

Text box #4 Name txtHouston

Text box #4 FontSize 24

Text box #4 FontStyle Bold

Text box #4 Height 495

Text box #4 Left 3840

Text box #4 Text Not selected

Text box #4 Top 3960

Text box #4 Width 3105

Text box #5 Name txtSeattle

Text box #5 FontSize 24

Text box #5 FontStyle Bold

Text box #5 Left 120

Text box #5 Height 495

Text box #5 Text Not selected

Text box #5 Top 5400

Text box #5 Width 3105

Text box #6 Name txtDayton

Text box #6 FontSize 24

Text box #6 FontStyle Bold

Text box #6 Height 495

Text box #6 Left 3720

Text box #6 Text Not selected

Text box #6 Top 5400

Text box #6 Width 3105

Adding the Code
Table BP4.1 did not offer blanks in the text box values because you can do that in the Form_Load() procedure. Listing
BP4.1 shows the code that you need to enter for this project.

Listing BP4.1 You must initialize the list box and check for more than one selected value.
1: Private Sub Form_Load()
2: ' Executes when the form loads
3: lstFirstList.AddItem "Chicago"
4: lstFirstList.AddItem "Dallas"
5: lstFirstList.AddItem "Seattle"
6: lstFirstList.AddItem "Washington"
7: lstFirstList.AddItem "Houston"
8: lstFirstList.AddItem "Dayton"
9: End Sub
10:
11: Private Sub lstFirstList_Click()
12: ' Copy the selected item to the first text box
13: ' Copy the selected index to the second text box
14: If lstFirstList.Selected(0) Then
15: txtChicago.Text = "Selected"
16: Else
17: txtChicago.Text = "Not Selected"
18: End If
19:
20: If lstFirstList.Selected(1) Then
21: txtDallas.Text = "Selected"
22: Else
23: txtDallas.Text = "Not Selected"
24: End If
25:
26: If lstFirstList.Selected(2) Then
27: txtSeattle.Text = "Selected"
28: Else
29: txtSeattle.Text = "Not Selected"
30: End If
31:
32: If lstFirstList.Selected(3) Then
33: txtWashington.Text = "Selected"
34: Else
35: txtWashington.Text = "Not Selected"
36: End If

37:
38: If lstFirstList.Selected(4) Then
39: txtHouston.Text = "Selected"
40: Else
41: txtHouston.Text = "Not Selected"
42: End If
43:
44: If lstFirstList.Selected(5) Then
45: txtDayton.Text = "Selected"
46: Else
47: txtDayton.Text = "Not Selected"
48: End If
49:
50: End Sub

Analysis
Lines 3 through 8 simply initialize the scrolling list box. Remember that due to the list box's MultiSelect property
value of Extended, the user can, at runtime, select more than one city value at the same time.

When multiple selections are possible, Visual Basic must create a special array that acts like a variable array but is
comprised of properties. This property array is named Selected for the list controls. In this case, the array ranges from
Selected(0) to Selected(5), because six selections appear in the list box. The array holds only Boolean data types.

The property array value is True or False, depending on the selection. When the program first executes, all the
Selected values are False, because the user hasn't had a chance to select an item from the list box. As the user selects
items, more values in the Selected array become True. The list box's Click() procedure (lines 11 through 48)
updates all six text boxes every time the user selects another item.

Note

If the user deselects an item by clicking a selected item, that item's Selected value goes back to False.

Bonus Project 5: Practice with the Mouse
This Bonus Project's application demonstrates how you write programs that respond to the mouse. By responding to
mouse-based events and analyzing event procedure arguments, your application can determine if the user clicks,
double-clicks, moves, or drags the mouse.

This Bonus Project works a bit differently than the others. First, you'll see a short example that describes how you
change the icon used for the mouse. Then, the last few sections walk you through the creation of an application that
responds to mouse events.

Changing the Mouse Icon
Changing the mouse pointer when you move the mouse over a control on a form is simple. Consider an extremely
simple form with a command button in the center of it. Suppose you want the mouse cursor to change to a happy face
when a user moves it over a command button named cmdHappy. From the command button's Properties window, you
would click the ellipses to select an icon file from the \Graphics\Icons\Misc directory. The file named Face03.ico does
a good job.

Now that you've displayed the mouse icon, change the command button's MousePointer property to 99 - Custom.
The customized value tells Visual Basic to check the MouseIcon property for the file to display if and only if the user
moves the mouse over the command button. Figure BP5.1 shows the resulting happy mouse pointer.

Figure BP5.1. The mouse pointer now looks happy.

If you create a small application with a command button in the center of the form, as shown in Figure BP5.1, you'll see
that Visual Basic takes care of all the details involved in changing the icon when you move the mouse pointer over the
command button.

Programming the Mouse
This project describes how to create a new project with an image control that displays a picture as you saw in Day 2's
lesson ("Working with Visual Basic"). You'll set the value of the image's Picture property to the bull's-eye icon,

which can be found in the \Graphics\Icons\Misc directory. Once you add a text box named txtMouse to the form (as
explained in Table BP5.1), the text box will display the mouse status as you move and click the mouse. This project is
useful for studying how mouse-related event procedures detect mouse actions.

Figure BP5.2 shows the form you'll create.

Figure BP5.2. The user will click this image.

The first thing you must do is add the controls to the form. Follow Table BP5.1 to do just that.

Table BP5.1. Set these controls and properties on the form.

Control Property Name Property Value

Form Name frmMouse

Form Caption Mouse Control

Form Height 4230

Form Width 5265

Text box Name txtMouse

Text box Alignment 2-Center

Table BP5.1. Set these controls and properties on the form.

Control Property Name Property Value

Text box FontStyle Bold

Text box FontSize 14

Text box Height 1095

Text box Left 840

Text box MultiLine True

Text box Text Use the mouse

Text box Top 1320

Text box Width 3255

Image Name imgMouse

Image Height 480

Image Left 2400

Image Picture \Program Files\Microsoft Visual Studio\Common\Graphics\Icons\Misc\Bullseye

Image Top 480

Entering the Code
BP5.1 provides the event code you need to enter for this project.

Listing BP5.1 You can test for the mouse events.
1: Private Sub Form_Click()
2: txtMouse.Text = "You clicked the form"
3: Beep ' To let user know a Click event occurred
4: End Sub
5: Private Sub Form_DblClick()
6: txtMouse.Text = "You double-clicked the form"
7: End Sub
8:
9: Private Sub Form_MouseDown(intButton As Integer, _
 intShift As Integer, sngX As Single, sngY As Single)
10: ' Clicked over the form
11: txtMouse.Text = "Clicked over the form at " & sngX & ", " & sngY
12: End Sub
13: ' The arguments were ignored in the previous procedure
14:
15: Private Sub Form_MouseMove(intButton As Integer, _
 intShift As Integer, sngX As Single, sngY As Single)
16: txtMouse.Text = "Moving the mouse..."
17: End Sub

18: ' The arguments were ignored in the previous procedure
19:
20: Private Sub imgMouse_Click()
21: txtMouse.Text = "You clicked the image"
22: End Sub
23:
24: Private Sub imgMouse_DblClick()
25: txtMouse.Text = "You double-clicked the image"
26: End Sub
27:
28: Private Sub imgMouse_MouseDown(intButton As Integer, intShift As _
 Integer, sngX As Single, sngY As Single)
29: '
30: ' Clicked over the image
31: txtMouse.Text = "Clicked over the image at " & sngX & ", " & sngY
32: End Sub
33:
34: Private Sub imgMouse_MouseMove(intButton As Integer, _
 intShift As Integer, sngX As Single, sngY As Single)
35: txtMouse.Text = "You moved over the image"
36: End Sub

Analysis
The various event procedures test for mouse activity. Lines 1 through 4 offer the simplest event procedure, which
responds when you click anywhere on the form. The reason for the Beep statement is that the Click event will never be
seen! It happens too fast and is over before you know it. The MouseDown event, you'll remember from Day 10 ("Adding
Power with the Mouse and Controls"), occurs before a Click event if both events coexist in the code. Therefore, you'll
see the MouseDown text appear, showing where you clicked over the form. Then, when you release the mouse button,
the Click event text will appear very quickly and disappear. Hence, the Beep statement produces audible proof that the
click event did eventually occur.

Note

It's interesting to note that a double-click over the form also produces a MouseDown event and then a Click event before
producing the DblClick event (handled by lines 9 through 12). You'll hear the beep as soon as you double-click the
mouse. However, you'll first see the coordinates pass by as the MouseDown event changes the text to show where it
occurred.

Caution

One of the drawbacks that frustrates programmers is that a MouseMove event will trigger every time you click the
mouse.

Lines 9 through 12 show the use of the mouse arguments from the MouseDown event. The sngX and sngY coordinate
twip values show where you clicked the mouse. Remember that this code will execute when you left-click as well as
when you right-click, because both trigger the MouseDown event. The procedure executes only when you click over the
form, and a Click event will immediately follow as soon as you release the mouse.

Lines 15 through 17 handle the movement of the mouse for those times when you move the mouse over the form.

Lines 20 through 22 demonstrate what can happen when you apply the mouse to the bull's-eye icon. When you click
the image, the text box updates to show that you clicked over the image and not over the form (due to the image's
Click event procedure). However, due to the MouseDown event that precedes the Click event, you won't actually see
the quick Click-related text that appears; if you've inserted a Beep statement in the Click event, however, you will
hear the beep even though the MouseDown event text appears in the box.

Lines 24 through 26 demonstrate the mouse's DblClick event response over the image. Lines 28 through 32
demonstrate the image's MouseDown event that occurs, and actually takes over, before the Click event can proceed.
Finally, lines 34 through 36 handle mouse movements over the image.

Note

Although you could include the coordinates of a MouseMove event in the text box, the coordinates would change too
rapidly to read.

By studying the effects of this Bonus Project, you'll know better what to expect when programming the mouse. You'll
also understand how the MouseDown event precedes the Click and DblClick events in priority.

Implementing Automatic Drag-and-Drop
Adding drag-and-drop to the application is simple. Change the image's DragIcon property so that a different icon
appears when you drag the mouse. Select the icon filename Clock02.ico. To implement automatic drag-and-drop,
change the image's DragMode property to 1 - Automatic so that Visual Basic takes care of the dragging details for
you.

Now, add the following MouseDown event procedure:

Private Sub Form_DragDrop(cntSource As Control, sngX As Single, _
sngY As Single)
 Source.Move sngX, sngY ' Drop the image
End Sub

The DragDrop event's Source argument is the control you're dropping onto the form, and the sngX and sngY coordinate
values tell the control where the drop is occurring. The Move method actually moves the control (the image in this case)
to the location of the drop.

Run the application and drop the bull's-eye image at different places on the form. When performing most drag-and-drop
operations, you'll want to use automatic drag-and-drop so that Visual Basic handles the details of the drag.

Implementing Manual Drag-and-Drop
Manual drag-and-drop operations require that you change the DragMode property to 0 - Manual and then change the
MouseDown procedure to the following code so that the drag-and-drop takes place:

Private Sub imgMouse_MouseDown(intButton As Integer, _
intShift As Integer, sngX As Single, sngY As Single)
 ' Clicked over the image
 txtMouse.Text = "Clicked over the image at " & sngX & ", " & sngY
 imgMouse.Drag ' Initiate the drag and drop
End Sub

The only new statement is the imgMouse.Drag statement. Your MouseDown event must initiate the drag-and-drop
operation. The advantage is that you can now perform other kinds of processing in response to the MouseDown event, if
needed, before starting the drag-and-drop operation. Without the manual drag mode, the drag would take place outside
your control.

Tip

Use manual drag-and-drop when you want to perform tasks in addition to the drag-and-drop.

The Drag method turns on drag-and-drop. Without the Drag method, the MouseDown() event procedure couldn't initiate
the drag-and-drop operation. Use manual drag-and-drop operations if you want to limit the way the drag-and-drop
performs before or during the drag-and-drop process.

Day 11. Working with Forms
Today's lesson shows you how to manage and program with forms in more depth than was possible before today.
You'll learn about most of the form's properties, events, and methods. One of the most helpful methods, in this lesson
and when you begin printing reports, is the Print method, which places text directly on the form without a control.
Interestingly, Print is a method directly based on the old BASIC language's PRINT command, and they both work
exactly the same.

Not only will you learn how to control forms, but you'll gain more insight into the advantages and disadvantages of
MDI and SDI applications, which contain multiple forms. You'll also learn how to place toolbars and coolbars on your
form windows to offer users yet another way to interact with your program.

Today, you learn the following:

• Form properties, events, and methods
• Form collections
• How to send text to a form with the Print method
• More about MDI and SDI applications
• How to create your own form properties
• The toolbar control
• The coolbar control
• Why the image list control is so vital to toolbars and coolbars

Properties, Events, and Methods
Although you've only studied Visual Basic for 10 days, you've spent your time learning the controls and the language
and are well on your way to becoming a Visual Basic programming pro! Nevertheless, one of the most important parts
of a Visual Basic application, the form, has been left on the sidelines, being brought up only when a discussion of a
specific form issue was needed. Today, all that changes as the form becomes the focus of today's lesson.

You already know how to use properties to change the look and behavior of forms. You can add a form caption, size
the form, and control whether or not the user has form-sizing buttons available, such as the maximize and minimize
buttons. In addition, you've used the Form_Load() event procedure to initialize list controls. This is a great place for
the initialization that needs to occur before the user sees the form. (The form name is not required here because the
code appears inside the Form module. The only form the code applies to is the current form, no matter what its name
is.)

Note

The Form_Unload() event procedure provides a place for clean-up code to execute after a form leaves the user's screen
and memory. Unlike the Form.Hide and Form.Show methods, the Form_Load() and Form_Unload() event procedures
perform memory management. Form_Load() actually loads the form into the user's memory at runtime, and
Form_Unload() removes the form from memory at runtime. The Show and Hide methods are only aliases for the form's
Visible property values of True or False.

Do Don't

DO use the Form.Hide and Form.Show methods when you want to hide or display a form. Only use
Form_Load() and Form_Unload() when you want to add or remove a form from the application's memory
space.

The next section, "Form Collections," describes a special use for the Form_Unload() event.

Often, you'll see code similar to the following inside a Form_Load() procedure:

frmAForm.Left = (Screen.Width - frmAForm.Width) / 2
frmAForm.Top = (Screen.Height - frmAForm.Height) / 2

This code centers the form inside the screen's coordinates. In Day 16 "Objects and Visual Basic," you'll learn about
special objects that Visual Basic supports. One of those objects is the Screen object, which represents the user's screen.
The Screen object changes depending on the user's screen and video card resolution. You can know the user's screen
resolution at any time by accessing the Screen object's Width and Height properties.

Tip

One way to reduce typing is to eliminate the default object from an event procedure. Instead of typing the form name,
you can rewrite the form- centering code like this:

Left = (Screen.Width - Width) / 2
Top = (Screen.Height - Height) / 2

As long as this code resides inside the form's event procedure, such as in the Form_Load() event procedure, you can
omit the form name. Almost always, however, when you reduce typing, you increase the risk of ambiguity in your
code. If you always specify all objects, even the default objects, you'll make your code clearer and easier to maintain
later.

A default object is the object (a form, control, or some other object) that Visual Basic uses in code if you don't provide
a specific object.

Such form-centering code is useful to study because it reminds you of the form's relationship with the screen, the
Screen object's properties, and the Load and Unload events. Nevertheless, keep in mind that the form's Properties
window does include a special property named StartUpPosition that you can set to one of the four values, as shown
in Table 11.1.

Table 11.1. You can specify the initial position of a form from these StartUpPosition values.

Property Named Constant Value Description
0-Manual vbStartUpManual 0 Does not specify a starting form position

Table 11.1. You can specify the initial position of a form from these StartUpPosition values.

Property Named Constant Value Description
0-Manual vbStartUpManual 0 Does not specify a starting form position
1-CenterOwner vbStartUpOwner 1 Centers the form on the screen
2-CenterScreen vbStartUpScreen 2 Centers the item on the screen
3-WindowsDefault vbStartUpWindowsDefault 3 The upper-left corner of the screen

A form's events are often important to an application that uses the form. Other than the Load and Unload events, which
you already understand, and the mouse-related form events that you learned yesterday, you may want to study some of
the more useful form-related events that can occur. Table 11.2 lists three of these events.

Table 11.2. You can use these form-related events in your applications.

Event Description
Activate Occurs when the form becomes active due to the user clicking an uncovered edge of the form or

switching to the application's form from another application.
Deactivate Occurs when another application or form goes active.
Resize Occurs when the user resizes the form or when the program uses assignments to change the form's

Height and Width properties.

Tip

You can use the Resize property to rearrange controls on a form when the user changes the form's size. If you place
the controls in a relative position to the form (using the form's size properties to place the controls), the controls stay
centered when the user changes the form's size.

You may recall that the Project, Properties menu option produces the dialog box shown in Figure 11.1. This dialog box
includes the Startup Object drop-down list box, where you can select one of the application's forms or a special
procedure named Main. Some applications don't have a startup form. Such an application might be a background utility
that never shows a form or, perhaps, before a form appears, a data value is checked to see exactly which form should
appear. An application might also need to locate a password before displaying the startup form.

Figure 11.1. Specify the startup form or procedure from the Project Properties dialog box.

If you want code to execute before any form loads in the project, you should create a procedure called Main() (in the
Code module's general procedure, not in a Form module) and select the Main() procedure from the Startup Object
drop-down list in the Project Properties dialog box. The code inside Main() will execute before any form loads. As a
matter of fact, no form ever will load unless the Main() procedure triggers the Show method for a form.

Note

You'll learn about more form-related methods when you get to the lessons in Day 13, "Printing VB Output," and Day
14, "Introducing VB Graphics and Multimedia."

Form Collections
As mentioned in the previous section, a form is often known as an object. Visual Basic supports several kinds of
objects—for example, controls, forms, and objects that reside outside your application, such as an OLE object. (OLE
stands for object linking and embedding; you learn more about objects and OLE in Days 16, "Objects and Visual
Basic," and 17, "ActiveX Controls.")

All your form objects comprise the Forms collection, which changes as you create and remove forms within your
project. The Forms collection contains the name of every form. Therefore, frmAboutBox might be the name of one of
your forms within the Forms collection. A predefined object named Form—without the s—defines the currently open
form. Visual Basic uses this predefined form object to handle the default object, which you don't have to specify when
you issue methods without qualifying the current form's name.

A Forms collection is the group of forms currently defined in your application.

Accessing the Forms Collection

Before accessing the Forms collection, you should realize that Visual Basic lets you refer to all the forms within the
Forms collection without specifying the names of the individual open forms.

For example, assume you have open three forms named frmAcPay, frmAcRec, and frmAcReview. The predefined
object Forms contains these three forms. Each form is indexed, starting at zero, and you can refer to the forms by the
index number instead of by name. This number, usually called the subscript, follows after the Forms collection object
enclosed by parentheses. Table 11.3 shows you how you can refer to the three forms by using the subscript.

Note

The Forms collection operates like a list box's values or an array's elements.

Table 11.3. Use subscripts to access objects in the Forms collection.

Form Name Forms Subscript Notation
frmAcPay Forms(0)
frmAcRec Forms(1)
frmAcReview Forms(2)

Tip

Visual Basic lets you specify a specific form within a collection by using yet another notation if you know the form
name. Here's an example:

Forms![frmAcPay]

This example refers to the form named frmAcPay inside the current collection. (Unlike in statement formats, these
brackets are required.) You can also use parentheses to refer to a collection's form by name, as follows:

Forms!("frmAcPay").

Using the Subscripts

You may also refer to individual controls, such as text box fields, inside your forms by a subscript number instead of by
name. This way, your programs can step through all the controls in a form without having to access the fields'
individual names.

Suppose you have a form named frmStore that contains five controls: three label fields (lblStoreNum,
lblStoreName, and lblStoreLoc) and two list box controls (lstStoreEmps and lstStoreMgrs). Your Visual Basic
procedures can refer to each control by a subscript number, starting at 0, as shown in Table 11.4. Notice that you
separate the control name from the Forms collection with an exclamation point to get an individual control within that
collection.

Table 11.4. You may use subscripts to refer to controls on a form.

Control Name Forms Subscript Notation
lblStoreNum Forms!frmStore(0)
lblStoreName Forms!frmStore(1)
lblStoreLoc Forms!frmStore(2)
lstStoreEmps Forms!frmStore(3)
lstStoreMgrs Forms!frmStore(4)

Caution

Don't confuse the subscripts used with specific form names with those in a Forms collection. If Forms precedes the
subscript, the subscript refers to a particular form or subform. If the form name appears before the subscript, as shown
in Table 11.4, the subscript refers to a control on that form.

The Count Property

Just as controls have properties, so do collections. The Count property is available to you when you need to work with
the Forms collection. The Count property simplifies your programming so that you don't have to know how many
individual forms reside in the collection. By using Count, you can write generalized procedures that work on all the
currently open forms. The Count property always contains an integer.

Note

Count also contains the number of controls on a form if you apply the property to a specific form name (for example,
frmAcPay.Count, which contains the number of controls on the form named frmAcPay). Count includes hidden and
visible controls.

The following code declares an integer variable, intC, and then stores the number of open forms in intC:

Dim intC As Integer
intC = Forms.Count ' Save the number of open forms

If you want to know the number of controls on a specific form, you can use the Count property as well. The following
code declares an integer variable, intCC, and stores the number of controls on a form named frmMyForm in intCC:

Dim intCC As Integer
intCC = frmMyForm.Count ' Save the number of controls on the form

Tip

Count following a form name refers to the number of controls on that form. Count following the Forms collection
refers to the number of forms in the project.

A For loop is the perfect tool for stepping through all the open forms in the current project. Always remember to start
the controlling loop with a beginning value of zero, as done here, because zero is the subscript of the first form.

The following code steps through all the open forms and hides the forms:

For intI = 0 To Forms.Count - 1
 Forms(intI).Visible = False ' Hide each form
Next intI

You may want to hide all forms when performing a system task that requires no user I/O. After your work is done, you
can then repeat the loop and set each form's Visible property to True.

Visual Basic supports a special For loop called the For Each loop. It steps through a collection without requiring you
to control a loop variable. Here's identical code that hides all the open forms:

Dim varFrmObj As Variant
For Each varFrmObj In Forms
 varFrmObj.Visible = False ' Hide each form
Next

The only loop variable you need to declare for the For Each loop is a Variant variable, which holds each form name
as the loop iterates through the forms in the collection. In the same manner, the following For Each loop's first
statement sets up a loop that steps through every control on the form named frmMyForm, no matter how many controls
are in the collection:

For Each varControl In frmMyForm

Unloading Forms

As stated earlier in the section "Properties, Events, and Methods," a special use of the Form_Unload() event procedure
occurs when dealing with forms. The Unload event can be helpful for clean-up routines, such as saving all data to disk
before the application ends, but sometimes the Unload event is critical to proper program termination.

Suppose your application contains several forms. If your application hides a form, the user will have no way of
knowing that the form is still loaded. If the user closes the primary application's window, that one form is still loaded
and Windows thinks the program is still executing. Therefore, the program is still partially taking up memory when the
user thinks that all forms are gone.

Many Visual Basic programmers routinely add the following code to their normal application-terminating menus or
command buttons (such as the File, Exit menu option):

For intCtr = (Forms.Count — 1) to 0 Step - 1
 Unload Forms(intCtr) ' Unloads both hidden and shown forms
Next intCtr

Placing Text on Forms
Instead of using a label or text box control to place text on a form, you can use the Print method. Print writes text on
forms directly. One of the drawbacks to Print is that you must write extra code to make Print behave the way you
want it to. Print is not a control, so you cannot easily set properties at designtime; instead, though code, you program

how the Print method is to behave. For example, you must write code that makes Print print at a certain location on
the form if you need to ensure that Print does not overwrite other controls.

Tip

Learning Print now not only shows you how to send text to forms but also provides advanced instruction for sending
text to the printer. As you'll learn in Day 13's lesson, Print is the primary method used to direct output to the printer.

You use Print to send text to an object. For today's lesson, that object will be your application's form. Print applies to
forms, picture boxes, the Printer object, and the Debug object (which is a special Immediate window to which you can
send test results as a program runs). However, the easiest of all objects to write to with the Print method is the form.

You can practice with Print right now without building a complete application. Open a new project and double-click
the Form1 window you see the Code window. Because you've just opened the project, no objects are available to use
other than Form1 and the general procedure where the Declarations section resides. All predefined procedures that
the form can recognize are shown in a drop-down list box. Choose Click from the list and then type the code in Listing
11.1 (as always, Visual Basic adds the wrapper lines, so you only need to type the middle statements).

Listing 11.1 The Print statement writes directly to the form.
1: Private Sub Form_Click()
2: ' Demonstrates writing to the form
3: Dim strString As String
4: strString = "Visual Basic"
5: ' Print string three times
6: Form1.Print strString & " " & strString & " " strString
7: End Sub

When you run the program, the form appears, but nothing will happen until you click the form. Remember that you
entered code into the Form_Click () subroutine—until you click the form, nothing should happen. Click the form
several times. You should see results similar to those shown in Figure 11.2.

Figure 11.2. The Print method sends output directly to the form.

Print is the one of simplest methods you can use to output information from your program to the form. To print on any
form in your program, you just need to reference the form name and the Print method, separated by a period. Here's
the format of the Print method when you apply it to a form:

frmFormName.Print DataToPrint

frmFormName is the form on which you want to print, and DataToPrint is the data you want to print.You can print
literals (numeric, string, and date), variable values, and controls.

Format with Print

You can format the Print method's output by including either the Spc() function or the Tab() function. Each works
inside the Print method to add spacing to the data you're printing.

Consider Listing 11.2, which uses Spc() and the semicolon (;) to print two strings on the same line. Spc(5) tells the
Print method to skip five spaces before the text string begins printing in the sixth column. If you end a Print
statement with a semicolon, the next Print statement prints where the current one left off rather than printing on the
next line, as would happen without the semicolon.

Listing 11.2 You can suppress a carriage return so that two Print statements write on the same line.
1: Private Sub Form_Click ()
2: Dim strString As String
3: strString = "Visual Basic"

4: Form1.Print "*"; Spc(5); strString; ' Notice semicolon.
5: Form1.Print Spc(2); strString
6: End Sub

The following output will appear on the form as you click it several times to trigger the code:

* Visual Basic Visual Basic
* Visual Basic Visual Basic
* Visual Basic Visual Basic

The code forces the Print method to skip five spaces before the first Visual Basic text appears. After two more
spaces, the second Print statement also prints Visual Basic. The next time you click, you force the event procedure
to execute again, repeating the process.

If you use Tab() instead of Spc(), Visual Basic moves to the column argument located inside the parentheses and
prints the next data item there. Spc() forces the next Print to begin a certain number of spaces over, whereas Tab()
forces the next Print to begin in a specific column. Listing 11.3 provides an example.

Listing 11.3 Controlling the Print statement's spacing with the Tab() and Spc() functions.
1: Private Sub Form_Click()
2: Dim strString As String
3: strString = "Visual Basic"
4:
5: Form1.Print "*"; Tab(5); strString; Tab(20); strString
6: Form1.Print "*"; Spc(5); strString; Spc(20); strString
7: End Sub

In line 5, Tab() keeps the printing in specific columns, but Spc() in line 6 moves the printing over by a certain number
of spaces.

Here's the output from this procedure:

* Visual Basic Visual Basic
* Visual Basic Visual Basic

You can use the Print method to print blank lines on a form by not specifying any data. Consider the code in Listing
11.4.

Listing 11.4 You can use Print to print blank lines on the form.
1: Private Sub Form_Click()
2: Dim strString As String

3: Dim CurLine As Integer
4:
5: CurLine = 1
6: strString = "Visual Basic"
7:
8: ' Print the line
9: Form1.Print strString & " is on Line #" & CurLine
10:
11: For CurLine = 2 To 6
12: Form1.Print ' Print blank lines!
13: Next CurLine
14:
15: ' Print the line now
16: Form1.Print strString & " is on Line #" & CurLine
17: End Sub

The output contains five blank lines between the lines printed:

Visual Basic is on Line 1

Visual Basic is on Line 7

Lines 11 through 13 print blank lines because the Print method has no data after it to print.

Positioning the Print Method

Often, you'll need to specify exactly where on a form you want to print. Visual Basic supports several other form-
related properties that you can use with Print to place text on a form. These properties use the current position of the
text cursor, which Visual Basic moves as the Print method executes. Information containing the location of the cursor
is stored in the CurrentX and CurrentY properties. These properties let you determine exactly where you want your
output to appear.

Another property, ScaleMode, affects how CurrentX and CurrentY behave. A form can recognize several different
modes, depending on the ScaleMode property you set. This mode refers to the scale used for drawing graphics and text
on the form. Table 11.5 shows the other ScaleMode values you can set. Many of these are graphics related, and you'll
want to use many of the ScaleMode values when you learn to print to the printer in Day 13.

Table 11.5. The ScaleMode values determine the Print method's coordinates.

Named Constant Value Scales By
vbUser 0 The programmer specifies the scale used.

Table 11.5. The ScaleMode values determine the Print method's coordinates.

Named Constant Value Scales By
vbTwips 1 This is the default ScaleMode until you change it. Specifies a scale of twips.
vbPoints 2 One typestyle point (1/72nd of an inch).
vbPixels 3 The smallest dot on the object (for a screen, the screen's dot size determines the pixel

size).
vbCharacters 4 One character size.
vbInches 5 One inch.
vbMillimeters 6 One millimeter.
vbCentimeters 7 One centimeter.
vbHimetric 8 Instead of pixels, some programmers prefer to work in a Himetric measurement that is

device independent so that Windows translates the coordinates to the highest possible
resolution at runtime.

vbContainerPosition 9 The control's container (an object that holds the current object) ScaleMode value
determines the current object's ScaleMode when used as a positional value.

vbContainerSize 10 The control's container ScaleMode value determines the current object's ScaleMode
when used as a positional value.

The most common ScaleMode property for text is character mode. This means that when CurrentX and CurrentY are
both set to 5, the next Print method will begin at column 5, row 5. The starting position of the ScaleMode property is
the upper-left corner of the form (with the coordinates 0,0). The Click event procedure in Listing 11.5 uses the
ScaleMode, CurrentX, and CurrentY properties.

Listing 11.5 Controlling the placement of the output with the CurrentX and CurrentY properties.
1: Private Sub Form_Click()
2: ' Set up for characters
3: Form1.ScaleMode = VbCharacters ' Character (4)
4:
5: Form1.CurrentX = 20 ' Move across 20 chars
6: Form1.CurrentY = 6 ' Move down 6 lines
7: Form1.Print "Down and across"
8:
9: Form1.CurrentX = 0 ' Move back to the left
10: Form1.CurrentY = 0 ' Move back up
11: Form1.Print "Upper left"
12: End Sub

Line 3 sets the ScaleMode value to the named constant, which indicates a character scaling. Study the output in Figure
11.3. Notice that the output of the second Print method appears higher on the form than the first Print method's
output due to the coordinate placement.

Figure 11.3. Using CurrentX and CurrentY to position the Print method's text cursor.

 Creating New Properties for Forms
You can create your own customized form properties. Although you'll not have to create form properties every time
you write an application, you will, at times, find yourself making the same modifications to a form several times, and
those times may lend themselves to customized form properties.

For example, suppose you want to include a title at the bottom of a form. If you were to create a form with a label at the
bottom, not only would you have the label to deal with, but when you want to change the bottom title, you have to
change the label. If the bottom title were just another form property, you could eliminate the use of the label control,
because the bottom title will always be the text from the form's property you've designed.

The easiest way to learn how to create new form properties is to walk through a simple example. Create a new project
with the controls and property values listed in Table 11.6. The application that you create demonstrates how you
determine the Print method's coordinates.

Table 11.6. You can change the Print method's coordinate measurements with ScaleMode values.

Property Value

Form Name frmTitle

Form Caption Bottom Title

Form Height 3720

Form StartUpPosition 2-CenterScreen

Form Width 3975

Table 11.6. You can change the Print method's coordinate measurements with ScaleMode values.

Property Value

Command button Name cmdTitle

Command button Caption &See Title

Command button Height 495

Command button Left 1320

Command button Top 1200

Command button Width 1215

When the user clicks the command button, a title appears at the bottom of the form because of the following command
button Click event procedure:

1: Private Sub cmdTitle_Click()
2: frmTitle.BottomTitle = "A new property"
3: End Sub

Study line 2 well. Something probably seems wrong: There is no property called BottomTitle. However, after the
next few steps, there will be! Follow these steps to add the new property called BottomTitle to your form's list of
properties:

1. Click the Properties window's View Code button to enter the Code window.

2. Type the following line in the Declarations section that appears before the cmdTitle_Click() event procedure:

Dim strTitle As String

You now know that strTitle is a public variable available to the entire project. Public variables are frowned
upon, so why declare strTitle as public? Remember that all controls are public to the entire application.
There's no such thing as a private control or a private control property. The variable strTitle actually holds

the value of the form's new property, the property that you'll eventually call BottomTitle by creating a special
procedure in the next step. The BottomTitle property needs to have access to its placeholder variable
strTitle at all times, thus, the requirement that strTitle be a public variable.

3. You'll now add a new kind of procedure to your project: a Property Get procedure. A Property Get
procedure exists for all properties that you define. Visual Basic automatically executes the Property Get
procedure when the program accesses the new property related to the Property Get procedure. In other words,
once you create a Property Get procedure for the BottomTitle property, when the application uses the value
of BottomTitle, Visual Basic automatically executes the Property Get procedure to return the current value
of the property.

A Property Get procedure returns the value of a defined property.

Type the code in Listing 11.6 into the Code window.

Listing 11.6 The Property Get procedure returns the value of the property.
1: Public Property Get BottomTitle()
2: ' This procedure supplies the value
3: ' of the BottomTitle property
4: ' which is actually held in the
5: ' public strTitle variable
6: BottomTitle = strTitle
7: End Property

Remember that forms do not come with a property called BottomTitle; you are defining this property. The
true value for the BottomTitle property will remain in the public variable strTitle; however, the Property
Get procedure makes the rest of the application think that the BottomTitle value is actually a property. In
reality, the property value comes from a public variable.

4. You now need to supply the Property Let procedure for the new BottomTitle property. The Property Let
procedure changes the value of the BottomTitle property. In reality, however, Property Let changes the
public variable used as the code's placeholder for the BottomTitle property when the program assigns a value
to the form's BottomTitle property.

A Property Let procedure assigns a value to the property you define.

Type the code in Listing 11.7 into the Code window.

Listing 11.7 The Property Let procedure sets the value of the property.
1: Public Property Let BottomTitle(strTitleEntered)
2: ' This procedure assigns to the variable
3: ' named strTitle whatever property value
4: ' the program is putting into BottomTitle

5: '
6: ' The argument passed is the value that the
7: ' program stores in BottomTitle
8: strTitle = strTitleEntered
9: '
10: ' Place the next line to print on the bottom of the form
11: frmTitle.CurrentY = (frmTitle.Height - 600)
12: '
13: ' If the form is so small that even a single line of
14: ' characters cannot fit, do nothing
15: If frmTitle.CurrentY < 600 Then
16: Exit Property
17: Else
18: ' Print the property value on the form
19: Print strTitle
20: End If
21: End Property

Line 8 assigns the public variable the argument passed to the procedure. No matter where in the Visual Basic
program the application assigns a value to the form's BottomTitle property, this procedure executes by sending
that value as an argument.

Lines 11 and 15 set up the display of the title. Line 11 ensures that no matter how much the user has resized the
form, the title position will appear 600 twips above the bottom of the window. If the user has resized the
window too small so that even one line of text will not fit, line 16 exits the procedure without doing anything.
As long as the title will fit, line 19 prints the value at the CurrentY position. (CurrentX is 0, the left edge of the
window. The code never changed CurrentX.)

Tip

Once you type the BottomTitle property's Property Get and Property Let procedures, the BottomTitle property
actually becomes part of the property list for the form! Although the Properties window will not ever include the new
property, all property lists elsewhere will. For example, Figure 11.4 shows what happens if you were to assign one of
the form's properties a value. The pop-up menu of properties will include the BottomTitle property. You've truly
added the property to the form simply by coding the Property Get and Property Let procedures.

Figure 11.4. The BottomTitle property value appears in the list of properties that pop up as you enter
code.

5. When you run the application and click the command button, the command button's Click event occurs and the
Click event procedure that you entered earlier executes. The Click event procedure assigned the string literal
"A new property" to the BottomTitle form property, and the Property procedures took care of the rest.

Multiple Forms
Until now, most of your applications have had a single form. Not much mention has been made of multiform
applications because multiple forms are unnecessary for simple applications. When you need an added form, you can
right-click over the Project window and add a form.

You're now ready to learn how to add additional forms to your applications. These forms will be special data forms.
Therefore, you'll need to know how to distinguish and program SDI (Single Document Interface) and MDI (Multiple
Document Interface) applications.

Using multiple forms generally requires that you keep track of two or more sets of forms. Because you assign each
form a meaningful name, your programming burden shouldn't increase too much. The form name determines which set
of controls you're working with at any given time, and you can hide and show forms as needed while the application
runs (or users can switch between the forms).

Note

Even when two or more forms appear on a user's screen, only one can be active. Users can activate an inactive form by
clicking any part of it that shows from beneath the currently active form. Also, your application code can activate a

form when the time is right. The frmForm.Show method activates the form window referenced by the name frmForm
and hides other windows if the newly active form happens to consume more screen space than the other forms.

MDI development allows you to create applications that look very complex. Almost all major software applications
contain multiple document interfaces. As this 21-day tutorial begins to describe more powerful programs that use files
and additional controls, you'll see more need for an MDI application.

In addition to right-clicking the Project window to add a form, you can choose Add Form from the Project menu.
Visual Basic displays the Add Form dialog box, as shown in Figure 11.5. You can select from several kinds of new
forms to display, or you can select an existing form by clicking the Existing tab and then selecting from the list of
forms.

Figure 11.5. Select the kind of form you want to add.

If you want to add another standard form, double-click Form to have Visual Basic open a new form. Visual Basic
names your subsequent forms Form2, Form3, and so on. However, you should assign better names as soon as you add
the forms.

Note

Day 15, "Using Form Templates," explains how to incorporate the other kinds of forms offered in the Add Form dialog
box.

The SDI and MDI Styles

Visual Basic supports the following interface styles:

• Single Document Interface. An SDI application contains a single data window. In Windows Notepad, for
instance, you can open only one document at a time. An SDI application usually doesn't contain a Window
menu on its menu bar because you can't move between data windows. When the user opens a new data file, the
data replaces the data currently shown in the open window.

• Multiple Document Interface. An MDI application contains multiple data windows (often called document
windows). Microsoft Word, for example, lets you open as many documents as you want; Word's MDI ensures
that each document resides in its own window (see Figure 11.6). You can switch between windows by clicking
the desired window with the mouse or by selecting choices from the Window menu. When users switch
between document windows (which are forms, from the developer's point of view), the selected window
becomes the active form and has the focus.

Figure 11.6. MDI applications allow for multiple data windows.

• Explorer-Style Interface. This is the style used in Visual Basic's Help system and the Windows Explorer
screens. An application that supports the Explorer-style interface has two windows: one on the left and one on
the right. The left window displays a hierarchical view of the data detailed in the right window. Select an
Explorer-style interface when you're working with an application that manages data files and graphics. Such
applications include TreeView and ListView controls, which help you traverse the Explorer-style windows.
(These controls normally don't appear in the toolbox, but you can add them using the Project, Components
menu option.)

Note

An SDI application can have multiple forms. MDI simply means that your application might contain one or more child
forms that hold data sets that are distinct from other data sets within the application. An MDI application uses a
controlling form (also known as a parent form or primary form) to hold the other forms, and the other forms can't
appear outside the controlling form's boundaries. If you create an SDI application—which most are—your application
can have multiple forms, yet no form is considered the child of another. If your application works with only one set of
data at a time (such as one customer file or one employee payroll file), or if your application doesn't work with any data
except for program control information, the application should be an SDI application.

MDI Terminology

If you want to create an application that works with multiple data files, you must know the MDI terminology. The
primary form used as the backdrop to hold the other forms is often called the parent form or parent window. The parent
form acts like a form container that contains one or more child windows (also forms). In Microsoft Word, for example,
the Word background with the menu bar, status bar, and toolbar is the parent window. As you open Word documents,
they appear in child windows within the parent window, and the child windows never go outside the parent window's
boundaries.

The parent window that provides boundaries for the child windows supports only the following types of controls:

• Controls that support the Align property.
• Controls without a visible interface (you'll learn more about such interfaces in Day 15).

Note

If users minimize any of the child windows, these windows appear minimized at the bottom of the parent window, but
not on the taskbar. Child windows are bound to their parent window and can't appear outside the parent window at all;
the parent window defines the application's absolute boundaries.

The primary distinction of a child window form is that its MDIChild property is set to True. Also, an MDI application
might contain non-child forms. For example, the application might contain an About dialog box (which users would
reach by choosing About from the Help menu); this dialog box isn't an MDI child because the dialog box window
doesn't hold program data.

When you want to create an MDI application, choose Add MDI Form from the Project menu and then add the child
window forms with an MDIChild property of True.

Using the Application Wizard

Rather than build an MDI application from scratch, you can start with the Application Wizard. This wizard makes MDI
applications much easier to produce than creating the forms and setting the MDIChild properties by hand.

When you create a new project and select the Visual Basic Application Wizard option, the second dialog box that
appears lets you select the kind of interface style you prefer (see Figure 11.7).

Figure 11.7. Select the appropriate interface style from the Application Wizard.

The Application Wizard creates a project that supports the creation of multiple child windows through the File menu's
New command. Listing 11.8 executes when you choose New from the File menu in the generated MDI application (the
mnuFileNew.Click() event procedure executes this).

Listing 11.8 Creating a form document reference variable to point to the child window.
1: Private Sub LoadNewDoc()
2: Static lDocumentCount As Long
3: Dim frmD As frmDocument
4:
5: lDocumentCount = lDocumentCount + 1
6: Set frmD = New frmDocument

7: frmD.Caption = "Document " & lDocumentCount
8: frmD.Show
9: End Sub

The code in Listing 11.8 is tricky, but it contains nothing you can't figure out with the background you already have.
Line 2's static variable named lDocumentCount is local to the procedure, yet it never goes out of scope. The first time
this procedure executes, lDocumentCount is 0 (all static variables are 0 the first time they go into scope). If the
procedure changes the value of lDocumentCount (which it does by adding 1 every time the procedure executes in line
5), Visual Basic remembers the new value. Although no other procedure can access lDocumentCount, its value
remains intact inside this procedure. The value doesn't go away as it would if the variable were local and automatic (the
opposite of static; all variables you've declared locally so far have been automatic).

A static variable holds its value even after the procedure it's defined within ends. Therefore, if a static variable holds a
value of 7 when a procedure ends, this value will still be there if the procedure starts up again, as would happen if the
procedure call were inside another procedure's loop.

Line 3 adds an interesting twist to the declaration statements you've seen before. Rather than declare a variable, this
statement declares a form! The application contains, at startup, a child form named frmDocument that is specified at
design time. Line 3's Dim statement declares a new variable named frmD to contain the same object as frmDocument; in
other words, rather than refer to an Integer or String data type, frmD refers to a document that contains the same
properties as frmDocument. frmD is an example of a control variable.

After updating the static variable that keeps track of all the newly created documents in line 5, the Set statement
creates a new document and sets frmD as a reference to the document. For all intents, frmD is the new document. The
next statement sets the new document's caption to Document, followed by the document number. Then, the last
statement uses the Show method to display the new document on the parent window.

Note

The Set statement works almost like an assignment statement except that Set actually assigns a control variable to an
actual control. In Listing 11.8, line 3 does not declare a new form! Rather, line 3 declares a form variable. The variable
is empty until you associate the form variable with an actual form using the Set statement, as is done in line 6.

No matter how many times a user chooses New from the File menu, the LoadNewDoc() procedure is executed and
creates another child window. The code for the File menu's Close command, if you run the Application Wizard and
then execute the resulting MDI application, does nothing—the Application Wizard places no code there. You have to
add code that will unload the active child window when the user chooses Close from the File menu.

Tip

Child forms are useful for the dialog boxes you might want to add to your applications. Although the next lesson
explains how to display common dialog boxes, such as the File Print dialog box, you also can create your own dialog
boxes by displaying a child form with controls that make up a dialog box. You can set the default command button with

the command button's Default property and initialize text box controls with default text if you want to help your users
with common entries. If you set the command button's Enabled property to False, the command button can be grayed
out and unavailable, depending on user action leading up to the dialog box's display.

When a user needs to see the dialog box, you can display it with the Show method:

frmDialog.Show vbModal, Me

vbModal produces a modal dialog box that a user must respond to with OK or Cancel before he or she can do anything
else in the application. The Show method's second option is the name of the parent form, but you can use Me if the
parent form is the standard application form.

Placing Toolbars on Forms
Toolbars give your users a chance to perform pushbutton selections of common commands and menu options. To place
a toolbar on your application, you need to add the toolbar control to your toolbox. Once you create the toolbar, you
only have to write event procedure code for each toolbar button's Click event, just as you do for menu options.

Note

If you write MDI applications, you can add a toolbar to the parent form or any combination of forms.

Adding the Toolbar Control to Your Toolbox

Toolbars, and the coolbars that you read about in the next section, are similar in the way they work and the way that
you add them to applications. Although the toolbar is more common (almost every Windows application uses toolbars
these days), the coolbar is slightly simpler to add due to its smaller collection of related property values that you must
set. This section offers an overview of the steps necessary for adding toolbars. In the next section you see how to add
coolbars using specific information about each of the coolbar controls. Once you master the somewhat simpler
coolbars, you will be ready to add toolbars as well.

Note

As you will learn in the next section, coolbars differ from toolbars because coolbars offer a way to slide controls on and
off the screen.

Before adding a toolbar, you must add the toolbar control to your Toolbox. Select Project, Components to display the
Components dialog box. Select the entry labeled Microsoft Windows Common Controls 6.0 and then click OK. Several

new tools will appear in your toolbox window. You can run your mouse cursor over them to see which tools Visual
Basic added.

The following steps describe the general procedure for adding toolbars to your applications:

1. After adding the toolbar control to your toolbox, double-click the toolbar control to add a toolbar to the top of
your form window. (You must have the grid dots turned on to see the toolbar's outline.) The toolbar always
spans the top of the form, automatically, no matter how wide your form is; therefore, you don't have to worry
about width settings.

2. If you want your toolbar to include icons on its buttons, and not just text values, you'll have to add the image list
control to your form. The image list control is one of the tools that appear on the toolbox window when you add
the Microsoft Windows Custom Controls 6.0 tools. The image list control contains the images you'll place on
the toolbar. You can drag the image list control out of the way because its placement is trivial. Although the
image list control is never actually seen on the form, its images will be placed on the appropriate toolbar buttons
when you assign the icons to their respective buttons.

Tip

Although the standard location for a toolbar is at the top of the form (the default location for the toolbar control), you
can change this location by setting the Align property value to vbAlignBottom. This causes the toolbar to appear at
the bottom of the form.

3. Click the (Custom) entry in the image list's Properties window to display the Property Pages dialog box (see
Figure 11.8).

Figure 11.8. The Property Pages dialog box makes entering image list control properties
simple.

4. Click the Images tab.

5. Click the Insert Picture button and select the icon to add.

6. As you continue adding icons, Visual Basic updates each icon's Index value; the Index value is the value you'll
use to link each icon to each toolbar button.

7. Close the image list's Property Pages dialog box.

8. Click the (Custom) entry in the toolbar's Properties window to display the toolbar control's Property Pages
dialog box (see Figure 11.9). As with the image list control's Property Pages dialog box, the toolbar control's
Property Pages dialog box allows you to enter property values easily.

Figure 11.9. The toolbar control also provides a Property Pages dialog box.

9. Change the property values and click the Apply button to see those changes appear on the form window's
toolbar. Make sure you connect the image list control to the toolbar control in the toolbar Property Pages dialog
box's ImageList option to assign images to each toolbar button. Be sure to add ToolTips in the ToolTipText
option (located on the Buttons page) if you want to add pop-up descriptions for your users.

10. Click OK to close the toolbar's Property Pages dialog box.

11. Add Click event procedures for each toolbar button.

Tip

The Wrappable property, when set to True, enables the toolbar to span more than one row across the screen if the
toolbar contains more icons than will fit on a single row. Remember the Wrappable property when you need to create
wide toolbars.

If you want to give your users something extra, let them customize the toolbar. When you set the toolbar's
AllowCustomize property to True, the user, at runtime, will be able to double-click the toolbar to produce the
Customize Toolbar dialog box shown in Figure 11.10.

Figure 11.10. You can let your users customize the application's toolbar.

Adding Coolbars
Starting with Visual Basic version 6, you can add coolbars to your applications. Figure 11.11 shows a coolbar from
Internet Explorer. A user can move this sliding toolbar in or out of the way, as needed, by dragging its sizing grippers
left or right. Coolbars enable you to add extra-wide toolbars to your application; your user can slide the coolbar left or
right to see the coolbar options that reside off the screen.

Figure 11.11. The Coolbar control offers a sliding toolbar choice of icons.

Note

You must add the Microsoft Windows Custom Controls-3 6.0 control from the Project, Components dialog box before
the coolbar appears on your toolbox window.

Adding a coolbar requires the same basic steps as adding a toolbar. You'll first add the and then connect each image to
the coolbar via the image's Key value. Coolbars are actually simpler than toolbars because they require you to set fewer
property values.

To add a coolbar, follow these steps:

1. Add the image list control to your toolbox by selecting Project, Components and checking the option Microsoft
Windows Common Controls 6.0. You will also need the coolbar control; so while you're at the Components
dialog box, check the option Microsoft Windows Common Controls-3 6.0 before pressing Enter. The image list
and coolbar controls will now appear somewhere on your toolbox.

2. Double-click the image list control to add an image list to your application. Move the image list out of the way
because it is not a control that will ever appear on the user's application window, but serves only to hold images
used on the coolbar buttons.

3. Add Double-click the image list control's Custom property to display the image list's Property Pages dialog box.

4. Click the Images tab to display the Images page.

5. Click the Insert Pictures page to display the Select Picture dialog box from which you can locate a graphic file
to use as the first image in the image list.

6. Select the image, such as a bitmap in Visual Basic's Graphics folder. When double-clicking a filename, the
dialog box closes and the image appears as the first icon on the image list (see Figure 11.12).

Figure 11.12. The first graphic image now appears in the image list.

7. Continue adding the images to the image list on the coolbar.

8. Double-click the coolbar control to add a two-row (called bands) sliding coolbar to your Form window.

9. Double-click the Custom property to display the coolbar's Property Pages dialog box shown in Figure 11.13.

Figure 11.13. Easily set coolbar properties from the Property Pages dialog box.

10. Select the image list in the ImageList listbox. Table 11.6 describes the other options you may want to set on the
General page of the dialog box.

Table 11.6. The dialog box's General page describes the overall appearance of the coolbar.

Option Description

Orientation Places the coolbar vertically or horizontally (the default) on the form. Most coolbars are horizontal.

Picture Determines the graphic image that appears on all the coolbar buttons. You will normally place a
different image on each button with the image list as described in this section instead of placing the
same picture on every button as you can do with the Picture option.

ForeColor Specifies the color of the coolbar's foreground.

BackColor Specifies the color of the coolbar's background.

BandBorders Determines whether or not separating lines appear between the bands in a multi-banded coolbar.

Table 11.6. The dialog box's General page describes the overall appearance of the coolbar.

Option Description

FixedOrder Determines if the user can change the order of the bands on the toolbar.

VariantHeight Determines if each of the coolbar's bands are the same height or if each band is as high as the tallest
button on that band.

Note

The Picture option does give you access to special color modes and appearances available for the coolbar buttons such
as what a button shows when the user presses it.

11. Click the Bands tab to add the individual coolbar images.

12. You can add or remove bands by clicking either the Insert Band or Remove Band buttons. Additional properties
that you may want to adjust are described in Table 11.7. Of course, you will certainly want to add the images
from your image list control.

Table 11.7. The dialog box's Bands page describes the band properties, such as the images that
appear.

Option Description

Child For advanced programming, this property determines if a child control, a control other than a
command button, appears on the coolbar.

Style Determines if the user can resize the coolbar. If set to cc3BandNormal, the user can resize the
control with the sizing grippers that appear. If set to cc3BandFixedSize, the user cannot
resize the coolbar and no sizing grippers appear.

UseCoolbarPicture Determines if the coolbar displays the image from the Band page's Picture property or if the
coolbar displays images from the image list control you've supplied.

Picture Determines the picture that displays on the coolbar unless you've request, through the
UseCoolbarPicture property, that the coolbar display images from the image list.

Caption Determines the caption that appears under the image.

Width, MinWidth,
MinHeight

Determines the size, in twips, of the coolbar.

Key Available for coolbars that you use in collections so you can access the coolbar buttons in the
collection by its index or by a unique Key value that you assign.

Table 11.7. The dialog box's Bands page describes the band properties, such as the images that
appear.

Option Description

Tag Specifies information that the coolbar does not use in any way. This information travels along
with the toolbar in the application, as a property, so that subsequent programmers can learn
about the coolbar that you've used.

EmbossPicture If True, the coolbar picture appears in its original colors. If False, the coolbar image appears
with foreground and background colors determined by the EmbossHighlight and
EmbossShadow properties.

UseCoolbarColors If True, the coolbar band uses the Foreground and Background colors. If False, the band
displays using its own default colors.

13. The Image property is critical to use for adding your image list pictures to the coolbar buttons. Each Image
value relates to each picture in the image list. Therefore, if your image list contains 10 pictures that you want on
the coolbar, you will list 10 Image values in the coolbar's Property Pages dialog box.

Caution

You will not see the images on the coolbar after you close the Property Pages dialog box. The images do not appear
until runtime.

Summary
Today's lesson explained how to use forms and form properties, events, and methods. Being the background of your
application, your form is an important part of your programming. You can reference multiple forms in a number of
ways; however, as you learned today, the Forms collections is perhaps the easiest way to step through all the forms in
an application.

Not only can you now work with form properties, but you can add your own properties to your forms. Once you add a
property, you then can set the property and read the property value just as if the property were part of the form's
original property set.

Although programming MDI windows can get tedious, by doing so you offer your users a chance to use multiple data
windows with a different data set in each window. You can let the Application Wizard take care of generating the
initial MDI application, and then you can complete the details.

The Toolbar and Coolbar controls add two more dimensions for your users. A toolbar gives your application's users
one-button access to the most common commands. Before you can place icons on toolbar buttons, however, you must
insert those icons inside the image list control. Coolbars are toolbars that the user can slide in and out of the way to
make room for other items on the screen or other toolbars/coolbars you place in the application. You may want to offer
coolbars and toolbars as View menu options so that your users can select what they want.

Tomorrow's lesson explores ways to use the disk as an external storage source for Visual Basic application data.

 Q&A
Q: Why must I mess with the ImageList control when I want to add icons to a toolbar or coolbar?

A: Microsoft designed the toolbar control and the coolbar control to work with the ImageList control. It's that
simple. Microsoft could have very easily let you place icons directly in the toolbar's or coolbar's property list,
but instead chose to require that the ImageList control's icons match each toolbar or coolbar button.
Microsoft actually did you a favor. You can set up several image list controls on a form and use them as
templates for your toolbars or coolbars. For example, you can use one for the toolbar icons when they're
active, and another image list control when you deactivate the toolbar because the user is performing a
critical task onscreen that cannot use the toolbar. You only need to change the name of the image list control
name inside the toolbar or coolbar ImageList property, and Visual Basic immediately uses the other image
list control's set of icons.

 Workshop
The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next lesson. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: How can the Resize event help you keep your form's controls centered?

2: What does the ScaleMode property control?

3: What is the value of the first subscript when working with predefined object collections?

4: True/False. An SDI application cannot support multiple forms.

5: What is the difference between an SDI and MDI application?

6: Where do toolbars most often appear on a form?

7: Which control stores the toolbar's icons?

8: Why does the location of the image list control make no difference when you use the control along with a
coolbar?

9: What's the difference between Spc() and Tab()?

10: How do you use Print to output a blank line?

Exercises

1: Load these controls onto your toolbox window: Toolbar, Coolbar, and ImageList.

2: Write the output from the following two statements:

Form1.Print "Line 1";
Form1.Print "Line 2"

3: Run the Application Wizard to generate an Explorer-style application; then run the application's shell to see
the result.

4: Write the code that outputs the numbers 1 to 100 on a form. Separate the numbers with one space. Don't use
any controls for the output. Trigger the output in the form's Click event procedure .

5: Write a procedure that computes and prints the total number of controls in all forms within the current
application.

Day 12. Interact with Files
Today's lesson explains the fundamentals of file I/O (Input/Output). Professional Visual Basic programmers use several
different kinds of file I/O when working with Visual Basic. The types you'll learn in today's lesson are essential to
understanding all other file-related techniques. Once you master today's fundamentals, you'll be ready to work with the
more flexible data and database controls, such as the file controls and database tools, which you'll master later.

Three file types exist: sequential, random, and binary. Sequential access is the simplest file access, but it's prone to
some drawbacks. Although sequential files are simple to create and read, they can be slow and cumbersome. Random
access is a much faster and more useful method of access, but programs that use random-access files are often more
complex than sequential-access programs. Binary files are special, compacted forms of random-access files.

Random-access files work with any kind of data you can declare. Once you learn how to declare user-defined data
types today, you'll be able to use the Put # command to write (or read) an entire set of information to (or from) a data
file in one statement.

Today, you learn the following:

• File types
• The difference between sequential and random files
• Why file numbers are important
• How to open files

• How to locate free file numbers
• About the Print #, Write #, Read #, Get #, and Put # file-related commands
• How to use the file-related controls

Working with Files
Many programs in existence today use files. At the very least, even if a program doesn't use files, the program itself is a
file that executes when a user runs the program. Whether a program saves data into a database or just keeps information
for its own use (such as a user's preferred color scheme or window position), most programs do rely on files.

Several Visual Basic commands are common to all forms of file input and output. These commands open files, specify
file modes, close files, and check for free file numbers to be used as file associations. This section explains how
fundamental file processing operates. One way you can better understand file concepts is to begin with the first
statement of any file-based project: the Open statement.

The Open Statement

Sequential files and random-access files share common features. You use Open for both file types. The kind of file
access you achieve with Open depends on the arguments you use in the Open statement. Open reserves a file handle,
also called a channel, for reading from and writing to a file. The Open statement associates a number to the handle.
When this file handle is open, the data stream can flow. The mode in which you open the file number—read, write, or
both—dictates how the data stream can flow between the file and the computer.

A file handle, also called a channel, is a unique path to a file associated with a number from the Open statement. Once
Open associates a file number to the file handle, the rest of the program uses the file number to access the file. The code
never has to refer to the specific filename after the Open statement.

The following is the Open statement's format:

Open "strFileName" [For Mode] [AccessRestriction] [LockType] As
[#]intFileNum [Len = intRecordLength]

Note

Remember that when you open a program and assign a data file to a number, the program will use that file number to
access the file. Your program never again has to use the filename to get to the file.

All Open statements must include the filename and file number arguments, but the other arguments are optional. A
simple call to Open with only the required parameters might look like this:

Open "aFile.txt" As #1

This statement opens a file named aFile.txt as file number 1. To reference this file for input or output, you reference the
file number. This file has been opened in random-access mode, because the default when you omit the For Mode
portion is Random. All the commands in today's lesson work with text files. This lesson uses the filename extension .txt
or .dat, two commonly used extensions for text files.

Learning the File Modes

Notice that the Mode value in the Open statement does not have a data type prefix before it. Mode must be a special
keyword that indicates the file's mode of access. Table 12.1 explains the values you can supply for the Mode argument.

Table 12.1. Use one of these Open statement Mode values.

Mode Description
Append Opens a file number to a file for sequential output, beginning at the end of the file if the file exists. If the file

doesn't exist, Visual Basic creates the file. Append never overwrites existing file data.
Binary Opens a file number to a file for binary data access. In Binary mode, you can access a file at the byte level,

meaning that you can write and read individual bytes to and from the file.
Input Opens a file number to a file for sequential input, starting at the beginning of the file. Data is read in the same

order it was sent to the file.
Output Opens a file number to a file for sequential output, starting at the beginning of the file. If the file doesn't exist

when you issue the Open statement, Visual Basic creates the file; otherwise, Visual Basic overwrites the file.
Random Opens a file number to a file for random read and write access. This mode allows data to be read from and

written to a file at any specific record boundary.

For Mode isn't required when using the Open statement. If you don't include the mode, Visual Basic assumes Random
and inserts the For Random mode for you. The following statements demonstrate how to use various modes for opening
a file:

Open "filInpdt.txt" For Input As #1

Open "Append.txt" For Append As #

Open "Output.txt" For Output As #1

Open "Random.txt" For Random As #1

The last statement is equivalent to the following:

Open "Random.txt" As #1

Tip

Be sure to set up error-handling logic using the On Error Goto statement that you learned about in Day 9 "The Dialog
Box Control." Anytime you open or access a file, an error might result. Good error-handling logic will help your
application exit gracefully from the problem rather than burden your users with nasty runtime error messages.

Restricting Access

The optional AccessRestriction argument in an Open statement lets you restrict the access to Read, Write, or Read
Write. This access restriction is often used when writing programs that will run across a network.

Specifying read-only access with Read lets users see the contents of the file but leaves them unable to modify the file.
Specifying Write access lets users modify the file, and specifying Read Write lets users do both (read and modify).

Locking the File

Use a LockType argument value to specify the operations permitted on the open file by other processes. This parameter
is useful when writing network applications. You can restrict access to a file so that only one user at a time has access
to the file or can write to the file. This helps prevent two users from trying to make changes at the same time (which
would inevitably result in losing the changes one of the users made).

The valid options for LockType are Shared, Lock Read, Lock Write, and Lock Read Write. Shared lets all
users access the file simultaneously. Lock Read locks the file so that only the person with the file open for reading can
access the file. Lock Write locks the file so that only the person who has the file open for write access can write to the
file. Lock Read Write locks the file from all users except the one who has the file open for read and write access.

Managing the Record Length

The length specified by the Len = intRecordLength option is used by random-access files as the size of data records
that will be passed from Visual Basic to the file. This size is necessary when accessing records from a file. The first
record in a file begins at location 1, and all subsequent records are written at locations in increments of 1. The actual
location in the file of any given record is N x intRecordLength, where N is the record number.

A record is one logical line from a file that holds a complete set of data. For example, if your file holds inventory data,
one record would be one item's inventory information, such as the description, price, and quantity.

Accessing records operates quite like the way you access arrays. Whereas the first element in an array is stored in
Array(0), the first element in a file is stored at record number 1. To make index coordination between arrays and files
easy, use Option Base 1 in your Declarations section or define your arrays to begin with element 1 and ignore the 0
subscript.

Locating a Free File Number

Visual Basic lets you open multiple files at once, as long as you assign each file a different file number. You need to
keep track of the next available number, especially if you open files in a function that has no way of knowing whether
other functions have opened files. Visual Basic provides the FreeFile() function, which can be used to determine the
next available file number. By using this function, you're guaranteed that the file number you use hasn't already been
used by an open file. Here's the format of FreeFile():

FreeFile[(intRangeNumber)]

The optional intRangeNumber parameter lets you specify that you want the returned file number to be in a specific
range: 1–255 or 256–511. The default range, if you specify no intRangeNumber parameter, is 1–255. Almost all Visual
Basic programmers keep the default because rarely, if ever, do programs need to open more than 256 files. Without the
intRangeNumber parameter, you do not need to include the function's parentheses.

The following lines use FreeFile() to obtain a file number and then open a file with that number:

intFileNumber = FreeFile()
Open "AccPay.Dat" For Output As intFileNumber

Use FreeFile() whenever you want to ensure that a file number isn't already in use. This might not be necessary for
small applications that use only a few files. However, even in small applications, it helps to use FreeFile() to ensure
that you don't accidentally use the same file number for more than one file at a time.

Caution

Avoid the shortcut of using FreeFile within the Open statement, as shown here:

Open "strFileName" For Output As FreeFile()

Although this works, you have no way of knowing the file number for later operations on the file.

Specifying the Close Statement

You need to close all the files that you've opened with the Open statement. The statement for closing a file is—not
surprisingly—Close. This statement takes the open file number as its only parameter. Here's the complete format for
Close:

Close [#] intFileNumber[, intFileNumber2][,...intFileNumberX]

You can specify any number of file numbers to close in a single Close statement. If you don't specify a file number, all
opened files are closed. This can be useful for terminating your applications.

The code in Listing 12.1 opens two sequential files—one for reading and one for writing—using the next available file
numbers and then closes both files.

Listing 12.1 FreeFile() can request a file number from Visual Basic.
1: Dim intReadFile As Integer, intWriteFile As Integer
2: ' Handle input file
3: intReadFile = FreeFile ' Get first file #
4: Open "AccPay.Dat" For Input As intReadFile
5: ' Handle output file
6: intWriteFile = FreeFile ' Get next file #
7: Open "AccPayOut.Dat" For Output As intWriteFile
8: '
9: ' Code goes here to send the contents
10: ' of the input file to the output file
11: ' (You'll learn how to do this later in the lesson)
12: Close intReadFile
13: Close intWriteFile

You never have to use an actual file number in this example, because FreeFile() in lines 3 and 6 returns the available
file numbers and the code stores those values as named integers.

Note

If you don't close all open files, you run a risk, albeit a small one today due to improved hardware, that the file will
incur damage. Generally, if power goes out when a file is open, the file's contents might be in jeopardy. Therefore,
don't keep a file open longer than you need it to be open. If you don't close a file, the system closes it when your
application terminates.

You can close as many files as you want with a single Close statement. The following simple line closes all open files:

Close

On the other hand, the following lines close only two files that might be open:

Close 3
Close 6

You may want to close certain files in the middle of a program when you're finished with them but still need to access
other open files.

Working with Sequential-Access Files
Now that you've seen the basic statements required for opening files, closing files, and setting file access modes, this
section looks at several examples that output to and input from sequential-access files. You'll see that a form of Print,
which you used yesterday for sending text to the form, can also output text to a file.

Sequential file access means just that—you access the file sequentially. When you create a sequential-access file, you're
creating a file that your application must read from and write to sequentially (that is, in order from the file's beginning
to end). This sequential read and write limitation is the biggest weakness of a sequential file.

A sequential file is a file that you read and write in order from beginning to end.

To use the file, you must process the entire file from beginning to end. If you need to update only one byte of
information in a 1,000-byte file, you must process 999 extra bytes every time you want to perform the update.

Sequential file access can be very useful when you need to process a text file such as a settings file or if you're storing
small amounts of data where access speed isn't an issue. This section looks at the Visual Basic functions that handle
sequential files.

The Print # Statement Outputs Sequentially

You must open files to use them in your program. After you open the files, you must put information into them. One
common approach is to use the Print # statement. Print # writes only to a sequential-access file. Here's the format of
Print #:

Print #intFileNumber, [OutputList]

intFileNumber is the open file number to which you want to write, and OutputList can consist of the following:

[Spc(intN1) | Tab[(intN2)]] [Expression] [charPos]

Tip

Both Spc() and Tab() work with the Print # statement the same way they worked with Print in yesterday's lesson.

You can use either Spc() or Tab(), but not both together. Table 12.2 explains the components of OutputList.

Table 12.2. The Print # statement's contents describe the output of the method.

Component Description
Spc(intN1) Used to insert spaces in the output, where intN1 is the number of spaces to insert.
Tab(intN2) Used to position the insertion point to an absolute column number, where intN2 is the column number.

Use Tab with no argument to position the insertion point at the beginning of the next print zone (a print
zone occurs every 14 spaces).

Expression A numeric or string expression that contains the data you want to send to the file.
charPos Specifies the insertion point for the next character to print. Use a semicolon to specify that the next

character should appear immediately following the last printed character.

Note

You can use Tab() in charPos; the functions that Tab() performs at the beginning of a Print # statement also apply
here. If you omit charPos, the next character appears on the next line in the file.

The procedure in Listing 12.2 opens a file named Print.txt, writes the numbers 1 through 6 to the file, and then properly
closes the file.

Listing 12.2 Using Print # to write to a sequential file.
1: Private Sub cmdFile_Click()
2: Dim intCtr As Integer ' Loop counter
3: Dim intFNum As Integer ' File number
4: Dim intMsg As Integer ' For MsgBox()
5: intFNum = FreeFile
6: ' Change the path if you want
7: Open "C:\Print.txt" For Output As #intFNum
8:
9: ' Describe this proc
10: intMsg = MsgBox("File Print.txt opened")
11:
12: For intCtr = 1 To 6
13: Print # intFNum, intCtr ' Write the loop counter
14: intMsg = MsgBox("Writing a " & intCtr & " to Print.txt")
15: Next intCtr
16:
17: Close # intFNum
18:
19: intMsg = MsgBox("File Print.txt closed")
20: End Sub

in line 10 that it has opened the file, and it then proceeds to write to the file in line 13 and show you what has been
written in line 14. Finally, the procedure closes the file in line 17 and tells you that the file has been closed in line 19.

To verify that the procedure worked, open Notepad and look at the Print.txt file. You should see the numbers 1 through
5 printed inside the file, as shown here:

1
2
3
4
5

Listing 12.2 demonstrates a simple Print # statement (line 13). No statements existed to position the output, so the
procedure defaulted to printing each number on a new line.

Creating and writing to a file won't do you much good if you can't retrieve the information when you want to. The
following section covers retrieving information from a file.

Use Input # to Read What You've Written

After you write data to a file, you'll eventually need to retrieve that data. For sequential files, use the Input # statement
to read sequential data. You must read the data in exactly the same order and format as you wrote it, due to the nature
of sequential file processing. Here's the format of Input #:

Input # intFileNumber, Variable1[, Variable2][, ...VariableN]

Input # requires an open file number and variables to hold the data you're reading. The Input # statement and the
Print # statement used to write the data to the file should use the same format. If you used delimiters to write the data,
you should use the same delimiters for Input #.

Note

If you write a series of variables on one line and want to be able to read them reliably with Input #, you must either
use Write instead of Print # or manually include comma delimiters. Input # reads up to the first space, comma, or
end-of-line character if it reads into a numeric variable. It reads up to the first comma or end-of-line character when
reading a string, unless the string contains quotation marks.

The following statement reads five variables from an open sequential file. The variables all reside on the same file line:

Input #intFileNumber V1, V2, V3, V4, V5

The Print # statement that created the file has to match the Input # statement's format and use the same variable data
types; otherwise, Input # can't read the data.

Input # is fairly simple because it performs the mirror-image task of Print #. As the next section explains, Write #
often outputs file data in a more general format than Print #, thus reducing your worry about matching the Input #
statement to its original output code.

The Write # Statement Also Outputs to Files

Write # is another command that writes information to a sequential file. Write # and Print # vary only slightly. All
data that Write # writes to a file is comma delimited. Also, Write # automatically encloses all string data inside
quotation marks (the quotation marks appear in the file), encloses all date data within pound signs, writes Boolean data
as #TRUE# or #FALSE#, and sends null data and error codes to the file as #NULL# and #Error errorcode#,
respectively. errorcode# represents an error number that explains the output error that has occurred, such as a disk not
found. You can search Visual Basic's Online Help for a list of error codes and their meanings.

A comma-delimited file is a file whose data is separated by commas.

Comma delimitation is required for files that certain mail merge and spreadsheet programs read. The commas also
make reading the data less error prone, because subsequent Input # statements don't have to match the Write #
statements exactly.

Note

To read data more easily, always write the data with Write # instead of Print #.

Here's the format for Write #:

Write # intFileNumber, [OutputList]

OutputList is the list of one or more variables you want to read from the file opened on the file number.

The earlier section "The Print # Statement Outputs Sequentially" that described Print # also showed how to output
one value per line with the Print # statement. You can include the same formatting options in Print # that you can
include in the regular Print method.

For example, if you want to print values one after another on the same line, you include a semicolon after the intCtr

variable, as is done in Listing 12.3.

Listing 12.3 Use the semicolon to write multiple values on a single line.
1: Private Sub cmdFile_Click()
2: Dim intCtr As Integer ' Loop counter
3: Dim intFNum As Integer ' File number
4: Dim intMsg As Integer ' MsgBox() return
5: intFNum = FreeFile
6: ' Change the path if you want
7: Open "C:\Print.txt" For Output As #intFNum
8:
9: ' Describe this proc
10: intMsg = MsgBox("File Print.txt opened")
11:
12: For intCtr = 1 To 6
13: Print # intFNum, intCtr; ' Notice semicolon!!
14: intMsg = MsgBox("Writing a " & intCtr & " to Print.txt")
15: Next intCtr
16:
17: Close # intFNum
18:
19: intMsg = MsgBox("File Print.txt closed")
20: End Sub

When you run this procedure, the created file contains the following data:

1 2 3 4 5 6

Notice the spaces between the numbers when they're printed to the same line. Print # inserts these spaces because of
the imaginary plus sign that appears before all positive numbers.

You should experiment with the different Print # parameters to see what results you get when creating a file.

After you write data to a file, reading back the data often takes place in another procedure, or perhaps even in another
application. The procedures in Listing 12.4 provide examples of how you can write to a file and then read the
information back into variables.

Listing 12.4 You can read from and write to a file from within the same procedure.
1: Private Sub cmdFileOut_Click ()
2: ' Create the sequential file
3: Dim intCtr As Integer ' Loop counter
4: Dim intFNum As Integer ' File number
5: intFNum = FreeFile
6:
7: Open "Print.txt" For Output As #intFNum
8:
9: For intCtr = 1 To 5
10: Print # intFNum, intCtr; ' Write the loop counter

11: Next intCtr
12:
13: Close # intFNum
14: End Sub
15:
16: Private Sub cmdFileIn_Click ()
17: ' Read the sequential file
18: Dim intCtr As Integer ' Loop counter
19: Dim intVal As Integer ' Read value
20: Dim intFNum As Integer ' File number
21: Dim intMsg As Integer ' MsgBox()
22: intFNum = FreeFile
23: Open "Print.txt" For Input As #intFNum
24:
25: For intCtr = 1 To 6
26: Input # intFNum, intVal
27: ' Display the results in the Immediate window
28: intMsg = MsgBox("Retrieved a " & intVal & " from Print.txt")
29: Next intCtr
30:
31: Close # intFNum
32: intMsg = MsgBox("The Print.txt file is now closed.")
33: End Sub

After the first procedure in Listing 12.4 writes the data to the file, the cmdFileIn_Click() procedure can read the data
from the file.

Now look at the procedure in Listing 12.5, which creates a file named Write.txt.

Listing 12.5 Writing output to sequential files with Write.
1: Private cmdFile_Click ()
2: Dim intCtr As Integer ' Loop counter
3: Dim intFNum As Integer ' File number
4: intFNum = FreeFile
5:
6: Open "c:\Write.txt" For Output As #intFNum
7:
8: For intCtr = 1 To 5
9: Write # intFNum, intCtr; ' Write the loop counter
10: Next intCtr
11:
12: Close # intFNum
13: End Sub

If you run this procedure, you can use Notepad to look at the file created. You'll immediately notice the difference
between the Print # and Write # statements. Here are the contents of Write.txt:

1,2,3,4,5,

If you don't use a semicolon after the data you write, each piece of data would be on its own line and no commas would
separate the data, because the single value per line would make the commas unnecessary. (In this case, Write # and
Print # behave identically.)

Tip

If you use sequential files often, you'll soon gain insight into ways you can improve your code. For example, you might
want to write (as the first piece of data in the file) the number of values that appear in the file. This way, subsequent
programs that read the data will know how many values exist and can loop accordingly.

Note

You've learned a lot so far today, but this may surprise you: Visual Basic programmers rarely use sequential file
processing! You're not wasting your time with this lesson today, however, because all the common file access methods
and controls use the fundamentals that sequential file processing teaches you.

Working with Random-Access Files
Whereas you must read and write sequential files in order, you can read and write random-access files (often just called
random files) in any order. For example, you can write customer records to a random-access file and then read one or
more customer records later in any order you want. If the customer file were sequential, you would have to read every
record in the file that preceded the record you wanted.

A random-access file (or random file) is a file whose data you can read or write in any order without having to read or
write all other data in the file.

As with sequential access, programmers don't use random access in its strictest form today as much as in the past
because of the increased availability of data-access controls and advanced file-processing procedures. Nevertheless,
most database-related file access is based on the concepts you'll learn here.

Random-access files offer a good opportunity to discuss a new programming technique called user-defined data types.
Random-access files often read and write data records, and Visual Basic's user-defined data types let you define data
items that look exactly like the records you need to write to (and read from) the random file.

A user-defined data type is one you define and use instead of one of the built-in data types (such as Integer and
String).

Working with Random Access

Much of the work you perform with random files parallels sequential file processing. For example, the Open and Close
statements work the same for both sequential- and random-access files. The only difference between the two is in the
access mode.

Note

If you don't tell Visual Basic what mode to use to open a file, it assumes For Random and fills in the mode for you. For
example, suppose you type the following:

Open "Random.txt" As #1

Visual Basic changes the line to this:

Open "Random.txt" For Random As #1

The following statement opens a file for random access:

Open "Random.txt" For Random As #1

You can open a file as a random-access file and then use it for sequential access. You sacrifice the benefits of a
random-access file during the processing, but you may want to do this sometimes, especially if you've entered the
records in a predefined order and you now want to print a report or display the file data in that exact order.

Consider an example of the difference between sequential and random access. Suppose you create a file that contains
10 lines of inventory totals. To read the sixth line (or record) of the file in sequential mode, you have to read the first
five items to get to the sixth, and then you have to read the last four items. If you access the file in random mode, you
can go straight to the sixth record, read the data, and then close the file.

The same holds true for writing to a file. If you have the same 10-line file and you want to change the eighth record
with sequential access, you have to read all 10 records in the file, change the eighth record, and write all 10 records
back to the file. In random mode, you can just write the changes to the eighth record.

When a file contains only 10 records, you don't benefit much from a random file, but when the file contains 10,000
records, you save a lot of time and decrease system overhead when you use random access.

Using Get and Put

Two statements are used for random-access files: Put # and Get #. These statements are similar to the Print # and
Input # statements used for sequential file access. The major difference between these two sets of statements is that
Print # and Input # handle one piece of data at a time and work all the way through the file. There's no way for these
statements to position to a specific record and update only that record.

The format for Put # and Get # is a little different than those of Print # and Input #:

Put [#]intFileNum, [intRecNum,] Variable

Get [#]intFileNum, [intRecNum,] Variable

As you can see, these statements use a record number. By specifying the record number you want to work with, you
can update or read certain data. Record numbers begin with 1. The variable you read or write can be of any data type—
even an array or a user-defined variable (see the next section). The freedom to handle any type of variable as a single
unit is one of the most powerful features of random-access files.

The examples that appear in the next section include procedures that read and write particular records in a random-
access file.

Defining User-Defined Data Types

You've already learned about variables and arrays in this book. You'll now learn how to create your own data types
consisting of other data types grouped together. These user-defined data types are sometimes called structures or
records.

If you want to create a program that allows you to maintain an address book for all your contacts, you could use
individual variables for each field you needed. For example, you could use a string named strFName for the first name,
a string named strLName for the last name, and so on. These separate variables would work; however, such
programming would become cumbersome when you had a large number of contacts to manage. It would be much
easier to have one user-defined data type that contained all the same information and that you could handle as one
entity just as you handle individual variables.

A user-defined data type is one that contains other existing data types grouped together to form a new data type. This
grouping is referred to as a composite declaration.

Note

A user-defined data type is composed of preexisting data types (Visual Basic's built-in data types, other user-defined
types, or both).

You use the Type statement to create your own data types. The format is as follows:

[Private | Public] Type TypeName
 VarName1[(ArraySize)] As ExistingType [* StringLength]
 VarName2[(ArraySize)] As ExistingType [* StringLength]

 :
 :
End Type

Notice that the name of the user-defined data type you want to create follows the Type keyword. This name can be any
word that isn't a reserved word, keyword, or declared variable name. If you've already declared a variable named
Client, for instance, you can't create a user-defined data type named Client.

You must declare all user-defined types at the module level; it's invalid to declare them inside procedures. You can
declare a type in a form module, but it must be declared as Private, and the data type will be private to the form's
module code only.

Examine the code in Listing 12.6 to learn more about the Type statement.

Listing 12.6 Use the Type statement to declare your own data types.
1: ' Module Page of the Project
2: Type UserType
3: strFName As String
4: strLName As String
5: End Type
6: Public Names As UserType

This code creates a user-defined data type named UserType, beginning in line 2. The new data type contains two
strings, strFName and strLName. Line 6 creates a variable named Names of type UserType.

Note

UserType isn't a variable but rather a type you've defined. Names is the variable name, and strFName and strLName are
members (or fields) within the variable. You've added a new data type to the Visual Basic language for the duration of
the program's execution. In addition to Integer and Boolean, you now can declare variables of the data type
UserType.

Tip

To access the individual fields that make up the data type, use the variable name, a period, and then the field name.

The following statements initialize and work with the variable just declared:

Names.strFName = "John"
Names.strLName = "Doe"

lblFName.Caption = "First Name: " & Names.strFName
lblLName.Caption = "Last Name: " & Names.strLName

You can limit the size of string variables used in a structure by adding the * StringLength option to the declaration
after an As String field type. The fixed-length string sets the absolute length of the string to StringLength. This
usually is required when you're going to be randomly reading and writing your structures to a file. A fixed string length
is needed to ensure that each record written to the file is the same size so that you can safely access records randomly.

To change Listing 12.6 to make the string sizes constant, you would enter the code in Listing 12.7.

Listing 12.7 Use fixed string sizes to determined the length of the written strings.
1: ' Module Page of the Project
2: Type UserType2
3: strFName As String * 8
4: strLName As String * 20
5: End Type
6: Public Names As UserType2

The fixed-length strings limit the string length to an inflexible maximum. Although the string data may not consume
the entire string space you've reserved, Visual Basic pads the remaining length with spaces to ensure that any variables
declared with UserType2 and written to a random-access file will consume the same record length no matter what data
the variable holds.

The procedure in Listing 12.8 demonstrates the basics of working with random files.

Listing 12.8 You can write to any record number.
1: Private Sub cmdCreate_Click()
2: ' This procedure creates the file
3: Dim intFile As Integer ' Free file number
4: Dim intCtr As Integer ' Loop counter
5:
6: intFile = FreeFile
7: Open "c:\Random.Txt" For Random As #intFile Len = 5
8:
9: ' Loop through numbers and write file
10: For intCtr = 1 To 5
11: Put # intFile, intCtr, intCtr ' Record # same as data
12: Next intCtr
13:
14: Close intFile
15: End Sub
16:
17: Private Sub cmdChange_Click()
18: ' This procedure changes 3rd record
19: Dim intFile As Integer ' Free file number
20:
21: intFile = FreeFile
22: Open "c:\Random.Txt" For Random As #intFile Len = 5
23:
24: ' Write a new 3rd record

25: Put #intFile, 3, 9 ' Record 3, value: 9
26: Close # intFile
27: End Sub
28:
29: Private Sub cmdDisplay_Click()
30: ' This procedure displays the file
31: Dim intFile As Integer ' Free file number
32: Dim intVal As Integer ' Read value
33: Dim intCtr As Integer ' Loop counter
34: Dim intMsg As Integer ' For MsgBox()
35: intFile = FreeFile
36: Open "c:\Random.Txt" For Random As #intFile Len = 5
37:
38: intMsg = MsgBox("File Random.Txt opened...")
39:
40: ' Loop through records and write file
41: For intCtr = 1 To 5
42: Get # intFile, intCtr, intVal
43: intMsg = MsgBox(" Retrieved a " & intVal & " from Random.Txt")
44: Next intCtr
45: Close # intFile
46:
47: intMsg = MsgBox("File Random.Txt is now closed")
48: End Sub

Notice that the random-access Open statement in line 7 uses the Len option. The procedure uses Put # in line 11 to
create a random-access file with a record length of 5; the Len option specifies the record length. The record length is
very important; if you don't know the record length, Put # and Get # won't know how far into the file to search for a
particular record. (The formula for finding a record is RecordNumber * RecordLength.)

The application's form in Listing 12.8 has three buttons. One creates the file, another displays the file, and a third
changes the file. Each of the buttons triggers one of the event procedures in Listing 12.8. You can easily create such an
application and run it. Click the Create button and then click the Display button to see the message boxes pop up,
telling you the data you have written. Click the Change button and then click the Display button again to see the results
of the random change. After the file changes, the third record in the file holds 9 instead of 3. The subroutine that made
this change, cmdChange_Click(), simply wrote the 9 to record number 3, using Put # to access the correct record.

Embedded User Types

You've seen how to create your first user-defined data type, but what if you want to include a user-defined data type
inside another user-defined data type? One of the fields needs to be a user-defined data type rather than one of the built-
in Visual Basic data types. Just be sure to declare the user-defined data type you want included before you declare the
user-defined data type you want to include it in.

Listing 12.9 shows one example of a user-defined data type called Address that is embedded as a field inside another
user-defined data type.

Listing 12.9 User-defined data types can be used inside other user-defined data types.
1: ' Entered into the Code module's Declaration section

2: Type Address
3: strStreet As String
4: strCity As String
5: strZip As String
6: End Type
7:
8: Type UserType3
9: strFName As String * 10
10: strLName As String * 25
11: typAddr As Address ' Another data type
12: End Type
13:
14: Public Names As UserType3 ' Declare an application variable

Listing 12.10 contains code that initializes these fields and shows you how to get to the fields within fields.

Listing 12.10 Once you define a public data type, any module can use that data type for variable
declarations.
1: Names.strFName = "Jonathan"
2: Names.strLName = "Doe"
3:
4: Names.typAddr.strStreet = "AnyStreet"
5: Names.typAddr.strCity = "AnyTown"
6: Names.typAddr.strZip "12345-9876"
7:
8: ' Work with the data
9: lblFName.Caption = "First Name: " & Names.strFName
10: lblLName.Caption = "Last Name: " & Names.strLName
11: lblAddr.Caption = "Street: " & Names.strAddr.strStreet
12: lblCty.Caption = "City: " & Names.strAddr.strCity
13: lblZip.Caption = "Zip: " & Names.strAddr.strZip

Using the File Controls
In Day 9, "The Dialog Box Control," you learned how to use the common dialog box control to display the File Open
and File Save dialog boxes. Such dialog boxes work well for getting the user's file selections. These dialog boxes let
the user search folders, disks, and even networked disk drives for data. Also, the File Save and File Open dialog boxes
both follow the Windows standard.

When working with files, especially the sequential and random files you learned about in the previous sections, you
may need to request a directory (called a folder starting in Windows 95), drive, or filename, without resorting to the
complete File Save or File Open dialog box.

Visual Basic's three special list boxes help you manage directories, drives, and files. Here are descriptions of these
special list boxes:

• Directory list box— Lets users select a directory.
• Drive list box— Lets users select a disk drive.
• File list box— Lets users select a file name.

Figure 12.1 shows a form window that contains all three kinds of special list boxes.

Figure 12.1. You can work with these three special list boxes.

Note

You might wonder why Visual Basic supplies these file-related controls, because you've already seen the Common
Dialog control, which supports the full use of these controls as a set without requiring you to place the controls
individually on a form. Well, these special list controls let you place specific kinds of lists on a form whenever you
need just one or two aspects of a file. For example, you might need to write data to a user's disk. Although your
application will handle the filename and directory, you need to ask the user which disk drive should receive the
application's data.

Caution

These lists don't work in tandem with each other unless you program them to do so. For example, if you place the three
controls on one form and run the application, changing the disk drive doesn't change the directory or filename shown in
the other two controls. If you really want to, of course, you can write event procedures to keep these controls in synch
with each other.

The Drive List Box

Use the drive list box control to let users select a disk drive. This control is smart enough to search the host computer
and determine which drives—local and remote, floppy, hard, and CD-ROM—exist on each user's system. The control
then displays these choices graphically when users open the drive list box (see Figure 12.2).

Figure 12.2. Users can make a selection from the drive list box.

Note

The drive list box control first displays the drive from which the user launched the application, but you can override
this default drive by using Visual Basic code to point the control to another drive.

The Directory List Box

Use the directory list box control to let users select a directory folder. This control is smart enough to search the host
computer and determine which directories exist in the system. The directory list box displays these choices graphically
by using the standard Windows format.

Remember that the directory list box control can't determine which drive is selected in the drive list box. You have to
take care of linking the drive to the directory, as explained at the end of today's lesson.

Note

The directory list box control first displays the directory from which the user launched the application, but you can
override this default directory by using Visual Basic code to point the control to another directory.

The File List Box

Use the file list box control to let users select a file. This control is smart enough to search the host computer and
determine which files exist in the file system. The file list box then displays these choices graphically by using the
standard Windows format.

As with the directory list box control, the file list box control can't determine which drive (or directory) is selected in
the drive (or directory) list box. You have to take care of linking the drive to the directory, as explained at the end of
today's lesson.

Note

The file list box control first displays the files from the directory in which the user launched the application, but you
can override this default directory by using Visual Basic code to point the directory list box control to another directory
before linking the file list box to the folder.

File-Related Commands

Visual Basic supports several drive and directory commands that prepare the file list controls, as described in Table

12.3.

Table 12.3. The Visual Basic language contains commands that work with drives and directories.

Command Description
ChDrive
strDrive

Changes the default drive to the drive in the string expression.

ChDir
strDirectory

Changes the default directory to the directory in the string expression. If you specify no drive
inside the string, Visual Basic selects the directory on the current drive.

Kill
strFileSpec

Erases the file or files (represented by wildcards) specified by the string expression.

MkDir
strDirectory

Creates the directory specified by the string expression.

RmDir
strDirectory

Erases the directory specified by the string expression.

Note

RmDir produces an error if you try to remove a directory that still contains files.

In addition to the statements shown in Table 12.3, Visual Basic supports the Dir() function, which checks whether or
not files exist, and the CurDir() function, which returns the name of the current directory.

Suppose that you want to point the drive list box and directory list box controls to the directory C:\MyFiles. You can
insert the following code in the Form_Load() procedure:

ChDrive "C:"
ChDir "\MyFiles"

The drive list box, directory list box, and file list box controls now point to the C:\MyFiles directory when they appear
on the form, rather than to the application's current directory.

The Dir() function requires a little more explanation. Suppose you want to know if a file named SALES98.DAT exists
in the root directory on drive D. You can check for such a file like this:

If (Dir("c:\SALES98.DAT")) = "SALES98.DAT" Then
 intMsg = MsgBox ("The file exists")

Else
 intMsg = MsgBox ("The file does not exist")
End If

The Dir() function returns the filename you pass as an argument. The filename is returned only if that file resides
inside the directory argument you provide. If Dir() doesn't return the filename, the file doesn't exist on the drive.

You can pass Dir() a wildcard file specification like this:

Dir("c:\Sales*.DAT")

Dir() will return the first file found that meets the wildcard specification—if any files meet the specification. After
you pass the first file specification, you can make subsequent calls to Dir() by specifying Dir without parentheses or
any argument. Visual Basic keeps returning files that match your wildcard file specification until the last file is found.
When Dir returns a null string (""), you must include a file specification in the next call to Dir(); otherwise, Dir will
return an error.

If you want to set the drive list box control's drive to a specific disk drive, set the control's Drive property this way:

drvDisk.Drive = "d:\"

The drive list box control will then display D: at the top of the list. If a user changes the drive list box to a different
drive, the drive list box's Change() event occurs. You can set the user's selected drive to the default drive with the
following statement inside drvDisk_Change():

ChDrive drvDisk.Drive

Use the following code to set the Drive property of the directory list box control to the drive the control is to display:

dirDirect.Drive = drvDisk.Drive

This assignment statement sets the directory's drive to the directory selected by the user. You can add the directory list
box control's disk assignment to the drvDisk_Change() event procedure.

After a user changes the directory list box control to a different directory, the control's Change event occurs. In the

Change event procedure, you can set the current directory to the user's directory like this:

ChDir dirDirect.Path

The directory list box control supports a rather unusual access scheme—it supports a property named ListIndex. The
value of ListIndex is –1 for the selected directory, –2 for the directory immediately above the selected one, –3 for the
directory immediately above that, and so on. The ListIndex property is 0 for the first subdirectory of the selected
directory, 1 for the next subdirectory, and so on.

If you want to display only certain files in the file list box, assign a string file specification to the file list box control's
Pattern property:

filFiles.Pattern = "*.vbp; *.frm"

You can include as many file specifications as you like, indicated with wildcards within the string's quotation marks.
The file list box control immediately changes to reflect the new pattern by showing only those files. When a user
selects a file, the file list box control's Change event occurs and the selected file appears in the FileName property. As
with the drive list box control, the selected file also appears with the ListIndex value of –1.

After a user selects a path, you can change the file list box control to reflect files in that path:

filFiles.Path = dirDirect.Path

Summary
Today's lesson explained how you work with files from a fundamental level. Now that you've mastered the basics, you
are better equipped to handle the more advanced file-related controls and commands, such as Visual Basic's database
features.

Today you learned how to read and write sequential and random files. These files are useful for storing text values.
Programming such files is relatively simple once you learn the Visual Basic commands. For example, the Write #
statement parallels Read #, and Get # parallels Put #.

If you need them, the file controls on your toolbox window provide access to the user's disk drive, directory, and files.
Although the common dialog box control works best for offering File Open and File Save dialog boxes, you can place
the file controls on forms when you need specific information on a drive, directory, or file.

Tomorrow's lesson shows you how to write to another device, the printer.

Q&A
Q: Why are user-defined data types called "user defined" when the user has nothing to do with defining

them?

A: Although the term includes the word user, you, the programmer, are the one who defines the data type and
uses the data type in your programs. In a way, you are the user of the new data type because you use the new
data type in your application.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the material covered as well as
exercises to give you experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next chapter. Answers are provided in Appendix A, "Answers to Exercises."

Quiz
1: How many open files can you close with one Close statement?

2: What function returns the next unused file number?

3: What happens if you open a file for sequential output access and the file already exists?

4: What happens if you open a file for sequential append access and the file already exists?

5: What type of file does the following statement open?

Open "TestFile.dat" For Append As #1

6: Why do random Open statements need to know the record length of their data?

7: Why should you specify the absolute length of strings within a user-defined data type if you're going to read
and write those strings to a random file?

8: What Visual Basic statement defines a new data type?

9: True/False. The following code declares a new user-defined variable named CustRec:

Type CustRec
 strFName As String * 10
 strLName As String * 15

 curBalance As Currency
 blnDiscount As Boolean
End Type

10: What is the difference between the Dir() function with an argument and the Dir() function without an
argument?

Exercises

1: Bug Buster: Frannie has file problems. She gets an error when she runs an application with the following
statement. Can you explain to her the most likely reason an error occurs? (Assume that the directory named
Bills exists and resides in the root directory C.)

RmDir "C:\Bills"

2: Write a procedure that creates a sequential file that holds the following information: name, age, and favorite
color. Fill this file with five records (each record should contain one name, one age, and one color). Use three
For loops to write this information to the file. Tip: You should initialize three arrays, one for each kind of
value you're writing .

3: Create a dialog box that mimics the File Open dialog box. Use only the drive, directory, and file selection
lists as well as OK and Cancel command buttons. Write code so that an application that uses this dialog box
will change the directory or file lists whenever a user selects a different drive or directory. (Although you'll
use the standard common dialog box control for your applications, this exercise helps show you how the file
controls relate to one another.)

Bonus Project 6: Reading and Writing Files
This Bonus Project's application demonstrates further how to read sequential files. The application also integrates the
common dialog box control into the file-opening process to get a filename from the user. This Bonus Project builds on
the file-based procedures you learned how to write in Day 12's lesson ("Interact with Files"). This Bonus Project is a
file-viewing program. The user selects a file, and the file appears in a list box. The project performs the following
tasks:

• Enables the user to select a file using the File Open dialog box.
• Enables the user to change the file's background color using the Color dialog box.
• Enables the user to resize the form. Once the form has been resized, the application adjusts the form's controls

to the new form size.

• Performs error-handling in the File Open code so that the user can click the dialog box's Cancel button to keep
the current file in view without selecting a different file.

• Enables the user to view either batch or text files (those with the .BAT and .TXT filename extensions,
respectively) but limits the files that can be read to a maximum of 4,096 bytes.

Figure BP6.1 shows what the file viewer looks like after a file has been selected for viewing.

Figure BP6.1. The user can view any text or batch file inside the list box.

First, you'll add the graphic elements to the form and then you'll add the code that responds to the user's actions.

Creating the Interface
Add the controls and their properties to the form according to Table BP6.1.

Note

Indent all the menu items within the Menu Editor, except for the first item, File, which will appear on the application's
menu bar. By indenting the subsequent menu items, they will appear in the File menu's drop-down list of options.

Table BP6.1. Set these controls and properties on the form.

Control Property Name Property Value

Form Name frmFile

Form Caption File Viewer

Form Height 4620

Form Width 6570

List box Name lstFile

List box Height 205

List box Left 720

List box Top 1320

List box Width 4815

Command button Name cmdColor

Command button Caption &Change the File Color

Command button Height 495

Command button Left 2760

Command button Top 480

Command button Width 1215

Menu item #1 Caption &File

Menu item #1 Name mnuFile

Menu item #2 Caption &Open

Menu item #2 Name mnuFileOpen

Menu item #3 Caption -

Menu item #3 Name mnuFileSep1

Menu item #4 Caption E&xit

Menu item #4 Name mnuFileExit

Common dialog box Name comFile

Common dialog box DialogTitle File Open

Common dialog box InitDir c:\

Common dialog box Filter Text (*.txt)|*.txt|Batch (*.bat)|*.bat

Table BP6.1. Set these controls and properties on the form.

Control Property Name Property Value

Common dialog box CancelError True

Common dialog box MaxFileSize 4096

One of the easiest ways to set up the common dialog box control is to click the (Custom) entry in the Properties
window and initialize the dialog box that appears, as shown in Figure BP6.2. Using the dialog box is simpler than
entering the values from the Properties window.

Figure BP6.2. Use the custom dialog box to enter common dialog box control properties.

Tip

You do not need to set any color-related properties. The color selection dialog box needs no properties set before your
program displays it. The user's color selection will not change any of the file-related properties that you set up for the
common dialog box control.

Entering the Code
Listing BP6.1 provides the event code you need to enter for this project.

Tip

Instead of typing the code line by line, you can enter a new procedure inside the Code window easily by getting help
from the editor. If you select Tools, Add Procedure, Visual Basic opens the dialog box you see in Figure BP6.3. Simply
type the procedure name, its type, and its scope. Visual Basic automatically creates the wrapper lines for you so that
you don't have to type the first and last procedure lines.

Figure BP6.3. Let Visual Basic type the first and last procedure lines for you.

Listing BP6.1 Loading a file into a list box control.
1: Private Sub cmdColor_Click()
2: ' Use the common dialog box to
3: ' let the user change the background
4: ' color of the list box.
5: comFile.ShowColor
6: lstFile.BackColor = comFile.Color
7: End Sub
8:
9: Private Sub Form_Resize()
10: Dim intMsg As Integer ' For MsgBox()
11: ' Change the size of the list box
12: ' if the user resizes the form
13: '
14: ' This event procedure executes when the
15: ' form first loads also
16: '
17: ' Make sure the form is not sized so small

18: ' that the list box cannot display
19: If (frmFile.Width < 4000) Or (frmFile.Height < 3500) Then
20: ' Hide list box
21: ' and warn user
22: lstFile.Visible = False
23: intMsg = MsgBox("The form is too small to display the file",
 vbCritical)
24: Else
25: ' Turn on list box display in case it
26: ' was turned off previously
27: lstFile.Visible = True
28: ' Adjust the size of the list box to the form
29: ' Adjust the command button's location to the form
30: lstFile.Width = frmFile.Width - 1440
31: lstFile.Height = frmFile.Height - 2500
32: cmdColor.Left = (frmFile.Width / 2) - 500
33: End If
34: End Sub
35:
36: Private Sub mnuFileExit_Click()
37: ' Program termination option
38: End
39: End Sub
40:
41: Private Sub mnuFileOpen_Click()
42: Dim strFileLine As String
43: ' Set up for Cancel click
44: On Error GoTo comErrorHandler
45: '
46: ' Display the File Open dialog box
47: comFile.ShowOpen
48: ' Code either continues if User clicks OK
49: ' or skips to error handler if Cancel clicked
50: '
51: ' Open the file the user selected
52: Open comFile.FileName For Input As #1
53: ' Make room for new file
54: lstFile.Clear
55: '
56: ' Read one complete line of the file
57: Line Input #1, strFileLine
58: lstFile.AddItem strFileLine
59: '
60: ' Keep reading and adding to the list
61: 'box until the end of file is reached
62: Do Until (EOF(1))
63: Line Input #1, strFileLine
64: lstFile.AddItem strFileLine
65: Loop
66: ' Close open file
67: Close
68: comErrorHandler:
69: ' Do nothing if the user clicks Cancel
70: End Sub

Analysis
The first event procedure in lines 1 through 7 displays the common dialog box control using the ShowColor method.
When the user selects a color, line 6 sets the list box's background to that color, and whatever file the user is viewing is
shown against that new background color. (If a file is not being viewed, the list box still shows the selected color in the
background.) The list box retains the background color throughout the rest of the program unless the user once again
clicks the command button to change the color.

Line 9 begins the second-longest event procedure in the program. When the user resizes the form, the Form_Resize()
event procedure automatically executes. (The procedure also executes automatically when the form first loads.)

The resize procedure ensures that the form's command button and list box appear centered within the form's boundaries
regardless of the size of the form. If the user shrinks the form too much for the list box to show up, line 19 ensures that
the following events take place:

• The list box is hidden from view (otherwise, Visual Basic would issue an error because the list box could not
appear in such a small form).

• The user is warned with a message box that the form is too small.

Assuming the resizing did not eliminate the list box, line 27 shows the list box, and the width and height of the list box
are adjusted based on the form's Width and Height property values. In addition, the location of the command button
changes depending on the form's Width property.

Line 41 begins the longest event procedure in the program. This procedure opens and reads the selected file. When the
user selects File, Open, the common dialog box control opens to display the File Open dialog box, as shown in Figure
BP6.4. The event procedure uses the ShowOpen method in line 47 to produce the File Open dialog box.

Figure BP6.4. The user can select a batch or text file from the File Open dialog box.

Caution

The user's File Open list of folders and files will differ from the list shown in Figure BP6.4, depending on the contents
of the user's disk.

The user sees the File Open dialog box after selecting File, Open from the menu bar. The user can open the Files of
type drop-down list box to display files with the extension .TXT or .BAT (all folders are always shown no matter
which file type the user selects). The user can traverse folders to locate a file anywhere on the PC or even on a
networked PC.

Line 44 sets up the error-handling code just in case the user clicks the File Open dialog box's Cancel button. The error-
handler causes execution to jump to the end of the event procedure and leave everything on the form and inside the list
box untouched.

When program execution reaches line 52, the user will have selected a file. Line 52 opens that file for input as a
sequential file.

Note

The file is opened for input only, not output; therefore, the program cannot harm the file's contents.

Line 54 clears the list box so that the contents of the newly selected file can replace the file whose contents were there
previously. Lines 57 and 58 read the first line from the file and add that line to the list box using the AddItem method.
Line 57 introduces a new command to you: Line Input #. After mastering Input # and Get #, you'll have no
trouble with Line Input #. Here's the format of Line Input #:

Line Input #intFileNumber, strLineVar

Line input reads one complete line (or record) from the file into the string variable designated as strLineVar.If Input
were used instead of Line Input #, a full line might not be read because commas and spaces probably exist in the
lines, and Input # stops reading when it hits a space or comma, even if the space or comma appears in the middle of
the line.

Once the first line is read and sent to the list box, line 62 begins a loop to read the rest of the file. An internal function,
EOF(), is then used to test for the end of file. The file can consist of one line or more, and the program does not know
in advance how many lines reside in the file. Therefore, EOF() returns True when the end of the file is reached. If True
is returned, the loop will no longer read a line and the program will continue starting in line 66.

Tip

Why didn't line 62 read like this?

Do Until (EOF(1) = True)

Line 62 could have tested the EOF() return value against the True value, but there was no reason to do so. Doing so
would actually make the program less efficient. The EOF() function returns either a True or False result depending on
the file's end-of-file condition. As you'll recall from the lessons you've already mastered, functions (the ones you write
as well as internal functions) become their return values. Therefore, the call to EOF() becomes True or False, and no
further testing is needed for the Do Until conditional phrase.

Line 67 closes the file, and the program then continues letting the user view the selected file or lets the user select
another file.

Day 13. Printing VB Output

Today's lesson shows you how to send output to the printer. Now that you've mastered Visual Basic's development
environment, have learned a lot of the language, and can develop working applications, you should know how Visual
Basic deals with printed output. Obviously, you'll want your applications to print things sometimes. Until now, you've
had no way to send information to the printer.

Be forewarned—Visual Basic's printer interface isn't as simple as most of the other Visual Basic components you've
mastered. Printing data from a VB program usually isn't a trivial task. This lesson explains how to work with the
several printer interfaces available to Visual Basic programmers.

Today, you learn the following:

• About printer objects
• How to determine your user's printer settings
• About the Is TypeOf statement
• About printer-based methods
• How the printer methods mimic the form methods
• About proper printing techniques
• How to warn your users before printing begins
• How to print forms

Printer-Based Objects
Let's say you want to print a copy of the code in your Code window. To do this, you would select File, Print. Some PCs
have multiple printers connected to them. Your applications have access to all the printers on the system. Also, internal
faxes often act as printers. Therefore, you can print to any printer or fax from your application by selecting the
appropriate printer as Visual Basic's default printer. After you set Visual Basic's default printer, Visual Basic will route
all output to that printer and ignore the system's default printer until the application ends or you designate yet another
default printer.

Tip

To set a different Windows default printer from the system's Printers window, click the Windows Start button and
choose Settings, Printers.

Selecting a printer for your code listings is simple. Now, let's discuss producing printed output with your applications.
Before getting to the specifics, you should take a moment to learn about a special set of objects—the Printers
collection.

The Printers collection is a list of all the printers on your application's PC, including internal modems that are set up
to send faxes. The collection does not include the printers on the PC you create the application on necessarily, but the
printers on the runtime PC.

The Printers collection is the list of all the printers on the system running your application. This collection obviously
changes from system to system. A user might run your application one minute, add or remove a system printer, and

then run your application again, causing the application's Printers collection to vary between the two runs. Today's
lesson explains how to access the printers in the current collection.

Note

The Printers collection is the same list of printers that appears in the system's Print dialog box when you open the
Name drop-down list box.

Accessing the Printers Collection

As with most lists within Visual Basic, you can reference the Printers collection from your application by using an
index value. The first printer (the system default printer) has an index value of 0, the second printer has an index value
of 1, and so on. If you want to use a For loop to step through the printers, you can determine the number of printers
now on the system by referencing Printers.Count-1. Alternatively, you can use the For Each statement to step
through the printers without having to determine the number (as seen in an example that follows later in Listing 13.1).

Use the Set Printer statement to set Visual Basic's default printer to one of the printers on the system. The following
statement sets Visual Basic's default printer to the second printer on the system:

Set Printer = Printers(1) ' Change the default printer

Of course, determining the printer you want to print to at runtime isn't always easy. How can you even know what kind
of printer you're testing for? You can test only for specific properties. For example, if you need to print to a printer that
has a certain page size, you can loop through every printer on the system, looking for one that has that page size.

Testing for Printer Properties

Table 13.1 lists many important printer properties that you'll commonly use in determining which printer your
application needs. Most of these properties have named constant values associated with them. Therefore, rather than
test for property values of 1 or 2 for a page size, you can test by using named constants such as vbPRPSLetter and
vbPRPSLetterSmall. These are easier to understand later when you maintain the program (but they take longer to
type).

Tip

If you look up a property in the Online Help reference, you'll find a list of the named constants that Visual Basic
supports for that property.

Table 13.1. You can determine if the user's printer supports these properties.

Property Description
ColorMode Determines whether the printer can print in color or black-and-white.
Copies Specifies the number of copies the user wants. (This is set at runtime by the user from the Print

dialog box that your application displays or by your code setting this property.)
CurrentX,
CurrentY

Returns or sets the X and Y coordinates where the next character (or drawing) will appear.

DeviceName Holds the name of the printer, such as Canon BubbleJet IIC.
DriverName Holds the name of the printer. (Multiple printers from the same company may use the same printer

driver.)
Duplex Determines whether the printer can print on both sides of the paper or to only a single side.
Height Returns the height of the printed page for the selected printer (in ScaleMode measurements).
Orientation Determines or sets the printer's portrait or landscape orientation.
Page Returns the current page number.
PaperBin Returns or sets the paper bin used for printing. (Keep in mind, though, that not all printers support

multiple bins.)
PaperSize Returns or sets the paper size currently being used.
Port Returns the name of the printer's port.
PrintQuality Returns or sets the printer's resolution value.
TrackDefault If False, TrackDefault keeps the current printer property settings when you change default

printers; if True, it changes the printer property settings at runtime when a different default printer
is selected.

Width Returns the width of the printed page for the selected printer (in ScaleMode measurements).
Zoom Returns or sets the percentage of scaling used for the printed output; for example, if you set the

Zoom property to 75, subsequent output appears on the page at 75 percent of its regular size. (Not all
printers support the Zoom property.)

When your application runs, the printer properties for the Printer object match those of the Windows system default
printer. If you select a new default printer for Visual Basic, the properties change accordingly. At runtime, you can
change many of these properties, as described in Table 13.1.

Note

You'll use many of the properties from Table 13.1 to access the specific printer-output methods introduced in the next
section.

The code in Listing 13.1 demonstrates how you might step through the system's current printers.

Listing 13.1 You can locate each of the user's printers.
1: Dim prnPrntr As Printer
2: For Each prnPrntr In Printers ' Steps through each
3: frmMyForm.Print prnPrntr.DeviceName
4: Next

The code simply prints each printer's name on the current form.

Notice the first line, which declares a variable with the data type Printer. As you learn more about Visual Basic,
you'll notice that you can declare variables of virtually any data type, including Printer and Form. The prnPrntr
variable lets you walk through each printer on the system. An equivalent For statement would be this:

For prnPrntr = 1 to (Printers.Count - 1)

Note

Remember that Printer and Form are Visual Basic objects. You learn more about Visual Basic objects in Day 16,
"Objects and Visual Basic."

Rarely, if ever, would you want to print every printer's name on a form. Nevertheless, the loop shown in this example
will form the basis for much of your printer processing.

As an additional example, Listing 13.2 searches through all printers on the system, looking for a color printer to output
a colorful chart.

Listing 13.2 Locating a color printer on the user's system.
1: Dim prnPrntr As Printer
2: For Each prnPrntr In Printers
3: If prnPrntr.ColorMode = vbPRCMColor Then
4: ' Set color printer as system default.
5: Set Printer = prnPrntr
6: Exit For ' Don't look further
7: End If
8: Next ' Step through all of them if needed

Controlling the Output
The Printer object exists so that you can send data to the default printer without worrying about specific printer types
and ports. You apply methods to the Printer object to route output—such as reports and graphics—to the printer.

Although programming with the Printer object can be tedious, you'll develop general-purpose output procedures that
can help you print more easily in subsequent programs.

Tip

Before sending output to the Printer object, set the default printer by using the previous section's Set Printer
statement if you want the Printer object to point to a printer other than the system default printer.

After you select a default printer, use the Printer object to route text and graphics to the user's printer. This section
explains how to control the Printer object and route text to the printer. In tomorrow's lesson, you'll learn graphics
commands and methods that you can also apply to the Printer object.

With the Printer object, you build your output. This means that you send output to the Printer object, but nothing
actually prints. When you've completed the output and are ready to send the completed output to the printer, you issue
the NewPage or EndDoc method to start the actual printing. (Printing also begins when your application ends if you don't
first issue the EndDoc method.)

Printing to the Printer Object

One of the easiest ways to route output to the Printer object is to use the Print method. The following lines send a
message to the printer:

Printer.Print "This report shows sales figures for"
Printer.Print dteStart; " through "; dteFinish; "."
Printer.Print "If you need more information, call ext. 319."

Caution

Windows actually handles the printing details. Therefore, if the user runs out of paper or if the printer is turned off
when the printing begins, Windows warns the user with an error message box, such as the one shown in Figure 13.1.
Once the user corrects the problem, he or she can click Retry to continue the printing or click Cancel to completely
discard the rest of the unprinted output.

Figure 13.1. Windows lets the user correct printing error occurances.

Of course, you can send literals, variables, and control values to the printer. Anything you can print to the form using
Print, you can also print to the Printer object, as the following sample statements show:

sngTaxRate = .34
strTitle = "Sands on the Beach"
Printer.Print strTitle & " is the name of the book"
Printer.Print "Your tax rate is" & sngTaxRate

If you want to print blank lines, issue a Print method without any arguments:

Printer.Print ' Prints a blank line

Tip

Warn your users before printing occurs so that you don't surprise them. The last section in today's lesson discusses how
you can alert your users to this.

You used the Print method to send output to a form in the lesson in Day 11, "Working with Forms," but as you can
see here, Print is a general-purpose method that sends output to any valid object that can accept text.

You can move the print output to the top of the next page at any point by using the NewPage method:

Printer.NewPage ' Go to top of next page

Scaling Output

When printing, you may want to scale the output to create margins on the page that subsequent printing-related
methods will respect. Once you set the ScaleMode property to specify the measurement value your program will use,
you can use other scaling-based properties to determine how your output will be positioned on the page.Table 13.2 lists
the properties you can set to produce a scaling effect.

Table 13.2. Scaling properties determine the measurement.

Property Description
ScaleLeft Defines the printable area's extreme left X coordinate. For example, a ScaleLeft value of 10 moves the

subsequent left margin by 10 ScaleMode measurements.
ScaleMode Determines the measurement value used for scaling. Generally, a ScaleMode of vbPoints (the value 2),

vbCharacters (the printer's default character width), vbInches, or vbCentimeters is used for text
printing.

ScaleHeight Changes the Printer object's vertical coordinate system.
ScaleTop Defines the printable area's extreme top Y coordinate. For example, a ScaleTop value of 5 moves the

subsequent top margin by five ScaleMode measurements.
ScaleWidth Changes the Printer object's horizontal coordinate system.

To set a top margin of five characters and a left margin of eight characters, you would issue the following methods:

Printer.ScaleMode = VbCharacters ' Set scale to chars
Printer.ScaleTop = 5
Printer.ScaleLeft = 8

Subsequent Print methods will respect these boundaries.

CurrentX and CurrentY Positions

Unless you change the coordinate system from an upper-left page coordinate of 0,0 to another X,Y system with the
ScaleHeight and ScaleWidth properties, the Printer object's CurrentX and CurrentY values begin at 0,0. (The
coordinates always use the measurement set by ScaleMode.) You can change these values to different X and Y
coordinate values if you want to print the next item at a specific location on the page.

Note

The CurrentX and CurrentY properties always respect the margins you've set with ScaleLeft and ScaleTop.
Therefore, the coordinate pair CurrentX, CurrentY refers to the first character at the upper-left corner of the current
page within any margins that you've defined.

To print a message 15 lines down the page and 25 characters to the right, you could use the following code:

Printer.ScaleMode = VbCharacters
Printer.CurrentY = 14 ' Remember the starting value = 0
Printer.CurrentX = 24
Printer.Print "Warning, warning, there's danger ahead."

Visual Basic's Printer object supports several methods that let you control the printing process. You can move the
printing to the top of the next page at any time by using the NewPage method:

Printer.NewPage ' Go to top of next page

At any point during the preparation for printing, the KillDoc method can be issued if the user wants to cancel the print
job:

Printer.KillDoc ' Don't send the output to the printer

KillDoc completely removes the output from the Printer object. If the user needs to reissue the printed document
later, the output has to be re-created.

Note

KillDoc can't cancel anything that has already started printing. Also, KillDoc can't kill PrintForm jobs.

Microsoft recommends creating a general-purpose printing subroutine inside a standard module that you can call from
subsequent applications—as long as you include the standard module in those applications. You can use this routine to
print form graphics. The code in Listing 13.3 accepts two arguments of the Object data type. Because the subroutine
receives the Object data type, you can pass it either a Form or Printer object.

Listing 13.3 You can use this procedure to print specific controls from a form.
1: Sub PrintAnywhere (Src As Object, Dest As Object)

2: Dest.PaintPicture Src.Picture, Dest.Width / 2, Dest.Height / 2
3: Is TypeOf Dest Is Printer Then
4: Printer.EndDoc
5: End If
6: End Sub

Suppose your application contains a form with a picture box or image that you want to display and also send to the
printer. Perhaps you display a blank form in which users enter data and then send the completed form to the printer.

This subroutine requires source and destination arguments in line 1. The source will always be the form you want to
print. The destination can be Printer. You can call the procedure whenever you're ready to print the form, like this:

Call PrintAnywhere (frmUserForm, Printer) ' Print form

This subroutine uses the PaintPicture method to output the form. PaintPicture draws a form on the object to which
you've applied PaintPicture. The PaintPicture method requires three values: the form to draw, the destination
width, and the destination height. This code simply paints a form that's one-half the size of the destination area. To
ensure that the form prints at the end of this method, the If statement immediately outputs the form with the EndDoc
method if the destination is the Printer object and not another form. (You could pass a second form for the
destination.)

The Is TypeOf statement demonstrates a kind of If you haven't seen before. The Is TypeOf...Is command lets you
test objects for certain data types.

Note

The Is TypeOf...Is statement does more than just test for specific objects, as you'll find out in Day 16.

Formatting with Font

Table 13.3 lists some font-related Printer object properties you can work with to set specific font properties before
sending text to the printer.

Table 13.3. You can set font-related properties before sending text to the printer.

Property Description
Font Returns a font you can use for setting font attributes.
FontBold Holds either True or False to determine whether subsequent output will be boldfaced.

Table 13.3. You can set font-related properties before sending text to the printer.

Property Description
FontCount Returns the number of fonts supported by the printer.
FontItalic Holds either True or False to determine whether subsequent output will be italicized.
FontName Holds the name of the current font used for output.
Fonts Contains a list of values that holds the names of all installed fonts on the system. Access this list as

if it were a control array so that Fonts(0) and Fonts(FontCount - 1) are the first and last
subscripts, respectively.

FontSize Determines the size, in points, of the font currently being used.
FontStrikeThru Holds either True or False to determine whether subsequent output will be printed with a

strikethrough line.
FontTransparent Holds either True or False to determine whether subsequent output will be transparent.
FontUnderline Holds either True or False to determine whether subsequent output will be underlined.

Use the font attributes when you want to add special effects to your printed output by changing the text font
information. The following section of code produces the words Visual Basic in large letters on the printer:

Printer.FontItalic = True
Printer.FontBold = True
Printer.FontSize = 72 ' 1-inch letters
Printer.Print "Visual Basic"

Not only can you use these Printer methods for your printer, you can use them for forms as well. Study the code in
Listing 13.4 and try to determine what will go to the form. (The identical output would go to the printer if you applied
the Print methods to the Printer object, but by sending the output to the form, you can see on the screen what would
otherwise appear on the printer.)

Listing 13.4 You can use the same Print methods to produce output on the form or the printer.
1: Private Sub cmdPrint_Click()
2: ' Produces an interesting output on
3: ' the form using the Print method
4: Dim intCtr As Integer
5: Dim intCurX As Integer
6: Dim intCurY As Integer
7: '
8: ' First, set up the font
9: frmPrint.FontItalic = True
10: frmPrint.FontBold = True

11: frmPrint.FontSize = 36 ' 1-inch letters
12: '
13: ' Set measurements to TWIPs
14: frmPrint.ScaleMode = vbTwips
15: '
16: ' Save the current X and Y TWIP locations
17: ' each time the loop iterates
18: For intCtr = 1 To 10
19: intCurX = frmPrint.CurrentX
20: intCurY = frmPrint.CurrentY
21: ' Print either black or white
22: If (intCtr Mod 2) = 1 Then ' Even loop counter
23: frmPrint.ForeColor = vbWhite
24: Else
25: frmPrint.ForeColor = vbBlack
26: End If
27: ' Output the text in the large font
28: frmPrint.Print "Visual Basic"
29: '
30: ' Reposition the print location
31: frmPrint.CurrentX = intCurX + 350
32: frmPrint.CurrentY = intCurY% + 300
33: Next intCtr
34: End Sub
35:
36: Private Sub cmdExit_Click()
37: End
38: End Sub

In lines 9 through 11, a large, italicized font is set up for the form using the various font-related methods. Line 14 then
sets the measurement value to twips so that subsequent CurrentX and CurrentY properties are set to twips and not
characters. Line 18 begins a loop that will, ultimately, produce 10 sets of Visual Basic on the form. The way the words
appear is unusual, however.

Caution

If you reproduce this example for printer output, change the color named constant in line 23 to something other than
vbWhite. As long as you have a color printer, you can use a color that will show up on paper, such as vbBlue or
vbRed.

At the top of the loop, in lines 19 and 20, the code stores the current values of CurrentX and CurrentY. If the program
did not save these values, each Print method would appear on a full line after the previous Print method. Remember
that each Print automatically sends the text cursor down to the start of the next line unless you override the cursor
movement by placing a semicolon at the end of the Print method or position the text another way (as was done here
through the CurrentX and CurrentY values).

The If statement that begins in line 22 controls the color of the output. Every time through the 10 loop iterations, the
output will be either white or black. The Mod operator in line 22 returns either 0 or 1, depending on the loop counter. If
intCtr is even, line 22 computes a Mod value of 0, but if intCtr is odd, line 22 computes a Mod value of 1.

The simple printing of Visual Basic occurs on line 28. This Print method would normally place the text cursor down
to the next line so that subsequent Print output would not overwrite the previous Print output, but lines 31 and 32
ensure that the text cursor goes right back up to the location of the previous Print—almost. Lines 31 and 32 add a
partial line's worth of twips to the CurrentX and CurrentY measurements of the previous Print (saved back in lines
19 and 20). The end result is that the next time through the loop, the words Visual Basic will appear offset somewhat
and in a different color than the previous Print. This printing continues through the loop's 10 iterations. Figure 13.2
shows the result on the form, and this result looks just as it would on the printer if you applied these Print methods to
the Printer object.

Figure 13.2. Using Print methods to modify the way the output looks.

Printing Your Forms
One of the easiest ways to send output to your printer is to print a form. Visual Basic includes the PrintForm method,
which applies to any form in your project. To get output to the printer, simply write to the form by using the standard
controls with the Print method you've already mastered and then print the form.

This section explains the PrintForm method. Similar to the Print method, you apply PrintForm to your project's
forms. When you issue a PrintForm method, Visual Basic begins printing the form immediately. Therefore, you must
have the form ready for output before issuing PrintForm. This section explains how to use PrintForm to achieve the
best results. You'll see that PrintForm won't suffice for much of your Visual Basic printing, but this method works
well for outputting forms to the printer.

Tip

Perhaps the biggest benefit of PrintForm, as well as Visual Basic's other printer-output capabilities, is that Visual
Basic uses Windows Printer objects. Therefore, you never need to worry about specific printing instructions that are
unique to a certain printer brand and model.

Here's the format for the PrintForm method:

[frmFormName.]PrintForm

Notice that frmFormName is optional; if you don't specify a form name, Visual Basic applies the PrintForm method to
the current form.

To print a form named frmAccPayable, you would issue the following command at the event procedure or module
procedure that requires the printing:

frmAccPayable.PrintForm ' Print the Accounts Payable form

If frmAccPayable is the current form (the form with the focus whose title bar is highlighted), you can omit the form
name:

PrintForm ' Print the Accounts Payable form

Me always refers to the current form, so you can also issue the following statement to print the current form:

Me.PrintForm ' Print the Accounts Payable form

Tip

You can return to Day 11, "Working with Forms," to review the Print method. Print sends text output directly to the
form. You can send output to a form with Print and then print the form with PrintForm. Remember, though, that all
controls that appear on the form will also appear on the printed output.

PrintForm Warnings
The strength of PrintForm lies in its simplicity. PrintForm definitely provides the most useful—and simplest—printer
output within Visual Basic. Unfortunately, along with its simplicity come a few problems you should know about.

No matter how high a resolution a user's printer can print, PrintForm prints the form at the screen's current resolution.
This resolution generally goes no higher than 96 DPI (DPI means dots per inch). Printer resolutions often range as high
as 600 DPI, so the form won't look as good on paper as it looks onscreen (96 DPI is quite adequate for screen
resolution but isn't high enough for quality printout resolution).

You must always make sure the form's AutoRedraw property is set to True before you print any form that contains
controls and other nontext graphic elements. By default, a form's AutoRedraw property is False, meaning that the
Print method prints directly atop graphical controls. If you set AutoRedraw to True, the graphic stays in the
foreground while Print does its thing behind the image and doesn't overwrite part or all of the graphic. You might use
the False property of AutoRedraw to create background graphics first. You then can later write text on top of it, but
then you must set the AutoRedraw property to True immediately before printing the form so that the output appears
correctly at the printer.

Be careful, because PrintForm prints those objects placed on the form at design time (and their runtime control values
for controls such as labels and text boxes) only if AutoRedraw is False. Therefore, if you add graphics and pictures to
a form at runtime and then want to print the form with PrintForm, be sure to set the form's AutoRedraw property to
True before adding the additional items. Otherwise, the runtime additions won't appear on the printed form.

Caution

Printing is sometimes the bane of the Windows programmer. Test your application on as many different printers as
possible to make sure you're getting adequate results. You can't ensure that your printed output will look great on every
printer, but you should have an idea of the results on a few common printer types if you distribute your applications to
a wide range of users. Your application is dependent, of course, on your users'printer drivers being properly installed
and set up. Your application also depends on users selecting an appropriate printer.

Your application can do only a certain amount of work toward good printing results, because the Windows printer
interface takes over much of your printer interface job. Windows is only trying to help by putting this interface buffer
between your application and the printer—and you certainly have to code much less than the MS-DOS programmers of
old, who had to take into consideration every possible printer in existence (an impossible task because printers often
came out after the code was written but before the application was distributed).

Listing 13.5 shows how you can print a text message to a blank form and then send that message to the printer.

Listing 13.5 You can send messages first to the form and then to the printer.
1: Dim blnAutoRedraw As Boolean ' Holds value of AutoRedraw
2: '
3: frmBlank.Print "This is a Division Listing"
4: frmBlank.Print ' Blank line

5: frmBlank.Print "Division"; Tab(20); "Location"
6: frmBlank.Print "--------"; Tab(20); "--------"
7: frmBlank.Print "North"; Tab(20); "Widgets"
8: frmBlank.Print "South"; Tab(20); "Presses"
9: frmBlank.Print "East"; Tab(20); "Dye Tools"
10: frmBlank.Print "West"; Tab(20); "Grinders"
11: '
12: ' Save the form's AutoRedraw Property
13: '
14: blnAutoRedraw = frmBlank.AutoRedraw
15: '
16: ' Now print the form
17: '
18: frmBlank.AutoRedraw = True
19: frmBlank.PrintForm
20: '
21: ' Restore the AutoRedraw Property
22: '
23: frmBlank.AutoRedraw = blnAutoRedraw

This code demonstrates saving the form's AutoRedraw property before triggering the PrintForm method. Although, in
this case, you're probably safe setting the AutoRedraw property to True at design time (assuming that you'll never send
graphics to the form elsewhere in the application), you can use this property-saving feature before you print any form.

Tip

Create a standard module property that receives a form as its argument (you can send and receive forms just as you do
variable data types), saves the AutoRedraw property, and prints the form with PrintForm. This general- purpose
procedure will save you from having to code the AutoRedraw-saving property each time you print with PrintForm.

Any time you print, check for error conditions. The user's printer might not be turned on, might not be connected to the
computer, or might not have paper. Use the On Error Goto command, as shown in Listing 13.6.

Listing 13.6 The On Error Goto command traps errors when you print.
1: Private Sub cmdPrintForm_Click ()
2: Dim intBtnClicked As Integer
3: On Error Goto ErrHandler ' Set up error handler.
4: frmAccPayable.PrintForm ' Print form.
5: Exit Sub
6: ErrHandler:
7: intBtnClicked = MsgBox("A printer problem exists", vbExclamation,
 "Print Error")
8: End Sub

Tip

When you need to print a fill-in-the-blank form from a Visual Basic application, there's no better way to do so than to
create the form and then issue the PrintForm method.

Note

You'll probably want to remove the form's title bar, control menu icon, and window buttons before printing most forms.
You can temporarily hide a form and display another while your code removes these extras by setting the appropriate
display property values to False.

Don't Surprise Your Users
Don't let your application begin printing until the user gives the go-ahead. The user typically has to prepare for your
application's printing, perhaps by loading paper or by turning the printer on. Be sure that you offer the user a dialog box
that lets him or her indicate when the printer is ready. Otherwise, a nasty error message will appear and make the user
dislike and distrust your program.

Listing 13.7 contains an event procedure that you might want to modify for your own requirements. The procedure
produces the message box shown in Figure 13.3. The message box is not fancy, but your users now have time to
prepare the printer before your application prints anything.

Figure 13.3. The user responds to this message box when ready for the report.

Listing 13.7 Offering your users a message box before printing occurs.
1: Public Function PrReady() As Boolean
2: ' Make sure the user is ready to print
3: Dim intIsReady As Integer
4: '
5: ' The user will respond to the following
6 : ' message box when ready for the printing
7: intIsReady = MsgBox("Prepare the printer", vbOKCancel, "Print")
8: '
9: If (intIsReady = vbCancel) Then
10: PrReady = False
11: Else
12: PrReady = True

13: End If
14: End Function

Notice the function's declaration returns a Boolean data type. Therefore, you can place the function call for this
procedure anywhere a valid Boolean data type can go. If the user clicks the message box's OK button, line 12 returns
True for the function, meaning that the user is ready to print. If, however, the user clicks the Cancel button, line 10
returns a False value and the calling code must distinguish between the return values and then print or not print
accordingly.

Listing 13.8 shows a command button's event procedure that might be used to call the PrReady() sfunction.

Listing 13.8 Checking the value of PrReady() before printing.
1: Private Sub cmdPrint_Click()
2: ' Print when ready, but do nothing
3: ' if the user clicks is not ready
4: If PrReady() Then
5: ' Call ReportPrint
6: End If
7: End Sub

Line 4 prints if and only if the user clicks the OK button from inside the PrReady() function.

Summary
Today's lesson explained how to output to the printer. Unlike much of Visual Basic, output to the printer can be tedious
because no control exists to perform the output. Therefore, you must master several Printer methods to make the
printing look the way you want. With that detail, however, comes power, because you can control exactly what gets to
paper as well as how the output looks.

The Printer methods described here work for Form objects as well. Therefore, you can use the methods to send text in
various font styles to the form or printer (or both, if you want to output to both devices). Nevertheless, if you want to
print an application's forms, the PrintForm method is the easiest way to do it.

Tomorrow's lesson explores Visual Basic's graphics and multimedia capabilities.

 Q&A
Q: What if my application and another application send output to the printer at the same time?

A: Fortunately, Windows takes care of queuing up printer output. Your PC actually cannot do two things at
once, and even if two applications seem to send output to the printer at the same time, one will get there first.
Windows queues up all printed output jobs so that they finish in the order applications send them.

Q: Shouldn't I send all output to the form and then just print the form on the printer?

A: The form prints at the screen's resolution and not the printer's resolution. You can get better printed output if
you print directly to the printer. In addition, you may not want all of your application's printed output to
appear on a form. For example, what if your application prints paycheck amounts onto checks? You certainly
don't want to send each check to a form on the screen first and then send the form to the printer. You'll just
want to print the checks directly to the printer where the check forms are. By the way, a check is just a page
to your application and requires only that you position the output inside the check's fields.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next lesson. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: How can your application determine the number of printers installed on the system?

2: True/False. The following declaration declares two variables:

Dim intI As Integer, prnP As Printer

3: Which property determines the measurement scale of the Printer object's properties?

4: How can you force printing to begin on a new page?

5: Which form of If tests objects for specific data types?

6: True/False. You can pass objects, not just variables, to procedures.

7: True/False. KillDoc cancels all printed output, including Printer.Print commands and form PrintForm
methods .

8: What shortcut reference can you use for the current form?

9: At what resolution does a PrintForm method usually print?

10: What value should you assign to the AutoRedraw property before you print forms?

Exercises

1: Create a line of code that writes your name beginning in column 32 on the printer.

2: Bug Buster: Patty the printer programmer is having trouble getting her reports to page properly. She learned
how to program in BASIC years ago but has recently begun working in Visual Basic writing Windows
applications. In the past, Patty assumed, correctly, that a normal page has exactly 66 lines of text in a text-
based programming environment. Therefore, Patty would increment an integer counter variable every time
she printed a line or blank line of text. When the counter got to 66, she would be at the top of the next page in
her report. Now that Patty moved to Windows, her logic no longer works. Why do Patty's reports no longer
have exactly 66 lines per page?

3: Change Listing 13.2, which searches for a color printer, by adding a Boolean variable that is set to True if
and only if a color printer is found. As the code now operates, the default printer remains the same if no color
printer is found. The new Boolean variable will inform subsequent code whether the loop has properly found
a color printer. Make the code a function that returns a Boolean value .

Day 14. Introducing VB Graphics and Multimedia
Today's lesson shows you how to have fun with Visual Basic by drawing lines, ovals, and pictures on your form. You'll
also learn how the image control compares with the picture box control. Once you finish with the graphics, you'll see
how to include sound and video clips to make your applications come alive.

Today's computers are multimedia based. Multimedia is appearing in programs from all sectors—from business,
education, and home applications. Several companies offer additional multimedia-based tools for Visual Basic, and if
you find yourself writing very many multimedia applications, you may want to check out some of these tools. For most
Visual Basic programmers, however, Visual Basic comes with a satisfactory assortment of multimedia controls. Today,
you'll learn about the most common ones.

Today, you learn the following:

• About the picture box and image controls
• Why the picture box control is more flexible than the image control
• About the drawing methods
• How to draw points, lines, boxes, circles, and ellipses
• About the multimedia control
• Why the multimedia control is a multipurpose control, supporting several multi media devices
• How to get the status of your multimedia device

 Comparing the Picture Box and Image Controls
The picture box control and the image control both do basically the same thing. They allow you to place pictures, from
graphics files, on a form. The two controls differ in these respects:

• The picture box control offers more flexibility by supporting additional methods and properties.
• The image control is more efficient and works best in sluggish applications on slower PCs.

Note

As fast as computers are today, you'll rarely, if ever, be able to tell that the picture box control is less efficient than the
image control. Therefore, unless you write for PCs that may be older (as are often found in companies and schools),
stick with the picture box control to take advantage of its flexibility.

Both the image control and picture box control support the following graphics file formats:

• Bitmaps with the .BMP extension
• Cursors with the .CUR extension
• Graphics Interchange Format files with the .GIF extension
• Icons with the .ICO extension
• JPEG files with the .JPEG or .JPG extension
• Meta-files with the .WMF or .EMF (for enhanced meta-files) extension
• Run-length encoded files with the .RLE extension

Several files with these formats appear in the Graphics folder that you installed (or have the option of installing) with
Visual Basic.

The most important property of both the image control and the picture box control is the Picture property, which
holds the graphic. At design time, you can double-click the Properties window's Picture property to display a File
Open dialog box and select a graphics file that has one of the required filename extensions. When you want to display
an image at runtime, you must use the LoadPicture() internal function to associate a graphic file's location to the
Picture property of the control.

The following assignment associates a graphic to a picture box's Picture property:

picPortrait.Picture = LoadPicture("c:\MyPhotos\Charlie.wmf")

Notice that you don't directly assign the path and file to the Picture property. The LoadPicture() function is the
most important function to master when using the image and picture box controls. Here's the full format of the
LoadPicture() internal function:

LoadPicture([GraphicFileName] [,varSize] [,varColorDepth], [varX, varY])

Notice that the graphics filename, the first argument of LoadPicture(), is optional. If you call the LoadPicture()
function without specifying the filename, Visual Basic will erase the picture from the control.

Table 14.1 lists the named constants you can use for the varSize argument if you specify this argument. The varSize
argument specifies the image's size for icons and cursors. The varSize argument is critical because users often use
their Control Panel's display settings to determine the size of cursors and icons on their system. You can access these
system values.

Table 14.1. Specify one of these varSize constants to control the LoadPicture() image size if you load
an icon or cursor file.

Named Constant Value Description
vbLPSmall 0 Small system icon as defined by your video resolution.
vbLPLarge 1 Large system icon as defined by your video resolution.
vbLPSmallShell 2 Determined by the Control Panel's Display Settings page. Click the Appearance tab to see

the caption button size to locate the size of images you change with this varSize value.
vbLPLargeShell 3 Determined by the Control Panel's Display Settings page. Click the Appearance tab to see

the icon size to locate the size of images you change with this varSize value.
vbLPCustom 4 The varX and varY arguments determine the size.

Table 14.2 lists the values you can use for the optional varColorDepth argument when you place icons and cursors.

Table 14.2. Specify one of these varColorDepth constants to control the LoadPicture() color depth if
you load an icon or cursor file.

Named Constant Value Description
vbLPDefault 0 Best match
vbLPMonochrome 1 2 colors
vbLPVGAColor 2 16 colors
vbLPColor 3 256 colors

The varX and varY values are required if you use either the vbLPSmallShell or vbLPLargeShell size values.

When you place image and picture box controls on a form, they respond slightly differently, even if you place them at
the same size measurements and point their respective Picture properties to the same graphics file. You must set an
image control's Stretch property to True before you set the image control's Width and Height properties. If you do
not, the width and height will shrink or expand to the size of the bitmap you place in the control and change the Width
and Height settings automatically. When you place a picture box control on a form, the image automatically expands
or shrinks to fill your size measurements for the control. Therefore, the picture box control will always change the size

of its image to conform to your size property values, but the image control changes your size property values until you
set its Stretch property to True.

Tip

Not only can you apply the LoadPicture() function to image and picture box controls, but you can apply it to forms as
well! Therefore, you can place a graphic on your form's background instead of a solid color. The following statement
assigns a check image to the form:

frmCheck.Picture = LoadPicture("Check.wmf")

Depending on your graphic files'location, you will have to insert the path to your graphics files. The path can get long.
For example, you may have to write a line that looks like this:

frmCheck.Picture = LoadPicture("d:\program files\Microsoft Visual
Studio\Common\Graphics\metafile\business\Check.wmf")

Figure 14.1 shows the resulting form with command buttons and labels on the form. The picture becomes the form's
background. (If you want to place a graphics file on the form's background at designtime, use the Properties window's
Picture property.)

Figure 14.1. You can place a graphics file as your form's background.

The Drawing Controls
The toolbox includes these two drawing tools:

• Line control— Draws straight lines between two points you specify.
• Shape control— Draws one of several shapes based on the criteria you specify in property values.

Drawing Lines

You'll find many uses for the line control, even if you don't need to work with multi media graphics in the applications
you write. The line control is useful for accenting form information by underlining and highlighting useful text. Figure
14.2 shows an application that uses the line control on a title form that appears for five seconds every time the user
starts the application.

Figure 14.2. Lines help accent and highlight important parts of this form.

When you double-click the line control, Visual Basic places a line in the center of your form with two sizing handles on
the ends. You can drag the handles to lengthen or shrink the line, and you can move the handles up or down to change
the line's direction. As you size and drag the handles, Visual Basic updates the appropriate property values that define
the line.

The following properties are important to understand before placing lines on your form:

• BorderColor determines the line's color.
• BorderStyle determines the line's format, as specified by the values from Table 14.3 and shown in Figure 14.3.

Figure 14.3. The BorderStyle property determines how Visual Basic draws the line.

• BorderWidth determines the line's width in points (1/72nds of an inch).
• X1, Y1, X2, Y2 determine the line's starting and ending coordinate values. A point on your form is defined by

two values, and a line is defined by two points (the line appears between the points).

Caution

The BorderWidth property must be 1 for the BorderStyle to show up on your line.

Table 14.3. The BorderStyle property determines how your line appears on the form.

Named Constant Description
0-Transparent The form's background color shows through the line.
1-Solid Solid line.
2-Dash Dashed line.
3-Dot Dotted line.
4-Dash-Dot Each dash is followed by a dot.
5-Dash-Dot-Dot Each dash is followed by two dots.

Drawing Shapes

Whereas the line control draws only lines, the shape control draws several shapes. The Shape property determines the
shape, as described in the following list:

• 0-Rectangle draws a rectangle.
• 1-Square draws a square.
• 2-Oval draws an oval.
• 3-Circle draws a circle.
• 4-Rounded Rectangle draws a rectangle with rounded corners.
• 5-Rounded Square draws a square with rounded corners.

In addition to the Shape property values, Table 14.4 lists other important property values that affect the way the shape
appears on the form.

Table 14.4. Adjust these shape control properties to determine how the shape appears.

Property Description
BackStyle If BackStyle is set to True, the form's background shows through the shape as if the shape were

transparent.
BorderColor The shape's border color.
BorderStyle Takes on one of the values from Table 14.3 to determine the style of the shape's bordering line.
BorderWidth The width of the shape's border in twips.
FillColor The color of the fill pattern (specified by the FillStyle property).
FillStyle Determines the shape's interior pattern. Figure 14.4 shows examples of the eight available fill patterns.
Height The shape's height.
Width The shape's widest axis.

Figure 14.4. These eight FillStyle patterns determine how Visual Basic draws the shape's interior.

By creating a simple application that changes a shape control's properties, you'll master the shape control quickly.
Figure 14.5 shows the result of the application you'll create. By selecting from one of the two list boxes, you'll change
the shape and pattern shown at the top of the form. The shape changes as soon as you select a new value from either list
box.

Figure 14.5. Select a shape and pattern to see the result.

Follow these steps to create the sample application that uses the shape control:

1. Create a new application.

2. Place controls from Table 14.5 on the form.

3. Add the code in Listing 14.1 to initialize the two list boxes at runtime.

4. When you run the application, click any combination of shape and fill style values in the two list boxes to see
the resulting object.

Table 14.5. Use these properties and values on the shape control form.

Control Description

Form Name frmShape

Form Height 7005

Form Left 105

Table 14.5. Use these properties and values on the shape control form.

Control Description

Form Top 105

Form Width 7965

Menu option #1 Name mnuFile

Menu option #1 Caption &File

Menu option #2 Name mnuFileExit (indented one level)

Menu option #2 Caption E&xit

Shape Name shpSample

Shape Height 2025

Shape Left 1710

Shape Top 720

Shape Width 4560

Label #1 Name lblShape

Label #1 Caption Shape

Label #1 Height 420

Label #1 Left 2160

Label #1 Top 3390

Label #1 Width 1215

Label #2 Name lblPattern

Label #2 Caption Pattern

Label #2 Height 420

Label #2 Left 5040

Label #2 Top 3360

Label #2 Width 1215

List box #1 Name lstShape

List box #1 Height 1425

List box #1 Left 1560

List box #1 Top 3960

Table 14.5. Use these properties and values on the shape control form.

Control Description

List box #1 Width 2010

List box #2 Name lstPattern

List box #2 Height 1425

List box #2 Left 4680

List box #2 Top 3960

List box #2 Width 2010

Listing 14.1 Code for initializing the two list boxes and responding to the user's list box selections.
1: Private Sub Form_Load()
2: ' Initialize the shape drop-down list box
3: lstShape.AddItem "0 - Rectangle"
4: lstShape.AddItem "1 - Square"
5: lstShape.AddItem "2 - Oval"
6: lstShape.AddItem "3 - Circle"
7: lstShape.AddItem "4 - Rounded Rectangle"
8: lstShape.AddItem "5 - Rounded Square"
9:
10: ' Initialize the FillStyle pattern drop-down list box
11: lstPattern.AddItem "0 - Solid"
12: lstPattern.AddItem "1 - Transparent"
13: lstPattern.AddItem "2 - Horizontal Line"
14: lstPattern.AddItem "3 - Vertical Line"
15: lstPattern.AddItem "4 - Upward Diagonal"
16: lstPattern.AddItem "5 - Downward Diagonal"
17: lstPattern.AddItem "6 - Cross"
18: lstPattern.AddItem "7 - Diagonal Cross"
19:
20: ' Set the first value of each list as default
21: lstShape.ListIndex = 0
22: lstPattern.ListIndex = 0
23:
24: End Sub
25:
26: Private Sub lstPattern_Click()
27: ' Change the pattern according to the selection
28: shpSample.FillStyle = lstPattern.ListIndex
29: End Sub
30:
31: Private Sub lstShape_Click()
32: ' Change the shape according to the selection
33: shpSample.Shape = lstShape.ListIndex
34: End Sub
35:
36: Private Sub mnuFileExit_Click()

37: End
38: End Sub

Caution

Neither the line control nor the shape control support event processing.

Drawing with Methods
Visual Basic does not limit your graphics to the line and shape controls. If you want, you can manipulate the individual
graphic's pixels and draw a picture dot by dot. The PSet method, which you use with forms, exists so that you can draw
lines, boxes, and circles without the use of controls. When you're drawing lines and shapes at runtime, the controls are
somewhat cumbersome and do not lend themselves to precise drawing as the drawing methods do.

Note

You can apply drawing methods to picture box controls that you place on the form as well as to the form itself.

The PSet method displays or hides individual pixels on a form. The following is the format of PSet:

frmName.PSet [Step] (intX, intY) [color]

Although you can change the scale used with the properties ScaleX and ScaleY, the pixel at row and column inter
section 0, 0 (used in place of (intX, intY) in the PSet method's format) refers to the pixel in the upper-left corner of
the form. The following statement turns on the pixel that resides 100 pixels to the right and 200 pixels down from the
upper-left corner of the form:

frmDraw.PSet (100, 200) ' Turns on a pixel

The color of the pixel is always the form's (or picture box control's) ForeColor value. You can change the color by
specifying a new hexadecimal color value or by using one of these named constant colors: vbBlack, vbRed,
vbGreen, vbYellow, vbBlue, vbMagenta, vbCyan, or vbWhite.

The following statement turns off the pixel at (100, 200) by changing the color used to the same color as the form's
current background:

frmDraw.PSet (100, 200) frmDraw.BackColor ' Turns off a pixel

If you followed this PSet method with the one that follows, another pixel appears at location (300, 350):

frmDraw.PSet (300, 350) ' Turns on a pixel

The PSet method's Step option changes the location of subsequent pixel placements. After you call a PSet method the
first time, the Step option makes the next PSet method's intX and intY pixel values relative. Therefore, if you were to
add the Step option to the previous PSet method as done in the following statement, the pixel would appear 300 pixels
to the right and 350 pixels down from the previously drawn pixel:

frmDraw.PSet Step (300, 350) ' Relative pixel location

You can also use loops to draw lines with PSet. Here's an example:

For intX = 1 to 100
 frmDraw.PSet (intX, 250)
Next intX

Caution

Never go outside the pixel boundaries of the form on which you're drawing; otherwise, a runtime error will occur.

Instead of drawing lines one pixel at a time, you can use another method, the Line method, to draw lines more
efficiently. Here's the format of the Line method:

frmName.Line [Step] (intX1, intY1) - [Step] (intX2, intY2), [Color] [B][F]

The two pairs of pixel coordinate values determine the starting and ending points of the line. The Step option, if you
use it before either pair of coordinate values, turns the coordinates it precedes into relative coordinates from the most
recently drawn line's endpoint.

The following method draws a line from pixel 100,100 to pixel 150,150:

frmDraw.Line (100, 100) - (150, 150)

As with the PSet method, the optional Color value lets you specify a hexadecimal color value or a named color
constant. If you don't specify a color, Visual Basic uses the form's foreground color to draw the line.

To draw a box, use the B option with the Line method:

frmDraw.Line (100, 100) - (150, 150), , B

You have to include the extra comma even if you omit the color value so that Visual Basic knows that the B specifies
the box-drawing option. The two coordinate pairs now specify the upper-left and lower-left corners of the box.

Note

The coordinate pairs for lines and boxes specify opposing endpoints on the line or opposing diagonal corners of the
box. Lines can slant up or down; the first coordinate pair may specify a point below or to the right of the second
coordinate pair.

The interior of the box that you draw will be filled with the same color as the box's outline if you specify the F option:

frmForm.Line (35, 40) - (150, 175), vbGreen, BF ' A green box

A solid box appears with its outline and interior filled with the same color. If you draw a box outside a form's
boundaries, Visual Basic truncates the box to the form's edges. Even if you increase the size of the form after drawing a
box that does not all fit on the form, the entire box never shows unless you redraw the box once again.

Listing 14.2 contains a command button's event procedure that draws a series of boxes on the form from the upper-left
corner of the form to the lower-right corner. If you were to run this procedure, the lines shown in Figure 14.6 would
appear on the form.

Figure 14.6. Use the Line method to draw boxes on a form.

Listing 14.2 Using a series of box-drawing Line methods to create patterns.
1: Private Sub cmdBoxes_Click()
2: Dim intStartX As Integer
3: Dim intStartY As Integer
4: Dim intLastX As Integer
5: Dim intLastY As Integer
7:
8: intStartX = 0
9: intStartY = 0
10: intLastX = 1000
11: intLastY = 800
12:
13: For intCtr = 1 To 20
14: frmBoxes.Line (intStartX, intStartY)-(intLastX, intLastY), , B
15:
16: ' Prepare for next set of boxes
17: intStartX = intStartX + 400
18: intStartY = intStartY + 400
19: intLastX = intLastX + 400

20: intLastY = intLastY + 400
21: Next intCtr
22:
23: End Sub

The drawing methods don't just work for straight lines, they work for circles and ellipses as well. Here's the format of
the Circle method you can use to draw circles and ellipses:

frmDraw.Circle [Step] (intX, intY) sngRadius, [Color], , , , sngAspect

An ellipse is an elongated circle with an oval shape.

Note

The commas are placeholders for advanced Circle arguments that this tutorial does not discuss. You must specify the
commas if you use the sngAspect argument.

A circle has no endpoints, so the intX and intY coordinate values specify the circle's center point. sngRadius specifies
the radius size, in pixels (unless you've changed the form's ScaleMode value). The optional Step keyword specifies
whether the center coordinate pair is relative to a previously drawn object.

A circle's radius is the distance from the outside edge to the center point of the circle.

The following statement draws a circle with a center point at 300 pixels from the form's left edge and 200 pixels from
the form's top edge, with a radius of 100 pixels:

frmDraw.Circle (300, 200), 100

The Circle method uses the foreground color of the form unless you specify a different Color value.

To draw an ellipse, you have to specify the shape of the ellipse with the sngAspect value to determine the ellipse's
aspect ratio. The aspect value will either stretch the circle on its horizontal X-coordinate axis (if you specify a
sngAspect value less than 1) or stretch the circle on its vertical Y-coordinate axis (if you specify a sngAspect value
greater than 1). A sngAspect value of exactly 1 draws a perfect circle.

The aspect ratio determines how prominent the oval shape of the ellipse will be. The aspect ratio acts like a height and
width measurement through the center of the ellipse. The ratio also acts as a multiplier of the radius in each direction.

An aspect ratio of 4, for example, means that the ellipse is four times taller than its height. An aspect ratio of 4/10/2 (or
.2) means that the ellipse is horizontally stretched five times its height.

The following statements draw the ellipses shown on the form in Figure 14.7:

Figure 14.7. The aspect ratio determines the shape of the ellipse.

frmDraw.Circle (1000, 1250), 400, , , , (4 / 10 / 2)
frmDraw.Circle (1750, 1250), 400, , , , 4

The Multimedia Control
Despite its power, the multimedia control is extremely simple to use. You'll write only a small amount of code to use it.
With the multimedia control, you'll be able to embed objects that represent the following simple multimedia devices:

• CD audio player (CDAudio)
• Digital audio tape player (DAT)
• Digital video files (DigitalVideo)
• Overlay (Overlay)
• Scanner (Scanner)
• Videotape player and recorder (Vcr)
• Videodisc player (Videodisc)
• Other devices not specified, supported by third-party drivers (Other)

Note

The values in parentheses are used in the multimedia control's DeviceType property, as described in the next section.

You can also embed objects that represent the following compound multimedia devices:

• The audio file player and recorder plays and records waveform files (files that have the .WAV extension).
• The MIDI sequencer plays Musical Instrument Digital Interface files (files that have the .MID extension).
• The video file player and recorder plays and records Audio Visual Interleave video files (files that have the

.AVI extension).

A simple multimedia device requires no file associated with the control. For example, no file is associated with an audio
CD you insert in your CD-ROM drive to listen to; the CD contains the music and no file is necessary. A compound
multimedia device requires an extra file for the data, such as an audio file player that needs a WAV file to know which
sounds to make.

Obviously, the PC on which your multimedia applications run must support standard multimedia devices, such as
sound, graphics, and video, as well as have a CD-ROM drive (or a compatible device, such as a DVD drive).

Applying the Control

As with the common dialog box control, you must add the multimedia control to your toolbox window, because the
standard toolbox does not list the multimedia control. To do this, press Ctrl+T to display the Components dialog box
and select the control labeled Microsoft Multimedia Control 6.0. When you click OK, Visual Basic adds the control as
the last tool on your toolbox window.

When you place the multimedia control on a form, a familiar set of buttons appears. These buttons mimic the ones that
control your VCR or cassette tape player (see Figure 14.8).

Figure 14.8. The multimedia control produces this set of multimedia device buttons.

The multimedia control is an intelligent control that recognizes the capabilities of the devices you attach to it.
Therefore, the Play button will not be active if you've ejected a CD from the CD-ROM drive. Of course, you have
complete control, through various property value settings, over which buttons appear on the control. Instead of having
an inactive Record button appear on the multimedia control when playing audio CDs (which cannot be recorded over),
you'll want to completely hide the Record button.

Note

The multimedia control provides information to your application about the device and its current settings. For example,
your application can display the track numbers on an audio CD as the CD plays in the drive.

The multimedia control contains a list of devices with preselected buttons, so you don't have to specifically select
individual buttons to appear on each control. The multimedia control supports a property called DeviceType that, when
you initialize it with the device you want to use (such as the value of CDAudio, which specifies that you want the
multimedia control to control an audio CD), the multimedia control automatically enables the correct buttons. The list
of supported devices presented at the beginning of the previous section lists all the values allowed in the DeviceType
property. Your job is to tell the application that the multimedia control is to be a CD audio player; then the multimedia
control takes care of setting up the correct buttons.

As with many of the more involved controls, such as the common dialog box control, the multimedia control includes a
(Custom) entry in the Properties window that you can select to display a dialog box that simplifies selecting properties.
For example, if you click the Controls tab, the dialog box page shown in Figure 14.9 appears. From here, you can
customize exactly which buttons appear on the control. You can also check if you want to display or enable any button
on the control.

Figure 14.9. The Properties window's (Custom) entry makes selecting properties, such as the visible
buttons, simple.

Note

The multimedia control automatically makes all buttons visible but disabled until you enable one or more of the
buttons, or until you select a DeviceType value that determines the button collection the multimedia control is to
enable and display.

An Audio CD Player

To control an audio CD from a Visual Basic application, you need to place the multi media control on a form and
adjust the DeviceType property to CDAudio to produce the correct combination of buttons that respond to audio CDs.
You've almost done all you need to do to set up a basic audio CD player. However, if you want to follow the tracks
being played, you might also want to add a label that displays the track number as the control plays the CDs.

The multimedia control updates its tracking information every time a StatusUpdate event occurs. The multimedia
control updates its StatusUpdate event every time the track changes, as well as when the user begins playing the CD
and stops playing the CD. Therefore, you'll update the tracking label in an event procedure you create for the
StatusUpdate event.

The Multimedia Control's Command Language

The Multimedia control supports its own miniature command language (although this language is not nearly as robust
as the Visual Basic language). The Multimedia control accepts, in its Command property, one word commands that
control whatever device is currently playing. Table 14.6 describes each of the commands and their meanings.

Table 14.6. These commands form the multimedia control's Command property language.

Command Description
Back Steps backward through the device's tracks.
Close Closes the device.
Eject Ejects the CD from the CD-ROM drive.
Next Goes to the beginning of the next track (or to the beginning of the final track if the last track is current).
Open Opens the device.
Pause Pauses the device.
Play Plays the device.
Prev Returns to the beginning of the current track. If used within three seconds of the most recent Prev

command, Prev returns to the beginning of the previous track (or to the start of the first track if the first
track is current).

Record Initializes recording on the device.
Save Saves the open device file.
Seek Seeks backward or forward a track (programmers typically use Next or Prev instead of Seek due to its

directional ambiguity).
Stop Stops the device.
Step Steps forward through the device's tracks.

As your application runs, when your code changes the value in the Command property to a different value, the
multimedia control responds accordingly.

Tip

Your users do not have to control the multimedia control's device. You can hide all the control's buttons and, through
the Command property, control the device with your application's code.

Putting Together a CD Player

Now that you've been introduced to the multimedia control, you can use it to put together an application very quickly.
Start a new project and assign properties shown in Table 14.7 to the application.

Table 14.7. Use these properties and values on the multimedia control form.

Control Description

Form Name frmCD

Form Caption CD Player

Form Height 3600

Form Width 4800

Label #1 Name lblCD

Label #1 Alignment 2-Center

Label #1 BorderStyle 1-Fixed Single

Label #1 Caption CD Player

Label #1 Font style BoldUnderline

Label #1 Font size 18

Label #1 Height 495

Label #1 Left 1320

Label #1 Top 480

Label #1 Width 1935

Label #2 Name lblTrack

Label #2 Alignment 1-Right Justify

Label #2 Caption Track:

Table 14.7. Use these properties and values on the multimedia control form.

Control Description

Label #2 Font style Bold

Label #2 Font size 12

Label #2 Height 255

Label #2 Left 1200

Label #2 Top 2280

Label #2 Width 1215

Label #3 Name lblTrackNum

Label #3 Caption (blank)

Label #3 Font style Bold

Label #3 Font size 12

Label #3 Height 375

Label #3 Left 2520

Label #3 Top 2280

Label #3 Width 615

Multimedia control Name mmcCD

Multimedia control DeviceType CDAudio

Once you've placed these controls, enter the code you see in Listing 14.3 to complete the CD player application.

Listing 14.3 This code handles the CD player.
1: Private Sub Form_Load()
2: ' Open the CD
3: mmcCD.Command = "Open"
4: End Sub
5:
6: Private Sub Form_Unload(Cancel As Integer)
7: ' Clean up the multimedia control when done
8: mmcCD.Command = "Close"
9: End Sub
10:
11: Private Sub mmcCD_StatusUpdate()
12: ' Update the track number in the label
13: lblTrackNum.Caption = mmcCD.Track
14: End Sub

The application opens the CD-playing multimedia control when the form first loads. Line 8 removes the CD player
from memory right before the application ends (as with files, you should close any multimedia device you open). Line
13 updates the track number every time the CD's status changes. The value in the multimedia control's
UpdateInterval property specifies the interval between updates of the status (the default is 1000).

Figure 14.10 shows the running CD player. The application is simple, but it works! You can hone the application so
that the CD player has a way to exit the application through a File, Exit menu option. You can also add error-checking
and notification, as described in the next section.

Figure 14.10. This CD player application takes very little effort and time to create.

Note

Obviously, some buttons that are disabled, such as the Record button, are not needed at all in this application. You can
hide these buttons if you want to clean up the multimedia control a bit.

Tip

You've not only mastered the multimedia control as a CD player, but you've almost mastered the control for all other
multimedia devices as well! You'll see in subsequent sections that you'll deal with the multimedia control in almost the
same way you did here, no matter which multimedia device you want the multimedia control to mimic.

Notification and Error-Handling

As the multimedia control performs its tasks, several notification and error-checking conditions are updated so that you
can ensure smooth play of the device.

The Notify property generates a Done event every time the next multimedia control command completes properly.
Therefore, if you want to issue a multimedia control command only after your previous command finishes, you can set
the Notify property to True. The Wait property, when set to True, ensures that control will not return to your
application until the previous multimedia control command executes properly.

If an error occurs after you've issued a multimedia control command, you can check for that error as follows:

If (frmCD.mmcCD.Error) then
 intMsg = MsgBox("CD Not working properly", vbCritical)
Else
 ' Code continues here to play the CD Player

It's best not to put an On Error Goto statement at the top of the CD player's procedure because you then would not
know exactly which multimedia control command triggered the error condition. By following each command with an
error-checking routine, you can better trace the meaning of an error.

Table 14.8 lists several Mode values. The Mode property lets you test various states, or modes, of the multimedia control
during the application's execution to determine what is currently taking place.

Table 14.8. These Mode values indicate the current mode of the multimedia control.

Mode Named Constants Description
mciModeNotOpen Multimedia control device is not open.
mciModeStop Multimedia control device is stopped.
mciModePlay Multimedia control device is playing.
mciModeRecord Multimedia control device is recording.
mcuModeSeek Multimedia control device is seeing past information.
mciModePause Multimedia control device is paused.
mciModeReady Multimedia control device is ready.

Putting Together a Wave Player

A wave file is an audio file stored on the computer. To play this file, you need a compound multimedia control device.
Compound multimedia control devices get all their data from a file, not from an outside source such as an audio CD.
Your computer comes with several wave files. The Windows Control Panel's Sound option uses these wave files to
assign sounds to system events.

This section explains how to create a wave audio file multimedia player. You'll be able to use the Mode values in Table
14.8 to display status information about the file being played. You'll use the Windows wave file TADA.WAV, which is
located in the Windows\Media folder.

Save your CD player project if you still have it open, and then use that project as the basis for this one. To keep both
projects separate, save the project again under a new name (perhaps call this one Wave Player) and then modify the
project according to these steps:

1. Change the top label's name to lblWav and change the Caption property to Wave Player. Increase the Width
property to 2415.

2. Change the form's name to frmWav and the form Caption to Wave Music Player.

3. Change the multimedia control's name to mmcWav and change its DeviceType property to WaveAudio. You can
change the property in the Properties window or from the Property Pages dialog box that appears when you
click the (Custom) Property window's ellipses. Change Filename to the TADA.WAV file located in your
\Windows\Media directory.

4. Wave files don't have tracks like CDs do, but you can still use the labels beneath the multimedia control
buttons. Change the left label's name from lblTrack to lblStatus and change its Caption to Status.

5. Change the right label's name from lblTrackNum to lblStatusValue and blank out the caption. Change the
Width property to 2565.

6. Add another pair of labels beneath the two you just modified with the same width and font properties. (You
could copy them to create a set of label arrays.) Name the first label lblFile (unless you created a control
array) and change the Caption property to Filename:. You'll have to extend the left edge to make room for the
caption.

7. Change the right label's name to lblFileValue (unless you created a control array). Leave the label blank.
After you center the labels beneath the buttons, your application should begin to take on the appearance of the
running application shown in Figure 14.11.

Figure 14.11. The wave music player is almost complete.

Change the Form_Load() event procedure to the following:

Private Sub Form_Load ()
 ' Tell the Multimedia control to open the WAVE player
 mmcWAV.Command = "Open"
End Sub

You must also change the Form_Unload() event procedure as follows:

Private Sub Form_Unload(Cancel As Integer)
 ' Clean up the WAVE and form
 mmcWAV.Command = "Close"
 Unload Me ' Unloads the form as well
End Sub

Run the application. When you click the Play button, you'll hear a sound. Click the rewind button and play the sound
again.

The wave player isn't quite complete. The labels beneath the buttons don't display the status or filename information.
You can supply these labels with their values in the StatusUpdate() event procedure (see Listing 14.4). You'll need to
use the Mode values to determine the proper play mode.

Listing 14.4 Adding status information to the labels.
1: Private Sub mciWAV_StatusUpdate()
2: ' Display the status
3: If mmcWAV.Mode = mciModeNotOpen Then
4: lblStatusValue(0).Caption = "Not Ready"
5: ElseIf mmcWAV.Mode = mciModeStop Then
6: lblStatusValue(0).Caption = "Stopped"
7: ElseIf mmcWAV.Mode = mciModePlay Then
8: lblStatusValue(0).Caption = "Play"
9: ElseIf mmcWAV.Mode = mciModeRecord Then
10: lblStatusValue(0).Caption = "Record"
11: ElseIf mmcWAV.Mode = mciModePause Then
12: lblStatusValue(0).Caption = "Paused"
13: ElseIf mmcWAV.Mode = mciModeReady Then
14: lblStatusValue(0).Caption = "Ready"
15: End If
16: ' Display the filename being played
17: lblStatusValue(1).Caption = mmcWAV.FileName
18: End Sub

Caution

The StatusUpdate event procedure assumes you created control arrays for the labels. If you did not, change the label
names to the actual names you used if you didn't create control arrays to hold the labels. Otherwise, your application
won't run correctly.

Run the wave player to test the application. As you play the wave file, consider the following points:

• The wave player doesn't display a Stop button, except during the quick play of the audio file. The file stops
playing when it comes to its end. If the wave file were longer, you would have more of a chance to stop the
play.

• The file plays only once and then the player's position points to the end of the file. Click the Rewind button to
return to the beginning of the audio file to replay the sound.

• The Record button is active. You can record at the beginning or end of the file and then rewind the file to play
back the original sound plus your recording.

• Don't save your recorded audio in the file. You'll instead want to preserve this WAV file, which comes with
Visual Basic. Also, before you can save the file, you would need to provide a way to enter a new filename with
the Save dialog box. This application offers no provision for saving changes to protect the original file's
integrity.

Playing Video Clips
You've already mastered the multimedia control! Believe it or not, playing a video clip isn't much different than playing
a wave audio file, as you'll see in this section. You must supply the video filename to play (the multimedia control as a

video player is a compound device, so the filename is critical). You must also set up the multimedia control to handle
video playing, and then your application will be ready to show the latest in multimedia entertainment.

Your multimedia control requires a bit of help when playing video clips. Rather than use only a simple panel of
buttons, you need a projection screen from which to show the video. The most common control to display videos with
is the picture box control. Therefore, you'll add a picture box control to every application that needs to display a video
file.

So far, you used the multimedia control DeviceType property value CDAudio to play compact discs and WaveAudio to
play WAV audio files. Although you can enter these in theCustom property's Property Page dialog box, you may need
to set these values at runtime with assignment statements if you need your multimedia control to perform double duty
by playing different kinds of media files.

Your application might contain several picture box controls, so the multimedia control must know to which picture box
control to send the video to. You tell the multimedia control the name of the picture box control in which to show the
video in the multimedia control's hWndDisplay property.

hWnd is a common Windows programming prefix that represents a handle or, more accurately, a device context. Output
from Visual Basic doesn't represent true screen output but rather windowed output. (Actually, you can send output to
any Windows device with the same basic set of commands, so Windows devices are more virtual than real to your
program. Windows performs all the complicated conversions to get output printed on a printer or color screen.) The
bottom line is that your program doesn't send video clip output to your screen, but to a device context. That device
context is almost always your screen, but the multimedia control needs to know the proper device context. This way, it
knows which window to play the file inside, and it can manipulate the window's borders appropriately so that the video
stays within the window.

Now, create a new application. Name the form frmVideo and specify Video Player for the form's Caption property.
Add a multimedia control to the top center of the form. (You'll have to add the Microsoft Multimedia Control 6.0 once
again to your toolbox window, if you haven't already.) Name the multimedia control mmcVideo.

Add a picture box control to the form. Place the picture box control below the multimedia control buttons and then size
the picture box control to the approximate size you see in Figure 14.12. Name the picture box control picVideo.

Figure 14.12. The picture box control will display the video.

Change the multimedia control's DeviceType property to AVIVideo. Select the AVI file named Count24.AVI for the
Filename property. You'll find the file in Visual Basic's \Graphics\Videos directory. You're almost finished! As you
can see, setting up a video player isn't any different than setting up an audio player. Now add the Form_Load() event
procedure you see in Listing 14.5.

Listing 14.5 You must connect the video to the picture box control.
1: Private Sub Form_Load()
2: ' Open the video player
3: mmcVideo.Command = "Open"
4: ' Connect the video player to the Picture Box
5: mmcVideo.hWndDisplay = picVideo.hWnd
6: End Sub

Run your program to see the numbers in the video flash by (see Figure 14.13).

Figure 14.13. The video plays flawlessly!

As you work with the multimedia control, you'll learn more shortcuts. For example, you don't have to specify the
device type, such as AVIVideo, when programming compound devices, because Visual Basic will look at the
compound device's file extension to determine the device type needed.

Also, you probably noticed that the status labels don't always update right on time. In other words, when you were
running the previous section's video files: players:, the status label didn't always display Play until the clip was almost
finished. The StatusUpdate event occurs every few milliseconds. If you want to update these labels more frequently to
gain more accuracy, change the UpdateInterval property to a smaller value (1000 is the default, so the status updates
once each second).

Caution

Don't make the UpdateInterval property value too small, or your multi media control application will consume too
much time updating the label and slow down your system. Often, this slowdown results in shaky playback of
multimedia control files.

Summary
Today's lesson explained how easy it is to spruce up your applications with graphics and multimedia. The line and
shape controls enable you to accent your applications with lines and shapes that call attention to important elements on
your form. You can add lines that separate controls and highlight important values.

Visual Basic also supplies drawing methods that enable you to draw anything you want using methods that turn on and
off pixels, as well as draw lines, boxes, and ellipses. The methods are rather primitive, but they give you full control
over the way the drawings you produce will look.

The last few sections described how to use the multimedia control. The multimedia control is one of the most
comprehensive controls in Visual Basic, because it supports so many different kinds of multimedia devices. Your
applications can easily control audio CDs and sound files, and even play video. The multimedia control comes with
user command buttons that let the user operate the multimedia control, or you can control its operation through Visual
Basic code.

Tomorrow's lesson describes how to add form templates to your projects so you can standardize the common forms
your applications display.

 Q&A
Q: Can I use the multimedia control to display individual graphic images?

A: The multimedia control is for multimedia devices only, and still photos stored in a graphics file do not
qualify for multimedia. Nevertheless, you can display such pictures on the form by displaying them in an
image control or a picture box control.

Q: Should I use the drawing media control to display graphic images, such as photos stored on my disk?

A: The drawing controls and the drawing methods are not mutually exclusive! You can use both. The line and
shape controls take on specific forms that you can place on a form at design time and modify through
property values at runtime. The drawing methods give you more drawing freedom in that you can even turn
on and off single pixels, a chore that's possible, but too cumbersome, for the drawing controls. Therefore,
although the drawing methods are more primitive than the drawing controls, these methods do provide more
power for lines and such as long as you don't need to display graphic images.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next lesson. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: What control draws circles on the form?

2: What method draws squares on the form?

3: Which of the following methods is used for drawing boxes?

a. PSet
b. Line
c. Box

d. Draw

4: True/False. The line and shape controls produce graphics that support properties but not events.

5: What Line method option adds a solid interior to boxes?

6: Why doesn't Visual Basic enable every button when you first place the multimedia control on a form?

7: What does the Mode property do?

8: How can you make the multimedia control device status update more frequently?

9: Why do you need to supply a picture box control for video clips?

10: How does the multimedia control know which picture box to send the video to?

Exercises

1: Add Fill Color and Border Color drop-down list boxes to Figure 14.5's application you created in today's
lesson. You can now control not only the control's shape and fill pattern, but also its interior and border
colors by selecting from the list boxes at the bottom of the form. Figure 14.14 shows what your form should
look like after you add the two list boxes .

Figure 14.14. You now have even more control over the shape.

Hint: Set the color to one of the named constant colors, such as vbBlue, when the user selects that color
from either color list box. You don't have to offer all the named constant colors in the extra list boxes.

2: Practice drawing lines and circles with the drawing methods on a picture box control. As you can see, the
picture box control accepts the same graphics methods the form does.

3: Change this lesson's wave player so that it displays a File Open dialog box that asks the user to select a wave
file to play.

Bonus Project 7: Working with Scrollbars
This bonus project not only develops an application but also teaches you two new controls: the vertical and the
horizontal scrollbars. You can easily master the vertical and the horizontal scrollbars because, as with the other
controls, most of their behavior is controlled by the properties you set at designtime. You then write simple event
procedures to respond to the user's actions.

 Introducing Scrollbars
Often, your applications automatically come with scrollbars because controls, such as list boxes, require them. For
example, a multiline text box that holds a lot of data, for example, will have scrollbars if you request them in the
ScrollBars property. You would do this if the text box could not display a full line or all the entries in the text box.
Figure BP7.1 shows such a list box. The figure points out the two kinds of scrollbars as well as the parts of each
scrollbar.

Figure BP7.1. Horizontal and vertical scrollbars can appear automatically.

Multiline text boxes and list boxes are not the only reason for scrollbars. You can add scrollbars to your application to
give the user flexible control over a changing scale of values, such as color depths, picture sizes, scrolling text displays,
and numeric value ranges.

The toolbar contains both a horizontal scrollbar control and a vertical scrollbar control. Once you place these controls
on a form, you then must set properties that define the scrollbar ranges.

Working with Scrollbars

Understanding the way scrollbars work goes a long way towards learning how to program with them, and the key to
understanding scrollbars is learning the names of the parts of a scrollbar. Here are the actions users can take with
scrollbars:

• Moving the horizontal scrollbar thumb to the leftmost (or highest for vertical scrollbars) position within the
scrollbar shaft sets the scrollbar to its lowest setting.

• Dragging the horizontal scrollbar thumb left and right (or up and down for vertical scrollbars) decreases and
increases the value the scrollbar is portraying.

• Moving the horizontal scrollbar thumb to the rightmost (or lowest for vertical scrollbars) position within the
scrollbar shaft sets the scrollbar to its highest setting.

• Clicking either scroll arrow increases or decreases the scroll setting by a small amount.
• Clicking either side of the thumb, within the scrollbar shaft, increases or decreases the scroll setting by a large

amount.

Scrollbar Properties

Table BP7.1 lists the most important scrollbar properties that you'll want to set at design- time (these are also available
at runtime, although you'll almost always set them up completely at designtime). The properties coincide with the
workings of scrollbars described in the previous section.

Table BP7.1. Scrollbar properties help you determine the scrollbar's range and movement amount.

Property Description
LargeChange Specifies the amount the scrollbar changes when the user clicks within the scrollbar's shaft area (on

either side of the thumb).
Max Indicates the maximum number of units that the scrollbar value represents at its highest setting. The

default value is 32,767.
Min Indicates the minimum number of units that the scrollbar value represents at its lowest setting. The

default value is 1.
SmallChange Specifies the amount the scrollbar changes when the user clicks either scroll arrow.
Value Specifies the unit of measurement currently represented by the scrollbar.

Knowing that the default range of all scrollbars is 1 to 32,767, you can adjust this range as your application requires.
For example, suppose you're writing a loan calculation program that accepts a range of loans from $500 to $15,000.
Your user could type the loan value into a text box, but you can also place a scrollbar on the form to let the user select a
value by scrolling the scrollbar. Your scrollbar would take these property values:

Min: 500
Max: 15000

You could then decide on the change increments that you want the scrollbar to represent. Perhaps you calculate loans in
$100 increments. The following property settings ensure that the loan amount (as indicated by the scrollbar's Value
property) changes by $500 every time the user makes a large change by clicking within the scrollbar shaft, and changes
by $100 every time the user makes a small change by clicking either scroll arrow:

LargeChange: 500
SmallChange: 100

Note

You can resize the scrollbar's width and height. The physical size of your scrollbar does nothing to determine the range
of the change values of the scrollbar.

Building an Application
This bonus project's application demonstrates the power and use of scrollbars. Figure BP7.2 shows the application's
screen. As the user clicks the scrollbars, the image of the money increases or decreases in size. The code to make this
happen is extremely light due to the scrollbars'properties that control the way they work.

Figure BP7.2. Scrollbars control this image's size.

Caution

Remember the direction of the scrollbars as you use this simple application. To increase the image's height, you must
increase the value of the vertical scrollbar, which means moving the vertical scrollbar thumb down. The downward
direction almost makes you feel, at first, as if the graphic image should get smaller. Although you could write the
application to reverse the default direction by making the image's size respond in reverse, this application does not do
that.

Do Don't

DO insert your Visual Basic installation CD-ROM into your drive if you did not install the Graphics folder
when you installed Visual Basic. You'll have to access a graphic file (or copy the image to your disk) in this
application.

table BP7.2 contains the controls and properties you need to set when creating this application.

Table BP7.2. Set these controls and properties on the form.

Control Property Name Property Value

Form Name frmScroll

Form Caption Money comes and goes...

Form Height 4650

Form Width 5295

Picture box Name picScroll

Picture box Height 1600

Picture box Left 1560

Picture box Picture Common\Graphics\Metafile\Business\Moneybag

Picture box Top 1200

Picture box Width 1575

Vertical scrollbar Name vscScroll

Vertical scrollbar Height 3975

Vertical scrollbar LargeChange 100

Vertical scrollbar Left 4920

Vertical scrollbar Max 3750

Vertical scrollbar Min 1600

Vertical scrollbar SmallChange 50

Vertical scrollbar Top 0

Vertical scrollbar Width 255

Horizontal scrollbar Name hscScroll

Table BP7.2. Set these controls and properties on the form.

Control Property Name Property Value

Horizontal scrollbar Height 255

Horizontal scrollbar LargeChange 100

Horizontal scrollbar Left 0

Horizontal scrollbar Max 3750

Horizontal scrollbar Min 1600

Horizontal scrollbar SmallChange 50

Horizontal scrollbar Top 3960

Horizontal scrollbar Width 4935

Every time the user clicks a scroll arrow, the size of the picture changes by 50 pixels, due to the SmallChange values
for both scrollbars. Every time the user clicks on either side of the thumb, the size of the picture changes by 100 pixels,
due to the LargeChange values for both scrollbars.

Entering the Code
Listing BP7.1 provides the event code you need to enter for this project.

Tip

Not only must the picture's size change when the user clicks the scrollbar, but the picture's location must also change so
that the picture stays centered on the form.

Listing BP7.1 Controlling the size of the picture using scrollbars.
 1: Private Sub hscScroll_Change()
 2: ' Change the picture's horizontal size and location
 3: picScroll.Width = hscScroll.Value
 4: picScroll.Left = (frmScroll.Width / 2) - (picScroll.Width / 2) - 300
 5: End Sub
 6:
 7: Private Sub vscScroll_Change()
 8: ' Change the picture's vertical size and location
 9: picScroll.Height = vscScroll.Value
 10: picScroll.Top = (frmScroll.Height / 2) - (picScroll.Height / 2) _
 -300
 11: End Sub
 12:

 13: Private Sub vscScroll_Scroll()
 14: ' If the user drags the thumb, change during the drag
 15: Call vscScroll_Change
 16: End Sub
 17:
 18: Private Sub hscScroll_Scroll()
 19: ' If the user drags the thumb, change during the drag
 20: Call hscScroll_Change
 21: End Sub

Analysis
The code is repetitive because the two scrollbars do basically the same thing (controlling the width or height of the
picture). The first procedure changes the picture's width in line 3 to match the value of the horizontal scrollbar. (Both
scrollbars' Min and Max properties are set, at designtime, so that the picture always falls within a reasonable size range.)
Line 4 determines the location of the newly sized picture. The location is adjusted according to the height of the picture
compared to the height of the form. The form's midpoint is found (frmScroll.Width / 2) and from that, one-half the
size of the picture is subtracted (picScroll.Width / 2) to place the midpoint of the picture halfway down the form.
The extra 300 pixels are subtracted to adjust for the size of the scrollbar at the right of the form.

Lines 7 through 11 do exactly the same thing when the user changes the horizontal scrollbar value, except the width is
adjusted instead of the height.

The last two procedures are interesting because they do nothing more than call the other procedures. The first
procedures only execute if the user clicks somewhere on the scrollbar's arrows or shaft. However, what if the user
drags the thumb? Without the event procedures for the Change events, the picture would not change until the user
releases the mouse from dragging the scrollbar, thus completing the Click event. By calling the Click event's
procedure from the Change event procedure, the picture changes as the user drags the scrollbar thumb. In other words,
the Click event procedure is called during the drag for every value the user drags the scroll thumb.

Note

A good case could be made for placing the Click events'code inside the Change procedure and doing away with the
Click events. The event procedures would then execute every time the user did anything to change a scrollbar, whether
by dragging or by clicking, because both actions produce a Change event. Nevertheless, you had yet to see one event
procedure call another, so the example is a good one to use.

Week 2 In Review
You have moved from a beginning Visual Basic programmer to an advanced one. You have mastered most of the
Visual Basic language and you are comfortable with Visual Basic's programming environment.

Much of your future learning will be honing the skills you now carry with you. As you study Visual Basic more
thoroughly in the rest of this 21-day tutorial, in more advanced Visual Basic books, and through magazines and Internet
Visual Basic sites, you'll feel comfortable picking up new skills because you now have the foundation necessary to
understand more advanced concepts.

Your Week's Worth
In this week, you have mastered the following:

• Procedural programming— A Visual Basic program is more than just controls and event procedures. An
application might consist of several forms and code modules that work together to do a job (Day 8).

• Variable scope— As you make your code more modular and easier to maintain, you must remember that
variable scope plays a part in determining which procedures have access to an application's variables (Day 8).

• Passing data— Whether you write subroutine or function procedures, your procedures must be able to pass
local data to other procedures (Day 8).

• Passing controls— You can pass any object, whether that object is a data variable or a control, between
procedures (Day 8).

• Internal functions— Lighten your programming burden by letting Visual Basic handle common tasks such as
calculating the square root and converting string data (Day 8).

• Common dialog boxes— Add standard dialog boxes to your applications so that your users will know how to
load and save files, set colors, and print documents (Day 9).

• Mouse control— Your applications can monitor the user's mouse clicks and moves (Day 10).
• List controls— Visual Basic offers several kinds of list box controls so that you can determine the kind of list

control that best suits your application's needs (Day 10).
• Timer control— The Timer is a control that checks the PC's clock and executes procedures that you write at

preset time intervals (Day 10).
• Arrays— When your program must process a large amount of data, simple variables will not hold lists of data.

For lists, you need to store data in special memory tables called arrays (Day 10).
• Forms— Forms, like other objects in Visual Basic, support a wide range of properties, events, and methods that

you can use to hide and display forms at runtime (Day 11).
• Text on forms— Write directly to a form without using controls when you issue the Print method (Day 11).
• Toolbars— Give your users yet another way to specify choices in your applications with toolbars (Day 11).
• Coolbars— Although coolbars (sliding toolbars) are recent editions to Windows applications, thanks to Internet

browsers and other programs that use them, coolbars add a cool flair to your applications (Day 11).
• Working with files— File processing is relative simple, but it does require programming (Day 12).
• Sequential files— Sequential files hold historical information and are easy to work with (Day 12).
• Random files— Random files enable you to read and write at any location in a file (Day 12).
• File controls— Although the file controls do not actually manipulate files, they do let the user zero-in to the file

that the user wants your application to work with (Day 12).
• Visual Basic printing— As with file processing, printing data to the printer from a Visual Basic application

requires some extra programming methods (Day 13).
• Form output— You can print your application's forms onto paper (Day 13).
• Graphic files— Visual Basic lets you display images from graphics files using the PictureBox and Image

controls (Day 14).
• Graphics controls— Visual Basic supports the Line control and Shape control so that you can accent forms

with graphics that you place on the forms (Day 14).
• Graphics methods— Apply drawings to both forms and picture boxes with the methods you learn here (Day

14).
• Multimedia control— The Multimedia control supports just about any multimedia device that you want your

application to control (Day 14).

Part 3: At a Glance

You have come a long way from the point you were at two weeks ago when you first began learning how to write
Visual Basic programs. Even though it's only been two weeks, you should now consider yourself past the beginning
programmer stage. You can already make Visual Basic do about anything you need. Your job now is to improve upon
the skills you have.

Where You're Going
The third and final week of this tutorial begins to examine some of the advanced aspects of Visual Basic programming.
Just because they are advanced, however, does not mean that the features you learn this week are difficult. Almost
everything you learn from this week forward is considered advanced. Nevertheless, you have such a strong foundation
under you now that these additional skills should come quite easily.

As you begin to explore objects and ActiveX controls this week, you will see that such elements help you produce
better code as well as write programs more quickly. You learn to reuse components that you create in the same way that
you learned to reuse procedures last week. You will be developing your own tools for the Visual Basic Toolbox
window by creating your own ActiveX controls.

As you will see, Visual Basic certainly lacks for little when it comes to supplying you with a broad range of controls. In
this final week, you learn how to access files, manage data in popular database formats, and access the Internet using
the tools that comes with Visual Basic. Rarely will you write an application that requires more controls than the ones
that you already have; but you'll rest easy knowing that you can obtain more and even write your own if you want to do
so. Not only can you use those ActiveX controls in the Visual Basic programming environment, but you can also use
the controls in other ways as well, such as embedding them in Web pages for Internet browsers that support the use of
ActiveX.

After writing the application, you'll want to test it with Visual Basic's testing and debugging tools. Although some bugs
are difficult to trace, Visual Basic goes a long way toward locating hard-to-find bugs. Once you develop an application,
you must compile and distribute that application to others. At the end of this week, you learn how to package your
applications with their own installation routines so that your users can install and run the applications that you write.

Day 15. Using Form Templates
Today's lesson shows you how to take advantage of template forms so that your forms will have a more uniform
appearance when you create them for similar purposes. Visual Basic supplies several template forms that you can add,
customize, and use in your own projects. So many forms in use today—such as the About dialog box that appears when
Help, About is selected—have developed somewhat of a de facto standard appearance; therefore, you might as well
follow the trend. The About box as well as several other standard forms all come with Visual Basic.

Once you know how to use the template forms, you can create your own. Suppose your company prefers each
application's dialog box to take on a standard appearance, such as listing the company name, logo, time, and date at the
top of the form. Once you create a template form that contains this information, all subsequent forms you use in your
applications can have those same elements without you having to add them every time you add a new form to a project.

Today, you learn the following:

• About the purpose of template forms
• Why you should use the template forms
• How to implement template forms in your projects
• How to use the Application Wizard to add template forms
• How to create a "Tip of the Day" file
• How to add your own template forms to Visual Basic's supplied set of template forms

About Form Templates
A template is a model. A template form is a model form. When you start with a template form, as opposed to the blank
form window, you'll save time, and your forms will take on a more uniform appearance.

A template form is a model for the forms you create.

Suppose you wanted to add a Tip of the Day screen to your application so that your users read a different tip every time
they start your application. Perhaps the most common Tip of the Day screen people know about is the Windows 95 Tip
of the Day screen. It appears when you start Windows 95. Other popular Windows applications also use a Tip of the
Day screen, and they often have an appearance similar to the Windows 95 screen. For example, most of them include a
check box at the bottom of the screen that lets you cancel the display of the tip screen upon subsequent application
startups.

As you've already learned throughout this tutorial, creating standardized applications has many advantages: Your users
will adapt to your applications more quickly, they will be more apt to like your applications, they will be prone to use
the upgrades you write, they will learn the applications more quickly, and you will receive fewer support calls. As if
these weren't reason enough to use standard screens and menus, you'll also find that you save time: You'll finish the
applications more quickly, and you'll have fewer bugs to remove.

Figure 15.1 shows the Tip of the Day template form that Visual Basic provides. If you needed to add a Tip of the Day
screen to an application, would you rather begin with the template form shown in Figure 15.1 or with a blank form
window? Obviously, you'd rather start with the template form. The template provides a uniform appearance, and you
have less work to do to complete the form.

Figure 15.1. Visual Basic supplies this Tip of the Day template form.

Note

As with the skeleton applications that the Application Wizard creates, a template form contains placeholders for the
common elements, but you'll have to modify the template form quite a bit. You'll need to replace elements that you
don't use and customize the form to your application's requirements. Nevertheless, despite the needed customization,
you'll finish the form much more quickly if you start with the template form as opposed to a blank form window.

Form templates contain visual elements, such as icons and controls, as well as the code behind these elements to help
you integrate the template form into your application.

Tip

A template form is nothing more than just a form with elements and code already placed in its module. The template
forms are not special kinds of forms, rather they are a collection of predesigned forms. As you create forms that you
want to use again, you can simply add them to the collection of template forms on your system, as explained in the
section "Adding Your Own Form Templates."

The Supplied Form Templates
Visual Basic supplies the following template forms:

• About box— Usually produced from the Help, About menu option.

• Web Browser— Used for simple Internet Web browsing.
• Data grid— Used for managing tables of database-like data.
• Dialog— Used for creating dialog boxes.
• Login— Used for requesting name and password information.
• ODBC— Used for ODBC-related activities.
• Option— Used for multipaged dialog boxes and custom settings.
• Splash— Used for displaying an introductory startup screen when an application loads. (This startup screen

typically appears for only one to five seconds.)
• Tip of the Day— Used for adding a startup tip.

ODBC stands for Open Database Connectivity. It provides a standard command set for accessing different kinds of data
stored on different kinds of computers.

SQL stands for Structured Query Language. It defines a universal (in theory) programming language for accessing
databases. You can issue SQL commands directly from a Visual Basic application.

Note

The rest of today's lesson describes how to implement many of these template forms in your own applications. Some of
the template forms are too specific for today's lesson. For example, Day 19, "Adding Internet Access," covers Internet
browsing in more detail using the Web Browser template form. Day 18, "Interacting with Data," describes how to link
Visual Basic applications to database information as you might want to do with the Data grid or ODBC template.

The following sections review many of the more common template forms that you'll use. You'll learn how to use the
Application Wizard to add template forms, and you'll see in detail how to add and customize the About dialog box for
your applications. Once you've added and customized one template form, the others simply offer other options. After
you've learned how to add the About box, subsequent sections will discuss some of the other template forms and their
nuances.

Here are the general steps for adding a template form to your application:

1. Add the template form to your application's Project window.
2. Customize the template form with the details your application requires.
3. Connect the form to your project through code.

Using the Application Wizard

You can add one of the template forms to your application at any time. However, if you use the Application Wizard,
you just let the wizard know that you want a specific template form and it takes care of all the details of adding the
template form to your application.

Figure 15.2 shows the Application Wizard's dialog box in which you specify a template form. As you can see, the
Application Wizard only offers four template form options: Splash screen, Login screen, Options dialog box, and
About box.

Figure 15.2. The Application Wizard will add one or more forms to your application.

Although the dialog box lists only four template forms, when you click the Form Templates button, Visual Basic
displays a list of the other template forms.

Note

The list that appears includes not only the supplied template forms described in the previous section but also the
template forms that you've added to the library of template forms.

Adding Form Templates to an Application

To add a template form to an application, you simply add the form to your application the same way you normally add
any other form:

• Select the Project, Add Form menu option and select a template form from the list of form icons that appear in
the dialog box (Figure 15.3 shows such a dialog box).

Figure 15.3. Adding template forms is simple.

• Right-click the Project window, select Add, Form, and then select the template form from the list of form icons
that appear in the dialog box.

To add a new form, you select the dialog box's first icon (the one labeled Form). To add a template form, select the icon
that matches the template form you want to add to your project.

Modifying the Templates

When you select Tools, Options and click the Environments tab, Visual Basic displays the Environments dialog box
page shown in Figure 15.4. By checking or unchecking the Forms check box, you specify whether or not Visual Basic
is to offer the list of template forms to you in the Application Wizard and in the Project, Add Form dialog box.

Figure 15.4 . You can control the templates that Visual Basic offers.

As you can see from the Options dialog box, Visual Basic supplies templates for many more objects than just forms.
Visual Basic offers module templates, control templates, property page templates, as well as others. Although some of
these non-template forms are used in fairly advanced applications, you can see that a model exists for just about any
kind of object you want to create.

Note

If you uncheck the Forms option to hide the template forms from view, when you add a new project to an application,
Visual Basic automatically creates and adds a new, blank form to your project without giving you any way to select a
different kind of form.

The Options dialog box shows the folder where Visual Basic looks for template forms. Visual Basic expects all
template forms to reside in this folder. If you set up various libraries of templates for different purposes (perhaps as a
contract programmer might do when working for several different companies), you can store each of your different sets
of templates in a different folder. When you want to work with one of the sets, enter its path into the Options dialog
box.

Do Don't

DO make permanent changes to the template so that it works better for your needs if you
find yourself using the same template form often. Do save a copy of the form under a new
name and make modifications to the copy. Do use the copy when you subsequently use the
form.

DON'T make changes
directly to the original
template form itself.

Working with the About Form Template

The purpose for each of the template forms differs, but the general procedure for connecting a template form to your
application is the same for all the template forms. In this section, you'll add a template form to an application to get
familiar with the process. One of the most common dialog boxes that appears in almost all Windows applications is the
About dialog box, which pops up when users choose About from the Help menu. Figure 15.5 shows what the About
template form looks like in Visual Basic's form window.

Figure 15.5 . The template form for the About dialog box, which appears in most Windows
applications.

To give you an idea of how the template form differs from the actual form you'll eventually create, take a look at Figure
15.6. This figure shows Visual Basic's own About dialog box. As you can see, the template form provides placeholders
for actual information you'll place in the template form in the final application.

Figure 15.6. Visual Basic's About dialog box matches the template form's format.

To practice adding the About template form, start a new application and follow these steps:

1. Open the Menu Editor, add Help to the menu bar, and list About as the only option on the Help menu. Name the
About option mnuHelpAbout.

2. Name the project's form frmTestAbout and change the form caption to Demonstrate the About Dialog
Box.

3. From the File menu choose Save Form As and then type Form About Box for the form's filename.

4. Choose Save Project As from the File menu and then type About Proj for the project's filename. (The About
dialog box that you add will use the project name.)

5. From the Project menu choose Add Form to display the Add Form dialog box. Double-click About Dialog to
add the About dialog box to your form. A dialog box is nothing more than a form with controls, and the About
dialog box comes to your application as a new form named frmAbout.

6. Use the Window menu option to switch back to your original form (frmTestAbout). Add the following event
procedure to the mnuHelpAbout_Click() procedure:

Private Sub mnuHelpAbout_Click()
 frmAbout.Show
End Sub

7. You can now run the application. When you choose About from the Help menu, the About dialog box appears.
The About dialog box template form knows the name of the project and displays the name in its title area.

8. Click OK to close the About dialog box; then close the primary form's window to shut down the application.

The About dialog box template form knows the name of the project, and it displays this name in its title area. The
About dialog box gets the name from a special location—the App object (tomorrow's lesson, "Objects and Visual
Basic," discusses the App object and its properties).

Use the Window menu to display the About form in your form window editing area. The dialog box's Form_Load()
event procedure contains the following code, which initializes the title from the App object:

1: Private Sub Form_Load ()
2: Me.Caption = "About " & App.Title
3: lblVersion.Caption = "Version " & App.Major & "." & App.Minor & _
 "." & App.Revision
4: lblTitle.Caption = App.Title
5: End Sub

Line 3 sets the application's major, minor, and revision numbers at runtime in the primary form's Form_Load() event
procedure. You can delete the About form module's reference to these values (and the labels that display the values) if
you don't need version numbering.

The About dialog box's form module contains code that initializes these values (the title and version number) for you.
The About dialog box, however, can't initialize certain labels, such as the application's description and warning area.
You have to initialize the description yourself in the description label's (named lblDescription) Caption property. If
you don't need a warning or copyright area, delete the About dialog box's warning label (named lblDisclaimer). You
could, in its place, insert an icon or picture box control to grab your users'attention.

The About dialog box involves more code than just the application's name and version numbers. Obviously, the dialog
box's form module contains the code to look for the application's name and version numbers. Also, the dialog box's
form module contains code that unloads the dialog box if the user clicks OK. The real power of the About dialog box,
however, lies in the System Info command button's event procedure:

1: Private Sub cmdSysInfo_Click()
2: Call StartSysInfo

3: End Sub

StartSysInfo is a general procedure listed below the event procedures in the About dialog box's form module. The
code in StartSysInfo runs a system program named MSINFO32.EXE, located in your Windows directory. Although
you could override this program with your own code, why not stick with a standard system information program that
users will see in other Windows programs?

If you were to rerun your application, display the About dialog box, and click the System Info button, the System
Information application would start. (The application is known to be a child process of your application. Your
application will continue when the user closes the System Information window.) Figure 15.7 shows the System
Information window that the form module's code produces when you add the About dialog box to your application.

Figure 15.7 . The code that comes with the About dialog box displays the System Information dialog
box.

Note

Your System Information dialog box will differ from the one shown in Figure 15.7, depending on your system's
configuration.

Other Form Templates

Now that you've built a project that uses the About dialog box, you'll have no trouble placing the other three primary
template forms. When you choose Add Form from the Project menu, you have the chance to add several template
forms to your current project.

This section looks at the following template forms in more detail:

• Splash screen
• Login dialog box
• Custom Options dialog box
• Tip of the Day dialog box
• ODBC Login dialog box

Not all applications should include all the template forms. However, most Windows applications do include the About
dialog box, so you should make it a habit to include About in your applications. The remaining template forms may or
may not fit into your application, depending on your application's goals and requirements. This section looks at these
template forms in detail, so you can determine whether you need to add one or all of them to your projects.

Tip

Throughout this section, you'll learn how to connect the various template forms to your application. If you add one or
more of these templates while using Visual Basic's Application Wizard, the wizard will take some of the work off your
shoulders. This way, you won't have to do as much to integrate the templates into your project.

The Splash Screen

A splash screen is an opening screen that displays an introductory message and perhaps copyright and contact
information about the project. (Although it's called a screen, the splash screen is actually another form window in your
project's Forms collection.) The splash screen's primary purpose is to greet your users. Unlike the About dialog box, the
splash screen isn't seen again until the application is run again.

The splash screen often displays a graphic image with introductory text. Figure 15.8 shows the splash screen that
appears when Microsoft Excel is started. The splash screen contains an attention-getting image and information about
the product.

Figure 15.8 . Excel users see a splash screen similar to this one when Excel first loads.

A splash screen often goes away after a brief period of time. You can add a command button or write code that checks
for a keypress to enable your users to get rid of the splash screen at their leisure. However, you'll generally use a timer
control to display the splash screen for a fixed amount of time. Also, a splash screen is useful for masking a startup
delay due to file and data initialization.

The splash screen does pose one requirement that the About dialog box does not. You must tell your application to
display the splash screen before the normal form appears. You set the splash screen as the startup form in the Properties
dialog box (which you access by choosing Properties from the Project menu). As soon as you add the splash screen's
template form to your project, the Properties dialog box will include the splash screen form in your list of available
startup forms. You also must add a command button or a timer control event to the splash screen to display the next
window when it's time to do so.

Follow these steps to practice creating a project that contains a splash screen:

1. Create a new project. You won't do anything with the form named Form1.

2. From the Project menu, choose Add Form; then select the splash screen. Visual Basic displays the sample
splash screen.

3. Change the labels to match those shown in Figure 15.9.

Figure 15.9. The splash screen is now modified.

4. Choose Properties from the Project menu. Change the Startup Object to frmSplash (the name of the splash
screen) and click OK.

5. Add the following line to both the Form_Keypress() event and the Frame1_Click() event (place the line after
the Unload Me statement in both procedures):

Form1.Show ' Display the regular form

6. Run the application. The first form that appears is your splash screen. When you press a key or click the mouse
button, the splash screen will disappear and the normal form, named Form1, will appear. Close the form
window to return to Visual Basic's development environment.

Caution

The splash screen automatically gets the name of the program from the project name, no matter what you add in the
center label. Therefore, you'll need to save the project under the name ValueAdd or edit the code to leave your original
label alone.

The Login Dialog Box

As online computer use grows, the need for security grows with it. The Login dialog box is an interesting template
form that you can add to your project. It asks for the user name and password and returns the values to your application
for processing. Figure 15.10 shows the Login dialog box.

Figure 15.10. Use the Login dialog box to request a user's name and password.

When a user enters his or her name and password, the actual user name appears, but the password displays as asterisks
(thanks to the dialog box's PasswordChar property). Although asterisks display as the user enters the password (to
protect the password from snooping eyes), your program will have access to the real password that's being typed. The
initial password is password, and you can use it to test your program's Login dialog box. Listing 15.1 shows the form
module's code behind the Login dialog box.

Listing 15.1 The Login dialog box lets users log in to your application.
1: Option Explicit
2: Public LoginSucceeded As Boolean
3:
4: Private Sub cmdCancel_Click()
5: 'set the global var to false
6: 'to denote a failed login
7: LoginSucceeded = False
8: Me.Hide
9: End Sub
10:
11: Private Sub cmdOK_Click()
12: 'check for correct password
13: If txtPassword = "password" Then
14: 'place code to here to pass the
15: 'success to the calling sub
16: 'setting a global var is the easiest
17: LoginSucceeded = True
18: Me.Hide
19: Else
20: MsgBox "Invalid Password, try again!", , "Login"
21: txtPassword.SetFocus
22: SendKeys "{Home}+{End}"
23: End If
24: End Sub

The form module uses a global variable named LoginSucceeded (declared in line 2) that your code can test for True or
False on returning from the dialog box. If the user clicks the Cancel button, the cmdCancel_Click() event procedure
sets LoginSucceeded to False in line 7 and hides the Login form.

To adapt the code for your own users, follow these steps:

1. Change the password string literal in the cmdOK_Click() event procedure to the password your application
requires. Often the password will be stored in a file and encrypted. If you store the password in a random,
binary, or database file, nobody will be able to detect the password by studying the password file with a text
editor, as would be possible if you stored the password in a text file.

2. Change the message box text to the message you want to show if the user enters the wrong password.

3. For security reasons, consider putting the password-checking routine in a For loop to give the user a fixed
number of tries before the application refuses to display the Login dialog box again. This will make it more
difficult to break the password.

Caution

Just because Microsoft supplied the Login dialog box code with a global variable doesn't make the global good to use.
As the cmdOK_Click() event procedure's remark explains, the global variable is the easiest way to inform the
surrounding application of the success of the login, but good programming practice suggests that you replace the global
variable with local variables. Perhaps the best way to modify this code to improve its maintainability is to turn the
subroutine procedure into a function procedure and set the function's return data type to Boolean. The surrounding
application can then test the function's return value for True or False.

The code at the end of the cmdOK_Click() routine might look confusing because it varies in style from what you're
used to—plus you'll find a few new statements. Until now, MsgBox() has been a function, but this code contains the
following MsgBox statement:

MsgBox "Invalid Password, try again!", , "Login"

Although Visual Basic 6 still supports this MsgBox statement format, Microsoft is trying to get programmers to use the
MsgBox() function instead. To turn this statement into a function, you need to assign the function to a variable (a
Variant will do) and add parentheses, like this:

varKeys = MsgBox("Invalid Password, try again!", "Login")

Note

The MsgBox statement can't determine which command button the user clicked to close the message box. On the other
hand, the MsgBox() function returns the button clicked. If OK is the only MsgBox() button you choose to display, you
don't need to test for a button click, because the user must click OK to close the message box.

The next statement returns the focus to the Password text box (this occurs only if the user enters an invalid password)
with the SetFocus method. When you apply SetFocus to a control that can receive focus, the application sets the focus
to that control. Although the focus might ordinarily move to another control, such as the OK button, the SetFocus
method moves the focus back to the Password text box because the user has to reenter the password.

The final statement uses the SendKeys statement to highlight the text that appears in the Password text box. No matter
what the user types as the incorrect password, the SendKeys statement moves the text cursor to the beginning of the
text box and then to the end of the text box—in effect, highlighting the entire text box contents so the user's next
keypress replaces the selected text.

Note

Day 7, "Advanced Keyboard and Screen Support," explained the SendKeys statement in detail.

The Options Dialog Box

Of all the template forms, the one for the Options dialog box does the least amount of work by itself but has the most
potential uses. When you add an Options dialog box, you'll see the dialog box template shown in Figure 15.11. The
dialog box contains four pages, with tabs at the top of each page and a frame on the body of each page. You can add
pages and controls to the inside of the page frames for the options you require.

Figure 15.11. The Options dialog box displays pages for various options.

Many Windows programs contain an Options dialog box (accessed from the Tools menu) that looks a lot like the
Options dialog box this template form produces. Although it's just a dialog box shell, the Options template form is a
starting point from which you can build a more complete dialog box.

The Options dialog box uses a special ActiveX control called TabStrip, which produces this multiple-page tabbed
dialog box. If you want to add a TabStrip control to one of your applications—that is, if you don't want to use this
template form—you'll have to add the control from the Project Properties dialog box's Microsoft Custom Controls 6.0
option (choose Properties from the Project menu).

When you want to use the Options dialog box, follow these general guidelines:

• Add as many pages to the Options dialog box as you need. The easiest way to modify the tabs and pages is to
click one of the tabs and then click the ellipsis for the Custom property. The Property Pages dialog box that
appears helps you set up the pages, tabs, and ToolTips you want to use in the Options dialog box (see Figure
15.12).

Figure 15.12. Use the Property Pages dialog box to set up the dialog box pages.

• Add a general procedure that reads all the controls in the Options dialog box and sets whatever options the
dialog box contains.

• Call the options-setting procedure from the cmdApply_Click() procedure so that the options go into effect
when the user clicks the Options dialog box's Apply button. (You can also remove the Apply button and its
associated event procedure if you don't want your users to have the Apply feature.)

• Replace the following statement, which appears in the cmdOK_Click() event, with a procedure call to your own
options-setting procedure:

MsgBox "Place code here to set options and close dialog!"

• Modify the Form_KeyDown() event procedure to handle the focus order the dialog box supports as the user
presses Ctrl+Tab. This code isn't trivial because you must determine exactly how the focus changes from
control to control with programming statements.

Note

The tbsOptions_Click() event procedure shows the appropriate page (and hides the other pages) in the TabStrip
control as the program runs.

You can also practice adding template forms by using the Application Wizard to add a template form to an application.
To do so, create a new project and run the Application Wizard. Accept the application's default values until you get to
the Standard Forms dialog box. Click all four standard template forms (do not press the Form Templates button to add
additional template forms), click Next twice, and then click Finish. Visual Basic builds the application shell while you
wait. After the Application Wizard finishes, click OK to read the setup instructions before closing the dialog box.

As you might recall from Day 1, "Welcome to Visual Basic," the Application Wizard creates only a shell of an
application. You must fill in the details. Nevertheless, this shell includes every one of the four standard template forms
that the Application Wizard offers by default.

Test the application by running it to see how much of the application has already been created for you. Don't enter a
password (the default password is blank until you add one to the code module), but you can see that the splash screen
grabbed the user's name (your name in this case!) from the App object and displayed it automatically in the User Name
text box.

The splash screen appears and then goes away quickly before the regular form appears. The About dialog box appears
when you choose About from the Help menu, and the Options dialog box appears when you choose Options from the
View menu. This project, although only a shell of an application, gives you a lot of good code to study when
implementing your own applications that require one or more standard template forms.

Note

The Application Wizard will list your applications among those of the supplied template forms (that is, if you add your
own template forms), if you click the Form Templates button on the Application Wizard's screen.

Tip of the Day

Have you ever started software and were greeted with a tip on how to better use that software? Windows 95 offers just
such a tip (that is, until you turn off the display option). Every time you start Windows 95, you'll see a different tip. To
turn off the tip display, deselect the Show Tips at Startup check box. Figure 15.13 shows the Tip of the Day template
form again.

Figure 15.13. A Tip of the Day dialog box can provide help for your program's newcomers.

When you add the Tip of the Day dialog box to a form window, Visual Basic adds the Tip of the Day form to your
Forms collection. Depending on your screen size and default font settings, you may have to extend the label that holds
the text Show Tips at Startup. Click under the Did You Know label to display the label named lblTipText. This text
box holds the tips that you display.

The code inside the form module sets up the form to display a daily tip each time a user starts the application. The
following guidelines help you understand the requirements of the Tip of the Day dialog box:

• The dialog box's code creates a new collection called Tips. The procedure grabs the startup tips from this
collection.

• Obviously, the Tips collection needs to read the tips from a file you create and supply with the project. The file
should hold one tip per line.

• The code loads the filename in the named constant TIP_FILE in the LoadTips() function. The procedure uses
the Add method to add each tip to the collection as the file data is read. Your only real job is to create this tip file
by using a text editor such as Windows Notepad.

• The DoNextTip() procedure randomly selects a tip from the collection and displays it by using a special
method named DisplayCurrentTip (which is actually a subroutine procedure located at the bottom of the
code).

• The most technical part of the code is the shortest. It's located in the procedure named
chkLoadTipsAtStartup(). Fortunately, Microsoft supplies this code. The code uses the SaveSetting
command to change your system Registry. The SaveSetting command, in this case, stores the value that
determines whether the user wants to see startup tips. If the user deselects the check box labeled Show Tips At
Startup, the Registry is updated accordingly and the code won't display tips in subsequent sessions.

The Tip of the Day template form is perhaps the most common of the remaining template forms described today.
Follow these steps to practice setting up a Tip of the Day dialog box on your system:

1. Start the Windows Notepad editor. Create a file named Tipofday.txt (the default filename used by the tip's
dialog box) and store this file in your application's directory. After you enter the following contents, save the
file and exit Notepad:

Brush your teeth daily and your shoes weekly.
Save money for retirement (nobody else cares as much as you).
Plenty of sleep is a great cure for insomnia.
Read a good book before you see the movie.
Don't drive recklessly or carelessly; drive flawlessly.
Exercise more often than you eat desserts.
Don't gloss over you teeth, floss over them.

2. Create a new application and display the standard form window. Before doing anything else, save the form and
project in the same application directory as you saved the tip file. If these files aren't in the same directory, the
code won't be able to locate your tips.

3. From the Project menu choose Add Form; then select the Tip of the Day form.

4. Change the label's Caption property from Did you know... to Be sure to....

5. Run the application to see the results.

Where did the Tip of the Day dialog box go? Although you've set up the tip file and added the Tip of the Day dialog
box to your application, you must remember that Visual Basic first displays your project's primary form (called Form1,
unless you change it) at startup. You must set the Tip of the Day form for the initial form's startup and set up the code
to display your regular form when the user closes the Tip of the Day dialog box.

From the Project menu choose Properties and then set the Startup Object to frmTip. Click OK to close the dialog box.
The application is now set to display the Tip of the Day dialog box when the user runs the application.

You must connect the regular form (named Form1 still) to the Tip of the Day dialog box form module so that the
regular form appears when the Tip of the Day dialog box disappears.Change the cmdOK_Click() procedure as follows:

1: Private Sub cmdOK_Click()
2: Unload Me ' Unloads the tip dialog box
3: Form1.Show ' Show the regular form
4: End Sub

You must attend to one more item. If the user decides not to see the tips in subsequent startup sessions, there's no way
now for the tip's form module to display the regular form. Therefore, add the Form1.Show statement to the
Form_Load() procedure as follows:

1: Private Sub Form_Load()
2: Dim ShowAtStartup As Long
3:
4: ' See if we should be shown at startup
5: ShowAtStartup = GetSetting(App.EXEName, "Options", _
 "Show Tips at Startup", 1)
6: If ShowAtStartup = 0 Then
7: Unload Me
8: Form1.Show 'Show the regular form ** New statement
9: Exit Sub
10: End If ' Rest of code is not shown here

You now can run the application and read the tips randomly by clicking the Next Tip command button. When you click
OK, the regular form appears, although the form is blank and boring because you've added nothing to it. If a user
decides not to see the tips in subsequent sessions, the application will show the regular Form1 form at startup.

Note

You can set up the application to display the tip or the regular startup form in other ways, as well. For example, if you
add proper Show methods to a subroutine procedure named Main, you can add this Main subroutine to the startup
object.

The ODBC Logon Dialog Box

ODBC provides a standard command set for accessing different kinds of data stored on different kinds of computers.
The ODBC standard enables your program to access data that it otherwise wouldn't be able to access. ODBC's goal is
to let a number of different types of systems access data stored elsewhere.

Figure 15.14 shows the template form that appears when you insert the ODBC Logon form on your form window.

Figure 15.14. The ODBC Logon template form lets you set up external database access.

The ODBC Logon dialog box can be added to your application so that users can select and access an ODBC database
source. The source indicates the location and type of data the application is to access. Table 15.1 describes each ODBC
field.

Table 15.1. The ODBC Logon dialog box's text boxes specify ODBC options.

Name Description

DSN The data source name. This option lists (in a drop-down list box) the currently registered ODBC sources in
the user's system Registry.

UID The user ID that supplies the connection with the user's identification so that the ODBC database can
validate the user's access.

Password The user's password to access the system.

Database The name of the database to connect to.

Driver A drop-down list box that lists all the drivers on the system and lets the user register a new ODBC driver.

Server The name of the server supplying the database if the DSN isn't available.

The code necessary to connect the ODBC Logon dialog box's values to the proper ODBC-compatible database is fairly
extensive. You must understand the ODBC commands necessary to connect to the outside database. Such commands

are beyond the scope of this book, because Visual Basic programmers rarely have to resort to such routines, except in
system-related applications.

Adding Your Own Form Templates
Adding your own forms to Visual Basic's collection of template forms is easy to do. After you've created a form that
you want to add to the template form collection, save the form in the \Templates\Forms folder. In all subsequent lists,
including the Application Wizard's template form list, your form will appear along with the others.

Tip

Add forms to the template form folder that are general and do not have a lot of detail, unless you want that detail to
appear in the forms you create from the template form.

Note

To remove a form you've added to the template form folder, start Windows Explorer and traverse to the
\Templates\Forms folder. Select and delete the form. The next time you display a list of template forms (from the
Application Wizard's template form screen, for example), the form will no longer appear in the list.

Summary
Today's lesson explained how to use the template forms to standardize your applications and speed program
development and accuracy. The template forms include several standard forms that programmers often add to Windows
applications. Your users will appreciate seeing standardized forms in your applications.

Form templates are general-purpose forms that you can add to any project. The template forms contain placeholders for
text and graphics that you can change once you load the template form into your project. Your application will control
the display of the form and interact with the template form's code.

Tomorrow's lesson begins a two-day study of objects and how they relate to Visual Basic programming.

Q&A
Q: Why should I make my template forms general?

A: By making your template forms as general as possible (keeping only detail that won't change from
application to application), you make generating new forms from these template forms easier. In today's
lesson, you've seen several template forms that Visual Basic supplies. Most of the text on these template
forms are text placeholders so that you know where to customize the form.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next chapter. Answers are provided at the end of today's lesson.

Quiz

1: What is the purpose of the template forms?

2: Describe two ways to add template forms to applications.

3: Describe the code needed to connect the About dialog box to your project.

4: True/False. You must write the code to display system information if a user clicks the About dialog box's
System Info command button.

5: What's the difference between a splash screen and your regular form?

6: Would you consider the Tip of the Day dialog box to be a splash screen?

7: What's the purpose of the SaveSetting command?

8: What does ODBC stand for and what is its purpose?

9: What must you do in the Properties dialog box before your application can properly display a splash screen
or a Tip of the Day dialog box?

10: Describe the format of the tip file required by the Tip of the Day dialog box.

Exercises

1: Follow the recommendation described earlier in the Login dialog box section that turns the Login dialog
box's code into a better set of routines. Replace the global variable with local variables.

2: Create an application that displays a different PC tip every time the application starts. (You can modify the
tip file described in today's lesson.) Add a menu option to the regular form to make the tips appear again at
startup. Hint: Check out the chkLoadTipsAtStartup_Click() procedure and use the SaveSetting
command to reset the tips. Although you haven't mastered SaveSetting, you have all the tools you need to
complete this project quickly .

Day 16. Objects and Visual Basic

Today's lesson shows you how to work with objects in Visual Basic. You've already worked with some objects when
you handled forms, controls, and the Printer object. Today's lesson extends that knowledge of objects. You'll learn a
new control called the OLE control, which lets you use objects from outside Visual Basic's environment.

In addition, you'll learn more about Visual Basic's predefined objects, such as the Screen and App objects. These
predefined objects send information to your applications that you can use to make decisions as well as to post titles and
user information on the form. Once you learn how to use predefined objects, you'll learn how to work with collections
of those objects.

Today, you learn the following:

• About the OLE control
• About the differences between object linking and object embedding
• How to place other applications'objects inside your own application
• About in-place activation
• How to use control arrays
• How to manage collections
• How to use the Object Browser

OLE for Outside Objects
OLE is a familiar term to Windows users and programmers. You can embed OLE objects into your applications to
enhance the power of your program as well as reduce coding. By using OLE objects that are already defined by other
applications, you take advantage of object reuse.

OLE stands for object linking and embedding. Many Windows applications offer their data as OLE objects, and you
can embed such objects inside other Windows applications that support OLE.

Note

ActiveX technology is quickly replacing OLE technology. As a matter of fact, Microsoft calls ActiveX controls
"former OLE controls." Nevertheless, OLE is still vital. Many Visual Basic applications still use the OLE control, as
proven by Microsoft's decision to keep the OLE control among the default, intrinsic tools on the toolbox window. OLE
makes a great introduction to ActiveX technology, so today's lesson is not only important on its own, it also offers an
excellent introduction to tomorrow's lesson, "ActiveX Controls," which teaches about ActiveX-based objects.

The bottom-line reason for using OLE is that you can employ outside objects in the applications you write. The OLE
control on your toolbox window maintains the OLE connection to your project's OLE object. Your users can take
advantage of in-place activation when accessing embedded OLE objects.

In-place activation refers to the ability to edit an object inside a Visual Basic application using the object's parent
application's menus and commands. Once you embed an OLE object in an application, you don't have to write menu
options that guide the user in editing the OLE object—the original application's menus will automatically appear for the
user.

Linking and Embedding

The OLE control either holds a link to an object or is an embedded object, depending on how you set up the control.
When you link to another application, your OLE control (the container control) contains a link to another application's
document. If the other application changes that document, your application will reflect the changes. The object is
known as a persistent object, because you can keep the object's contents up-to-date via the link.

A container control is an OLE control that holds an outside application's data object.

A persistent object is an object outside your project that does not go away just because your application ends.

When you embed an OLE data object into your application, your OLE container control contains a copy of the object
document that was created in the other OLE-compliant application. However, no links are maintained between your
application and the original OLE object. Therefore, if the original application changes the object, your application
won't reflect that change, because your application has a copy of the object.

Here's how the two kinds of OLE activities affect your project:

• If you link an object to your application's OLE control, Visual Basic actually starts the other object's application
when the user attempts to use or change the object by double-clicking it. The user will choose the File, Close
and Return to Visual Basic Application menu option when he or she finishes working with the object.

• If you embed an object into your application's OLE control, the object is part of your application, because it
does reside inside your application.

Using the OLE Control

Open a new application and double-click the OLE control to add it to the form window. A large white box appears on
the form for a moment and then the Insert Object dialog box, shown in Figure 16.1, appears. Other controls, such as the
common dialog box control, produce dialog boxes when you click the Custom Properties window entry. The OLE
control is the only control that pops up a dialog box as soon as you place the control on the form.

Figure 16.1. The Insert Object dialog box contains all registered OLE applications on your system.

Note

The Object Type list box contains the OLE-compliant application controls you have to select from. The list varies
according to the software installed on your system. An application updates your Windows Registry database with its
OLE objects when you install the application. Normally, one shrink-wrapped Windows application can yield two,
three, or more custom controls. For example, if you have PowerPoint 97 installed, you'll find two PowerPoint controls
in the list.

The Create New option lets you specify an application that can create the kind of object you want to embed. If, instead,
the other application's data object already exists, you can click the Create from File option to display the Insert Object
dialog box (see Figure 16.2). From the Insert Object dialog box, you can either embed the existing object or click the
Link option to add a pointer to the object.

Figure 16.2. You can embed or link an existing object into your OLE control.

Suppose you want to give your users a chance to create notes inside an application. The notes might relate to a
customer record. You have a few options:

• Let the user enter the notes in a simple text box control.
• Improve upon the text box concept by writing a keystroke-capturing routine that analyzes the user's keystrokes

and turns the simple text box into a full-fledged word processor that formats text and supports rulers and
margins. (This would take quite a long time to write.)

• Embed an OLE-based WordPad document object.

Obviously, the last option sounds good, because you can give your users the power of a word processor and yet you
don't have to write any code to handle word-processing commands: WordPad's already written. Not everybody has
Microsoft Word on their system, but WordPad comes with all versions of Windows (starting with Windows 95).
Therefore, your users will have access to WordPad, which allows them to perform in-place activation on the object.

To embed a WordPad document, follow these steps:

1. After inserting the OLE control on the form, select the Create New option (the default).

2. Scroll the Object Type list until you see WordPad Document.

3. Double-click the WordPad Document option to embed a WordPad document object in your application. You'll
see part of the WordPad ruler above the OLE control, as shown in Figure 16.3.

Figure 16.3. The OLE control now has a WordPad object.

4. Change the OLE control's SizeMode property to 1-Stretch to fit the WordPad object to the OLE control's size
and width.

5. Increase the form's Width and Height to 6945 and 5670, respectively.

6. Set the following properties for the OLE control:

Height: 3375
Left: 840
Top: 1080
Width: 5055

You could add extras to this project and provide a better name for the form, but don't worry about it right now.

7. Run the application. When the application starts, nothing special seems to happen except that the OLE control's
outline appears in the center of the form.

8. Double-click the OLE control. Voilà! As Figure 16.4 shows, a lot happens when you double-click the control. A
menu appears (due to the in-place activation of the embedded WordPad document) as well as a ruler.

Figure 16.4. You've got a word processor in the middle of your Visual Basic application!

Note

Several other ways exist for activating the OLE object. For example, OLE activation could occur simply by the OLE
object getting the focus. The AutoActivate property controls how the object activates. The default value for
AutoActivate is 2-DoubleClick.

9. Type something and use the menus to format what you type. All of WordPad's options are available within your
Visual Basic application.

10. Close your application.

Caution

Nothing saves your WordPad typing! When you close the Visual Basic application, the WordPad document goes away
and is never saved. Neither Visual Basic nor WordPad even warns you that your document hasn't been saved! Saving
the document is one of your jobs as the programmer. Note that the WordPad in-place menus that appear do not include
the usual File menu option.

Saving Object Contents

Microsoft recommends that you save and load changed embedded objects using one of several file-saving methods.
Your application is responsible for holding the embedded object, so the source application really has no jurisdiction
over saving the object's content inside your application.

Use the SaveToFile method when saving your OLE container control data. Suppose you want to offer a command
button for saving changes made to an object. Listing 16.1 shows sample code that saves changes in a special binary file.
A binary file is more limiting than the sequential or random-access files that you learned about in Day 12, "Interact
with Files." Nevertheless, binary files provide a fast and efficient method for storing objects, as long as you later read
objects in the same order you save them.

Listing 16.1 Saving your OLE container control object to disk.
1: Dim intFileNum as Integer
2:
3: ' Get next free file number
4: intFileNum = FreeFile
5:
6: ' Open output file
7: Open "TEST.OLE" For Binary As #intFileNum
8:
9: ' Save file
10: oleObj1.SaveToFile intFileNum
11:
12: ' Close the file
13: Close

During subsequent runs of your application, it should read the object's latest values (from the previous run) into the
OLE container control by using the ReadFromFile method shown in Listing 16.2.

Listing 16.2 Reading the OLE container control's object contents saved on the previous run.
1: Dim intFileNum as Integer
2:
3: ' Get next free file number
4: intFileNum = FreeFile
5:
6: ' Open input file
7: Open "TEST.OLE" For Binary As #intFileNum
8:
9: ' Read file into object
10: oleObj1.ReadFromFile intFileNum
11:

12: ' Close the file
13: Close

You can place the reading and saving code in event procedures linked to command buttons or menu items. Again, your
application, not the OLE application, is responsible for saving and loading the data. The OLE application, however,
takes care of all other tasks related to the object.

Working with Objects
Perhaps you've heard the term object-oriented programming, sometimes called OOP. Visual Basic is not a strict OOP
language, although it does support objects in many ways. After today's lesson, you'll have a better understanding of
Visual Basic objects, and you'll better understand how objects relate to arrays and collections.

Object-oriented programming, or OOP, is programming with data items that represent objects that have methods and
properties not unlike Visual Basic objects. True OOP contains objects that can inherit from other objects. Visual Basic
does not fully and accurately support the OOP model, although in practical use, Visual Basic does seem to fulfill the
ultimate goals of OOP better than just about any true OOP language has done.

The following sections describe non-OLE objects. You'll learn how to hone your programming skills to take advantage
of control arrays and object collections.

A control array is an array of controls you access via subscripts.

Programming with Objects

In Day 8's lesson, "The Nature of VB Programs," you learned how to use the If TypeOf statement to test for an
object's form. Today's lesson further explains what If TypeOf does—it actually determines an object's class. If you're
new to objects and classes (these terms are used in other programming languages, especially object-oriented
languages), you'll learn all you need to know today.

An object can be just about anything in Visual Basic. You've already worked with objects such as controls, forms, and
the Printer object. Also, you passed the Object data type to a procedure in Day 13 "Printing VB Output." You already
know that control objects contain properties, methods, and events. The controls contain code and data items. In a way,
an object—such as the command button control—is like a package handed to you by the Visual Basic developers. You
don't have to write code to trigger a command button, declare variables that describe how a command button looks or
what caption it has, or write code to perform work with a command button. The encapsulated command button methods
do all the work for you.

Objects are encapsulated. Like a capsule that contains medicine or lunar astronauts, an object encapsulates methods,
events, and properties. This encapsulation lets you work with objects from a higher perspective than if you had to write
all the code needed to support the objects. A class defines the behavior and appearance of the objects it contains.

The Object Class

Objects not only bring encapsulation to your programming fingertips, but they are also part of an object hierarchy
called an object class. The benefit of a class is that all objects in the class share the same features. (A single object is
said to be an instance of the class.)

Note

You can create your own objects. By making them part of an existing class, your objects automatically gain, or inherit,
many properties, methods, and events from that class.

When you test an object with If TypeOf, Visual Basic returns the object's class. Therefore, the following line of code
returns True or False, depending on whether the object named myObj is a part of the CommandButton class:

If TypeOf myObj Is CommandButton ' Check the class

Tip

Visual Basic also supports the TypeOf() function, which returns the class name. For example, TypeOf(myObj) might
return CommandButton or Form.

Classes make programming with objects more flexible than would be possible without the class structure. For example,
the With…End With statement lets you easily assign multiple properties for a single object. Notice the following code's
redundancy:

chkMaster.Caption = "Primary Source"
chkMaster.Alignment = vbLeftJustify
chkMaster.Enabled = True
chkMaster.Font.Bold = False
chkMaster.Left = 1000
chkMaster.RightToLeft = False
chkMaster.Top = 400

When you enclose an object inside a With…End With block, you can eliminate the repetition of the object name. The
following code is identical to the previous code:

With chkMaster
 .Caption = "Primary Source"
 .Alignment = vbLeftJustify

 .Enabled = True
 .Font.Bold = False
 .Left = 1000
 .RightToLeft = False
 .Top = 400
End With

Note

Using With…End With for two or three property settings requires more typing than using straight assignments. When
you need to assign more than three properties, however, the With clause is an appealing coding statement, because it
requires less typing and is easier to maintain if you add properties and require more assignments later.

Tip

If you think you'll set additional properties in future versions of the program, you may want to go ahead and use the
With clause with only one or two properties.

The System Objects

Unlike the objects you declare, system objects are the Printer and App objects you've already used in this book.
Although you can't pass system objects (they're already global in nature), you can treat them much like the objects you
create. System objects represent specific elements of your application.

Table 16.1 describes the system objects and lists some important methods you can apply to them.

Table 16.1. System objects support several methods.

System
Object

Methods Description

 The current application.
EXEName Returns the application's filename.
Path Returns the application's path.
Title Returns the primary startup form's title bar text.

App

PrevInstance Returns True or False, indicating whether another copy of the application is now
running.

Clipboard The Windows Clipboard region.

Table 16.1. System objects support several methods.

System
Object

Methods Description

Clear Erases the Clipboard.
GetData Returns the graphic image stored on the Clipboard.
GetFormat Returns the format of the Clipboard object.
GetText Returns the text from the Clipboard.
SetData Copies a graphic image to the Clipboard.
SetText Copies text to the Clipboard.
SelStart Used for Clipboard selection operations.
SelLength Used for Clipboard selection operations.
SelText Used for Clipboard selection operations.

 The Immediate window. Debug

Print Copies information at runtime to the Immediate window (only possible in non-EXE
Visual Basic programs that are run from the development environment).

 Holds information about current error status of an application. Err

 Key property Number holds an error code that corresponds to the most recent system
error. (Holds zero if no error has occurred.)

Printer The system printer. Day 13 introduced the methods of the Printer object and
demonstrated how they provide printer support.

 The user's screen.
FontCount Returns the number of fonts the current screen supports.
Fonts Contains a list of all the screen's possible font names.
Height Returns the height of the screen area in twips.
MousePointer Holds the shape of the mouse cursor or determines its shape if you specify a new

mouse cursor.
TwipsPerPixelX Returns the number of possible horizontal twips.
TwipsPerPixelY Returns the number of possible vertical twips.

Screen

Width Returns the width of the screen in twips.

You've worked with most of the system objects—especially the Printer and Screen objects—before today's lesson.
The App object is useful for determining runtime information about the program path and filename, and the Clipboard
object provides some interesting functionality you may want to use. Also, the Debug object lets you interact with your
program during testing to help get the bugs out.

Depending on your application's needs, the Clipboard object is relatively simple to program. The Clipboard object is
the same Clipboard Windows uses; therefore, your application can copy or cut information to the Clipboard object,
and users can paste that information in another Windows application. Also, your application can paste information
that's contained in the Windows Clipboard into the Clipboard object.

You can use the Clipboard object and its properties to select text from within your program and to determine the text
selected by users. For example, the SelStart property marks the starting position of the selection cursor in the text box
(or whatever control receives the selection). A value of 0 for SelStart places the cursor before the first character.
SelLength determines how many characters are selected for Clipboard work. If you select text by setting SelStart
and SelLength values, that text goes to the Clipboard object when a user presses Ctrl+C (copy) or Ctrl+X (cut).
SelText is a string that contains the selected text you've bounded with SelStart and SelLength.

If you've selected text in a text box control (or you've asked a user to select text), that text appears in the SelText string
value. You can clear the Clipboard object of its current value (the Clipboard object can hold only one value at a time)
and send the selected text to the Clipboard with the following code:

Clipboard.Clear ' Erase current Clipboard
Clipboard.SetText txtName.SelText ' Copy text

If you want to copy the Clipboard text into a variable, you can use GetText(), like this:

strInfo = Clipboard.GetText()

If you want to replace selected text in a control with the text in the Clipboard object, you can do so this way:

txtName.SelText = Clipboard.GetText()

The GetText() method sometimes uses arguments, and it requires parentheses even if you specify no arguments. For
text-based Clipboard work, you don't need to supply any arguments.

Object and Control Arrays

One of the most interesting things you can do with objects is to declare an array of objects. For example, you can
declare an array of command buttons or forms. Moreover, these objects don't even have to exist. For example, you don't
have to declare all forms at design time, because you can still create an array of forms at runtime.

You already know about the Forms and Printers collections. Visual Basic also supports the Controls collection,
which lets you step through all your controls as though they were array variables. For example, the following code
hides all controls:

For intCtr = 0 to Controls.Count - 1
 Controls(intCtr).Visible = False
Next intCtr

If your application contains multiple forms, you can hide all controls on all forms by using a nested loop (notice that
For Each eliminates the Count - 1 requirement):

1: Dim frmAForm As Form
2: Dim ctlAControl As Control
3: For Each frmAForm In Forms ' Step through all forms
4: For Each ctlAControl In frmAForm.Controls
5: ctlAControl.Visible = False
6: Next ctlAControl
7: Next frmAForm

Caution

A menu is considered a control in the Controls collection. In many situations, you'll want to omit the menu controls in
such a loop by testing with the TypeOf() function to determine whether the control is a Menu object before setting its
visibility to False.

The Controls collection holds all controls on your current form; however, you can declare a control array to hold one
specific type of control. You declare an array of controls as follows:

Dim ctlManyLabels(1 To 4) As Label

The next section discusses collections further. Collections work a lot like arrays in that you can access individual
elements in the collections just as you can with arrays. You might want to create an array of objects, such as forms and

controls. Rather than create the objects at design time, you can create the objects in an array as follows (notice the New
keyword):

Dim frmArray(1 To 10) As New frmFirstForm

This Dim statement assumes that one form, frmFirstForm, exists. After the declaration, 10 new forms exist,
subscripted from frmArray(1) to frmArray(10). Subsequent code can then change the form properties of the forms
in the array to make each form different from the base form, named frmFirstForm.

Note

None of these forms will appear until you invoke their Show methods.

Suppose you want to decrease the font size of a form's controls if a user resizes a maximized form. You can use the
Controls collection to decrease the font size of all controls:

1: Private Sub Form_Resize ()
2: ' Decrease all the controls'font size
3: Dim intCtr As Integer
4: For intCtr = 0 to Controls.Count - 1
5: Controls(intCtr).FontSize = Controls(intCtr).FontSize * .75
6: Next intCtr
7: End Sub

Each control's font size will now be 25 percent smaller than it was before the user resized the form.

You won't see many Visual Basic programmers using control arrays when a collection exists for the same object
(Visual Basic supplies a Forms predefined collection). If you want to use control arrays, however, you have to declare
memory to hold the array contents and to initialize the arrays.

Visual Basic supports one technique for control arrays that you'll find yourself using a lot, even though collections are
always available to you. When you copy a control and paste that control back onto the form, Visual Basic displays the
message box shown in Figure 16.5.

Figure 16.5. Visual Basic will create a control array for you.

You might wonder why you'd ever copy and paste a control, but if you need to place several command buttons or labels
that all have the same format—perhaps the same font size and caption alignment—it's a helpful technique. You just
create one control, set all its properties, copy that control to the Clipboard, and then paste the Clipboard contents onto
the form to add as many controls as you need.

As soon as you paste the copied control, Visual Basic displays the message box shown in Figure 16.5. If you answer
Yes, Visual Basic automatically creates a control array with a name that matches the first control. For example, if the
first control is a command button named Command1, the array is named Command1, and the elements begin at
Command1(0) and increment as long as you keep pasting the control.

Your code then can step through all the control array elements from Command1(0) through Command1(n), where n is
the total number of Command1 controls on the form, and set properties for them.

Collections

Collections play a vital role in Visual Basic programming, as you've seen in earlier lessons as well as in the preceding
sections. Collections are always present, and Visual Basic updates them automatically; for example, if you add a form
at runtime with the New Form declaration, Visual Basic updates the Forms collection's Count property accordingly.

Without a doubt, the predefined collections are helpful. So, why not create your own? Visual Basic lets you create your
own collections. However, if you create a collection, you'll need to manage the collection yourself—this takes more
effort than managing predefined collections.

As you learned in the previous sections, all objects belong to a class. If you know something about a class, you know
something about all objects within that class. For example, if a control is a member of the CommandButton class, you
know that the control supports the Click event, because all CommandButton class members support the Click event.

Your own collections must be objects of the Collection class. You define collections at the module level by using the
Private or Public keyword, depending on the range of procedures that need access to your collection. The following
statement declares a collection named colMyCol:

Private colMyCol As New Collection

A collection works like an empty bookcase. You can add objects (such as books), remove objects, count objects, and so
on. Of course, a bookcase can hold more than just books. However, a collection can hold only one kind of item, but you
can declare multiple collections that each hold different kinds of items. Here are the methods your collections can
access:

• Add—Adds an item to your collection
• Count—Returns the number of items in your collection
• Item—Serves as an index number for the items in your collection
• Remove—Removes an item from your collection

As Listing 16.3 shows, Visual Basic takes care of updating Count as well as adding items to your collections. The code
in Listing 16.3 creates a collection named Cities and adds four items (city names) to the collection.

Listing 16.3 Using Add to add items to your new collection.
1: Dim Cities As New Collection
2: Dim intCtr As Integer
3:
4: ' Add items
5: Cities.Add "Tulsa"
6: Cities.Add "Miami"
7: Cities.Add "New York"
8: Cities.Add "Seattle"
9:
10: ' Show that there are four cities
11: frmMyForm.Print "There are"; Cities.Count; " cities:"
12:
13: ' Print each city name
14: For intCtr = 1 To Cities.Count
15: frmMyForm.Print " "; Cities(intCtr)
16: Next

If you run this code, the following output appears on the form:

There are 4 cities:

Tulsa

Miami

New York

Seattle

This lesson only scratches the surface of the power of collections. Nevertheless, you should know that you can insert
items into and remove items from your collections easily and in whatever order you prefer. Remember that each item in
the collection contains a subscript, starting at 1, that you use to reference a particular item. In the preceding example,
Cities(1) is the first city listed in the collection named Cities. Remember that your collection index value begins at
1, not 0 (as the control arrays require).

You can use a named argument (an argument in which you include the argument name followed by the named
argument assignment operator, :=) named Before to add items to a collection at the exact location you want. The
following line adds a city to the beginning of the Cities collection, no matter how many cities reside in the collection
to begin with:

Cities.Add "St. Louis", Before:=1

A Before position of 1 adds the items to the front of the collection. In other words, Visual Basic inserts the new item
before the specified indexed item in the collection. If you included this Add method statement at the end of the code
shown earlier, the output would change to this:

There are 5 cities:

St. Louis

Tulsa

Miami

New York

Seattle

If you added the code line without the Before:=1 named argument, St. Louis would appear at the end of the collection.

You can remove specific items by using the Remove method. As you remove items, the remaining subscripts adjust so
that they always begin at 1. The following statement removes the second item (Tulsa) from the collection:

Cities.Remove 2

The Object Browser
As your Visual Basic knowledge improves, your need for better tools grows. Visual Basic includes a tool called the
Object Browser, which lets you inspect variables, controls, and other objects throughout your application. Visual Basic
programmers new to the Object Browser often use it much more than they think they will, because its features make
programming with Visual Basic much simpler.

The Object Browser helps you locate and manage objects within your applications.

The Object Browser is a comprehensive online reference—but it's not online in the same sense as the Online Help
reference. The Object Browser gives you a one-stop location to hunt for objects and object information. It also enables
you to jump directly to the code you need to work with next.

Note

The Object Browser describes your application's type libraries, which are the repositories of your class information.
You can use the Object Browser to access all object properties, events, and methods for your application, including
objects you've created.

The Object Browser Window

When you first choose Object Browser from the View menu or click the toolbar's Object Browser button, you'll see the
Object Browser window (see Figure 16.6). You may have to expand your window as well as close the Properties
window and toolbox to see the full Object Browser.

Figure 16.6. The Object Browser describes your application's objects.

Table 16.2 describes the parts of the Object Browser window.

Table 16.2. The Object Browser window includes several items you should be familiar with.

Component Description

Project/Library
list box

Describes the source of the objects you want to browse. (You'll generally browse the <All
Libraries> option, but you can browse, for example, the objects in a particular project by selecting
your project's name.)

Search text Lets you enter an object, event method, or property to search for.

Maneuver controls Used to jump back and forth along a browsing path you've previously traveled.

Classes Holds the class names from the project or library you've selected.

Members Contains the members for the class you've selected.

Traversing the Object Browser

The Object Browser contains much of the same information as the online Help system. The Object Browser, however,
specifically targets you as a Visual Basic programmer and offers the information you need succinctly. For example, the
<globals> entry in the Classes list describes all of Visual Basic's built-in functions. Scroll down to the Left entry to
learn about the Left() function.

Note

As you learned in Day 8, the Left() function returns the left part of a string.

When you highlight the Left entry, Visual Basic describes the function at the bottom of the Object Browser window.
The text not only describes the function's purpose but also shows the function's format. You can tell the nature of each
object listed in the Members drop-down list by its icon. The small green icon indicates that the member is a function.
You can spot collections (look at the Forms entry) and named constants by their respective icons. Scroll down to see
the entire list of named constants that appears below the functions and collections in the Members scrolling list.

If you right-click either list and then select Group Members from the pop-up menu, Visual Basic groups all members
and classes by their purpose. Therefore, rather than the named constants appearing in alphabetical order, the Object
Browser displays all the named constants together, all the events together, and so on.

Tip

After you highlight any entry in an Object Browser window, click the toolbar's Help button (the icon is a question
mark) to get Online Help information for that object.

You can get even more specific with the Object Browser. For example, the Classes list contains several entries that
reference named constants. When you click the ColorConstants entry, for example, only Visual Basic's named color
constants appear in the Members list (see Figure 16.7).

Figure 16.7. The object search has been narrowed to particular constants.

Tip

You may use these named constants anywhere in code you need a color. For example, you can set a form's background
color like this:

frmMyForm.BackColor = vbRed ' Set form to red

Notice that all the controls available in the toolbox also appear in the Classes list. If you click ComboBox, for example,
the Object Browser displays all pertinent information for combo boxes, including properties, events, and methods. If
you click one of the combo box entries in the Members list, you get a description of that method, event, or property.

Programmers use the Object Browser for many different purposes. Keep in mind that the Object Browser displays
object information in an organized manner. In addition to objects, it coordinates all your programming specifics. For
example, if you're writing code that takes advantage of the built-in date and time functions, click the Object Browser's
Classes entry DateTime. As Figure 16.8 shows, the Members list is updated to show you only those built-in functions
related to dates and times.

Figure 16.8. Finding the built-in functions for a certain topic is easy.

Although these functions are listed in the online Help guide and are also available from other locations in the Object
Browser (such as in the <globals> Classes entry), reviewing the group of date and time functions makes programming
with those functions simple, because all the functions are referenced in one location.

Tip

Remember that the Go Back maneuver button retraces your steps through the Object Browser, so it's easy to move back
and forth with the mouse. This action mimics popular Internet browsers in use today.

The Object Browser is very useful for describing your own project. As you add objects, variables, and event procedures
to your application, the Object Browser sits in the background filing everything. Figure 16.9 shows the Object Browser

with Project1 selected in the Project/Library list. When Form1 (the only placed object in this project so far) is clicked,
the Object Browser displays a list of all the event procedures, methods, and properties for that form. Only one entry,
Command1_Click, is boldfaced, meaning that code has been added only to that event procedure so far.

Figure 16.9. The Object Browser shows only active features of the application.

One of the most powerful aspects of the Object Browser is the View Definition option. If you highlight a member that's
one of your own objects (such as an event procedure you've written or an object you've declared) and then right-click
the object and choose View Definition, Visual Basic jumps directly to the code where you've defined that object!
Therefore, you can use the Object Browser to locate specific code within a large application. You don't have to know
which project an object was defined in, as long as you can locate the object in the Object Browser.

When you search for an item with the Object Browser, you get a list of every reference to that item within your entire
application. For example, if you search for Click, Visual Basic displays an extra window (see Figure 16.10) that
contains every relevant reference in the entire project (and in the entire Visual Basic repertoire, because the <All
Libraries> option is selected in the Library/Project drop-down list).

Figure 16.10. The search feature has found all occurrences of Click.

The Click event occurs for several objects, so the Object Browser displays a window that contains every referenced
object that supports Click. You then narrow the search by clicking the object or project that contains the Click event
you're looking for.

Summary
Today's lesson was all about objects. You learned how OLE objects work in Visual Basic. The OLE control does
nothing on its own except contain objects (or link to objects) from other applications. Once these objects are in place,
the user of your application can edit and manipulate them from the other application inside your application. You don't
have to write commands to access the other application. OLE objects are smart objects that bring all the editing tools,
including menus, with them from the other application.

In addition to collections, Visual Basic allows you to declare control arrays, which often act like object arrays. You can
replicate controls on a form so that they all share common features, leaving you the task of changing only the
distinguishing features (such as captions or colors). The system objects provide common predefined objects through
which your application can interact with resources outside the typical program environment. By accessing the App
object, your application, at runtime, can determine the path from which the user started the application. The Clipboard
object lets your application interact with the Windows Clipboard by copying and pasting text to and from the Clipboard
area.

To organize things, Visual Basic supplies a tool called the Object Browser, which is basically a repository of data. You
can search for specific events, properties, and methods, or you can look for a whole class of objects. The Object
Browser even tracks your code for objects you initialize and event procedures you write.

Tomorrow's lesson, "ActiveX Controls," takes objects to their next generation by describing how to use and create
ActiveX controls.

Q&A
Q: Must my user have the OLE object's original application installed for the OLE object to work in

Visual Basic applications that use them?

A: Yes, given that in-place automation requires menus and all the features of the original application, your
user must have the application installed; otherwise, he or she will be unable to edit the OLE object.
Consider the fact that Microsoft Excel, a powerful worksheet system that consumes a lot of disk space
and memory to do its job, is OLE compatible. Therefore, you can bring an Excel worksheet into an
application that you write, and your user will have all the power of Excel in the middle of your
application! Given Excel's size, as well as the menus and features of Excel, it could never come riding
into your application on the object itself. Your user must have Excel installed in order to work with an
Excel OLE object inside your application. You'll have to clearly state the requirements of your
application, including auxiliary programs such as Microsoft Excel, for users to get full use out of your
application.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next lesson. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: What is the difference between linking and embedding?

2: Which kind of OLE technique, linking or embedding, do you think consumes the most disk space?

3: True/False. Visual Basic automatically saves your users'changes to the OLE embedded object.

4: Which method saves an OLE object to a disk file?

5: Which method loads an OLE object from a disk file?

6: Name two ways to test for an object's class.

7: True/False. You must pass system objects if you need to access them in multiple procedures.

8: Name three kinds of items that often appear in the Members list in the Object Browser.

9: What happens if you group the Members list in the Object Browser?

10: True/False. The Object Browser won't search for objects you've created.

Exercises

1: Why is With…End With probably a bad idea here?

With chkMaster
 .Caption = "Primary Source"
 .Alignment = vbLeftJustify
End With

2: Write a simple application that contains one OLE control. Embed a Windows Paint object in the control. Add
a menu option for saving pictures and one for loading pictures. When you run the application, double-click
the control and draw a picture. Save the drawing, exit the application, and then restart the application. Load
the saved drawing to make sure your application's save and load procedures are accurate.

Day 17. ActiveX Controls
Today's lesson shows you how to understand and use ActiveX controls. By adding ActiveX controls to your toolbox
window, you add functionality to your Visual Basic environment and decrease the time required to develop subsequent
applications.

Visual Basic's supported object technology lets you borrow functionality from other applications that support ActiveX
and ActiveX automation. For example, your Visual Basic application can create a Word document or an Excel
worksheet by borrowing ActiveX technology from the outside applications.

Once you understand how important ActiveX control technology is and the many ways you can benefit from ActiveX
controls, you'll learn how to create your own ActiveX controls.

Today, you learn the following:

• About the history of ActiveX controls
• How VBX and OCX controls compare to ActiveX controls
• How to add ActiveX controls to your projects
• About automation of objects within your applications
• How to create an Excel worksheet from within a Visual Basic application
• How to create new ActiveX controls
• About subclassing of new ActiveX objects
• How to create your own property values for your controls

 The Need for ActiveX
ActiveX technology is the current version of the set of add-in controls that began a few years ago as VBX controls. The
filename extension .VBX meant that the control was a Visual Basic extended control. In other words, ActiveX controls
began as Visual Basic controls that you could add to earlier versions of Visual Basic to expand upon the toolbox tools
that came with Visual Basic.

Back then, Visual Basic controls were not compatible with browser technology, the Internet, and other Windows
programming tools, such as Visual C++. Nevertheless, the Visual Basic controls in the early versions of Visual Basic
were important for extending the Visual Basic programmer's ability to write code. The more controls the programmer
had, the less work he had to do. As a result, an entire programming community and business developed that created
Visual Basic controls that manipulated graphics, data, grids, multimedia, and so on. Due to the popularity of Visual
Basic controls, Microsoft was forced to redesign them (given that they were compatible only with Visual Basic and not
other Windows products).

Note

OLE is a cousin to VBX controls, but OLE is more universal among Windows applications—it was not designed to
target Visual Basic programmers only. Nevertheless, as you saw yesterday, an OLE object is a data object (not a
control) that you use as you would an added Visual Basic control.

Between Visual Basic controls and ActiveX controls, Microsoft designed special 32-bit OCX controls. These new
Visual Basic controls extended Visual Basic as well as other programming languages, such as Visual C++. OCX
controls had an .OCX filename extension. The older VBX controls supported only 16-bit applications.

Caution

If you've worked with previous editions of Visual Basic that supported 16-bit VBX controls, as versions before 5.0
supported, the current 32-bit Visual Basic system can't use these controls unless the system comes with 32-bit
replacements for those old controls. For example, Visual Basic comes with a 32-bit version of the gauge control (16-bit
VBX gauge controls were included with the early versions of Visual Basic). Therefore, if you load an older Visual
Basic application that uses the VBX gauge control, Visual Basic will replace that control with the 32-bit version, and
everything should work fine. If, however, a replacement doesn't exist and the VBX control's vendor can't supply you
with a replacement, you'll have to eliminate that control from the application and substitute a similar one.

The OCX controls, although compatible with Visual C++, did not work easily over the Internet; therefore, Microsoft
upgraded them to be ActiveX controls so that Internet browsers, as well as multiple applications and programming
languages, work well with them.

Will there be a replacement for ActiveX? Probably some day, depending on new technology that requires something
extra that ActiveX technology does not provide.

Note

Both the current versions of Internet Explorer and Netscape's Navigator (with an available plug-in from Netscape's
support page) support ActiveX on Web pages. This means that users can interact with ActiveX controls in any Web
pages that contain them.

Adding ActiveX Controls to a Project
Remember that ActiveX controls (to you as a Visual Basic programmer) are just additional controls you can add to the
toolbox window and use for developing programs. All kinds of controls exist. Several come with Visual Basic, and you
can find them by selecting Project, Components (or Ctrl+T), as you've done throughout the earlier days of this tutorial.
In addition, you'll find ActiveX controls available on the Internet. Also, programming firms sell ActiveX controls that
you can seamlessly integrate into the Visual Basic environment.

Do Don't

DO look at Microsoft's Web site (http://www.microsoft.com) for a sample of ActiveX controls you can
download to your PC.

Caution

Do not add more ActiveX controls to your toolbox window than your application requires. Add as many as needed but
no more. Every control you add is sent to your user's compiled application that you distribute. (You learn how to
distribute applications in Day 21, "Distributing Your Applications.") The more controls the application contains, the
larger the application will be, the slower the application will run, and the more resources the application will consume
on the user's system. To remove unneeded ActiveX controls, display the Project, Components dialog box and uncheck
any control that does not belong in your project.

Whether or not an application uses all the ActiveX controls loaded at the time of the compilation, you are required to
distribute runtime ActiveX control files along with the project and its related files.

A runtime ActiveX control file is an auxiliary file that you must supply with an application that uses the corresponding
ActiveX control. The runtime file contains the instructions necessary to make the ActiveX control operate at runtime.

ActiveX controls exist for virtually any programming job you have. If you want more control over sound than the
included multimedia control offers, you can find many kinds of sound-related ActiveX controls online. Also, 3D
graphic controls, Internet controls, mathematical controls, printer controls, scanner controls, and a huge assortment of
other controls are available. You'll have to decide what kind of programming you do the most and look for specific
controls that can help you. For example, if you write publishing software, you'll want to find as many text editing and
manipulation controls as possible.

When you add a new ActiveX control to your toolbox window, how do you go about using it? To start with, you can
assume that the ActiveX control supports the following items:

• Properties
• Events
• Methods

In other words, you use the ActiveX control just as you would any other control, and the ActiveX control integrates
into your Visual Basic application. You'll need to obtain a list of properties, events, and methods that the ActiveX
control supports so that you can program it properly. Although many of the control's properties will appear in the
Properties window, not all will (especially those available only at runtime). When you purchase ActiveX controls or
download them from Internet sites that provide them, you can also get instructions that list supported properties, events,
and methods. For the ActiveX controls that come with Visual Basic, you can use the online Help as a reference.

Figure 17.1 shows the Components dialog box, which appears when you select Project, Components. You've already
seen this dialog box several times throughout this 21-day tutorial, because you've added additional ActiveX controls to
your toolbox before—for example, in Day 14, "Introducing VB Graphics and Multimedia," when you added the
multimedia control.

Figure 17.1. Use the Components dialog box to add new ActiveX controls to your project.

When you install Visual Basic, it adds several ActiveX controls to your system that you, in turn, can add to a project
through the Components dialog box. In addition, the Visual Basic installation routine searches your system for
additional controls to add as well. Many of these controls will show up in your Components dialog box. Therefore, the
same Visual Basic installation on two different computers may result in different sets of ActiveX controls listed in the
Components dialog boxes on the two systems. Click the Components dialog box's Browse button to search your hard
drive for ActiveX control files.

Tip

The Components dialog box's list of ActiveX controls can get lengthy if you have several ActiveX controls on your
system. After checking a few of the controls, you may want to click the option labeled Selected Items Only so that only
your selected ActiveX controls appear in the list. If, however, you want to add more items, you'll have to uncheck the
option so you can locate the controls you want to add.

As you add controls to your toolbox window, it can fill up quickly. Take a look at the General tab at the top of your
toolbox. By right-clicking a blank area in the toolbox window, you can create new tabs for group-related ActiveX
controls on the toolbox. To add controls to a new group, click the group's tab and then add the control. (The
Components dialog box is available from the toolbox window's right-click pop-up menu.) Figure 17.2 shows a set of
Internet-related controls added to a group designed just for them.

Figure 17.2. Tabbed groups help you organize your toolbox window.

ActiveX Automation
At this point, you've added some controls, and you know all about setting properties, responding to events, and
triggering methods. Some ActiveX controls, however, let you go a step further. You can actually use an embedded
control inside your application and borrow that control's functionality for your own application's use.

Visual Basic supports such automation of controls between applications. For example, you can open Excel, load a
worksheet, manipulate the worksheet's data with Excel-based commands, close Excel, and then embed the resulting
worksheet in your application's form window without users ever knowing that you borrowed Excel's capabilities.

Automation is the process of one application using another application's data and manipulating that data with the help
of the other application. Users will have no idea that the other application has started, helped, and then gone away.

You are somewhat limited to using automation only for ActiveX applications registered in your system's Registry.
Generally, if you use an application that's ActiveX aware, that application registered its automation availability in your
system Registry when you installed the application.

Note

Normally, automation requires extensive knowledge of the other application's object hierarchy, and such a hierarchy
can be complex. The example shown next teaches you automation through a demonstration using an ActiveX
document. To fully understand automation, you must be well versed in the borrowed application's internals. This book
cannot get into the specifics of non–Visual Basic applications. Fortunately, most automation concepts overlap
applications, so the example's concepts you see here carry over to other applications in many ways.

To begin this example, you need to define a variable that represents the application you want to automate inside your
own application. You'll use Visual Basic's Object data type to create a variable that references the automation
application. First, you must define an application object, like this:

Dim obExcelApp As Object

Now, you must connect the application object variable to the application. If the application isn't running now, you must
start the application in the background with the CreateObject() function. CreateObject() not only starts the
application, but also connects your object variable to the application, like this:

Set obExcelApp = CreateObject("Excel.Application")

You'll substitute the application's name in place of the CreateObject() function's argument.

Do Don't

DO use Set instead of a simple assignment to attach the automated application to your Visual Basic
application. A variable can't hold an outside application; variables can only hold values such as numbers and
strings.

DO use Set to create a reference variable to the outside object. Set does not assign but rather points the
variable to the object the variable represents.

A problem can occur if the application is already running. In a multitasking, multiuser operating system, Excel can
have more than one copy of itself running at the same time on the same computer. Therefore, you can use the
GetObject() function in place of CreateObject() if the application is running:

Set obExcelApp = GetObject(, "Excel.Application")

Notice the comma at the beginning of the argument list. You can omit the first argument in most cases because the
second argument describes the object you are getting. Without the second argument, you must supply an initial
argument that lists a path to a file that describes the object you want to create.

If Excel is already running, you'll not want to start a new instance of Excel. Through error trapping, you can check to
see if Excel is running. The GetObject() function will trigger an error if Excel is not running (because there's nothing
to get). If you determine that Excel is not running, you then can use CreateObject() to start an instance of Excel.

The following code is an outline of the code you might use to check for a running instance of Excel:

1: ' Trap errors
2: On Error Resume Next
3: '
4: ' Set the Excel application reference
5: Set obExcelApp = GetObject(, "Excel.Application")
6: If Err.Number <> 0 Then
7: Set obExcelApp = CreateObject("Excel.Application")
8: blnRunning = False ' Excel was not running
9: Else
10: blnRunning = True
11: End If

You've seen the On Error Goto statement in previous lessons, but this is the first time you've seen the Next option. In
the past, a statement label has always been the location to which the On Error statement sends the code if an error
occurs. The Next option simply tells Visual Basic, upon getting an error, to move down to the next statement and
continue the program. Although a label could have been set up in this code, this situation provides an opportunity to

mention that an error code is returned every time On Error traps an error. The error code is one of the properties of a
predefined system object called Err (see Day 16,"Objects and Visual Basic").

Until an error occurs in a running program, the Err.Number is 0. Therefore, if Err.Number ever contains any non-zero
value, an error has occurred. In this case, line 6 will show an error code in Err.Number if the GetObject() function
fails. Therefore, line 7, seeing that GetObject() could not work because Excel was not already running, starts an
instance of Excel with the CreateObject() function. (If you want to trap additional errors later in the program, as you
might do if you were displaying dialog boxes and needed to know if the user pressed Cancel, you can reset the error
state by setting Err.Number to 0.) The Boolean variable named blnRunning is set to False so that code later in the
program will know how Excel was started.

Caution

If Excel was already running, you don't want your code to stop that running instance.

Tip

Automation application object variables are an exception to the general rule that you should only use local variables.
The application is truly outside your application; therefore, you can safely use a global object variable so that your
procedures don't have to pass the application variable around.

When you open another application and use automation, your application must intimately understand the other
application's interface. In a way, your application is the user of the other application. Therefore, when you open the
Excel application, you interact with Excel by using the normal row and column notation, except that you have to use
some object property notation specific to Excel.

Now, you must declare a worksheet object so that the application can generate data:

Dim obWorkSheet As Object ' Worksheet object

The following code adds data to some worksheet cells:

' Enter values in cells
obWorkSheet.Cells(1, 1).Value = "Sales"
obWorkSheet.Cells(1, 2).Value = "Month"
obWorkSheet.Cells(2, 1).Value = 21913.44
obWorkSheet.Cells(2, 2).Value = "April"

If you've put together everything in the preceding section and have added some cleanup code as well as code that saves
the worksheet and closes the Excel object, you would come up with something like Listing 17.1.

Listing 17.1 Your application can use Excel to create a worksheet.
1: Private Sub cmdSendToExcel_Click()
2: Dim obExcelApp As Object ' Application object
3: Dim obWorkSheet As Object ' Worksheet object
4: Dim blnRunning As Boolean ' If Excel object exists is running
5:
6: ' Trap errors
7: On Error Resume Next
8: '
9: ' Set the Excel application reference
10: Set obExcelApp = GetObject(, "Excel.Application")
11: If Err.Number <> 0 Then
12: Set obExcelApp = CreateObject("Excel.Application")
13: blnRunning = False ' Excel was not running
14: Else
15: blnRunning = True
16: End If
17:
18: ' Add a new workbook
19: obExcelApp.Workbooks.Add
20:
21: ' Reference the active sheet
22: Set obWorkSheet = obExcelApp.ActiveSheet
23:
24: ' Enter values in active sheet's cells
25: obWorkSheet.Cells(1, 1).Value = "Sales"
26: obWorkSheet.Cells(1, 2).Value = "Month"
27: obWorkSheet.Cells(2, 1).Value = 21913.44
28: obWorkSheet.Cells(2, 2).Value = "April"
29:
30: ' Select the second row only to format
31: obWorkSheet.Rows("2:2").Select
32: obExcelApp.Selection.NumberFormat = "$##,###.##"
33:
34: ' Save the workbook (change this name if already saved once)
35: obExcelApp.Save ("c:\VBCreated.XLS")
36:
37: ' Don't quit if Excel was already running!
38: obExcelApp.ActiveWorkBook.Close False
39:
40: If Not (blnRunning) Then ' If it was not running...
41: obExcelApp.Quit ' then quit Excel
42: End If
43:
44: End Sub

If you tested to see that Excel wasn't already executing, you can close Excel (as is done in line 41). If, however, Excel
was running (meaning that the GetObject() function did not return an error), then you don't want to quit Excel

because it might be running a background process. The code shown in this quick example creates the simple worksheet
shown in Figure 17.3.

Figure 17.3. Your Visual Basic application can create Excel worksheets!

This worksheet is simple to make the example a reasonable size. Ordinarily, your Visual Basic application might adjust
values and even trigger an Excel chart and print a report. The important thing to remember is that Visual Basic used
Excel's brains to create a formatted worksheet without the user sitting at the keyboard knowing that Excel was
involved.

Note

Excel contains its own automation language, as does Word and all ActiveX-aware automation applications.
Nevertheless, most of the applications support the opening and closing features used in this section to connect an
application and its primary data object to Visual Basic object variables. Also, the applications support methods and
properties such as the ones shown here, so you'll have little problem as long as you understand Visual Basic. You must
have access to the application's internal language used for automation, however. Search the application's online Help
for the application's object hierarchy, which shows the available objects you can work with.

After you use Excel or Word or some other ActiveX-compatible automation application, you then have to include that
object in your Visual Basic application.

Creating Your Own ActiveX Controls
Although the thought of creating an ActiveX control may sound daunting, consider why you would want to do this. Not
only could you distribute (that is, sell) your controls to other developers, but you can also reuse the controls you
develop in your own applications. For example, if you find yourself making the same kinds of changes to Visual Basic
controls to get them to operate the way you need, consider writing new controls that not only mimic the controls you
already have but that also have built-in properties and methods that do what you need them to do! The next time you
write an application that needs your control, add your own control to the toolbox and set the properties you want to set.
Instead of writing the same old code to make the control behave a certain way, you just set its property values and get
back to the real details of the application.

Note

Another advantage to developing your own collection of ActiveX programming tools is that you can port those tools to
other programming languages that support ActiveX, such as Visual C++ (although why would you use anything but
Visual Basic?).

Designing the Control

Visual Basic contains tools that help you design your own ActiveX controls, although the process does require several
steps to complete. To show you what is involved, the rest of today's lesson walks you through the design of a new kind
of text box.

The New Text Box's Details

The new text box that you create will extend Visual Basic's generic text box control by offering the following features:

• The text box will support all the regular property values that the standard text box control supports.
• The text box will also contain a new property called AutoTSize that supports four possible values: 1-NA, 2-

Small, 3-Medium, and 4-Large. These values will appear as an enumeration in a drop-down list box inside
the Properties window. You can assign 1, 2, 3, or 4 to the text box in code to set the value. When set to 1-NA
(the default when you first place the control), the text box's font size will not change from its current size set in
the Font.Size property value. When set to 2-Small, the text box's text will be sized to 25% of the text box's
Height value. When set to 3-Medium, the text box's text will be sized to one half the text box's Height value.
When set to 4-Large, the text box's text will be sized to 75% of the Height value. (The Font.Size property
will change to reflect the new size.) This gives you a simple way to set the text box's text to one of the three
sizes.

An enumeration is a list of fixed values that a control can take, such as True and False. Enumerated values appear in
a drop-down list box for that property value in the Properties window.

• The text box will also contain two new properties called UCase and LCase. These will be Boolean properties.
When UCase is set to True, the text in the text box will be converted to uppercase letters. When LCase is set to
True, the text in the text box will be converted to lowercase letters. Both UCase and LCase are set to False, by
default, and neither can be True at the same time. Therefore, your control must make sure that when one of the
case properties is set to True, the other is set to False.

The new ActiveX control that you create will look and act like other controls. You can insert it into the toolbox
window, double-click the control to add it to the form window, and select its control properties from the Properties
window. Although this new text box control that you create will be visible at runtime, if you want to create a
background control that is not to appear on the running form window (as is the case with the timer control), you could
set your control's InvisibleAtRunTime property to True. Such a control will work in the background when needed
rather than appear on the end user's form. (The Visible property simply determines if the control can be seen, but the
InvisibleAtRunTime property, when True, ensures that the control is never visible and cannot be displayed.)

Note

The name of your new control will be TextSizeUL.

The Need for Classes

All Visual Basic objects, including variables and controls, are members of a class. The class grouping gives you a way
to group like objects together. In addition, you can subclass a new object from an existing class to create new objects
that have all the properties of the rest of the class as well as new properties unique to the object. By subclassing, you
don't have to reinvent the wheel, because the object (in this case, the ActiveX control) automatically takes on the
properties, methods, and supported events of its parent class; then you can add new properties, methods, and supported
events as well.

A class is a collection (or description, actually) of an object's properties, methods, and supported events. A control is
nothing more than an actual instance of an object from a given class. A form that you add to a project, for example, is
just another instance of the Form class that you've added. Being a member of the Form class makes the form take on
properties, events, and methods that are distinct from other classes of objects, such as those from the CommandButton
class.

To subclass means to create a new object from a class of existing objects. The new object will take on the properties,
methods, and events of its parent class, and you can also add your own properties, methods, and events to the object.

Note

Built-in data types, such as String, are not members of a Visual Basic class because they don't support events.

Let's say you want to create a control that somewhat mimics another control. By subclassing the new control, you
automatically pull in all the parent control's properties, methods, and supported events. You don't necessarily have to
subclass a new control, however, because you can create one without the help of subclassing.

Visual Basic offers these three ways to create new ActiveX controls:

• Subclassed simple controls— You can use an existing ActiveX control for the foundation of your new control.
Your new control is subclassed from the original (parent) control. Your new control can receive all the
functionality of the existing parent control and can extend that parent control's features by having additional
features added to it. Subclassing a control is the easiest way to create an ActiveX control. You must modify the
subclassed control's interface to support any new features you want your control to provide.

• Subclassed aggregate controls— You can subclass your new control from multiple controls that already exist.
In other words, if your new control is a dialog box–like control that contains command buttons, text boxes, and
labels, you can use existing command buttons, text boxes, and labels to reduce the effort you must put into your
new control. Then you can concentrate on the added features that your control provides.

• User-drawn controls— If your control has nothing in common with existing controls, you can create it from
scratch by defining all the control's properties, events, and methods and then drawing the control so that it looks
exactly as you need. A user-drawn control requires quite an effort to create because you can't borrow
functionality from any existing control.

Making the ActiveX Control

The following sections walk you through the creation of the new ActiveX control TextSizeUL.

Preparing Visual Basic

You will not follow the standard procedure for creating Visual Basic applications when you create an ActiveX control.
When you select New, Project to see the New Project dialog box, instead of clicking the icon Standard EXE, you'll
select the ActiveX Control icon. Visual Basic prepares for the new control, and your screen will look much like it does
when you create new applications (except that the form window will seem to appear without its usual border, as shown
in Figure 17.4). In reality, the window is not showing a form. Instead it's the backdrop for the ActiveX control that
you'll create. Visual Basic assigns the default name UserControl1 to this control. Of course, the word "User" in
UserControl1 is misleading, because you, the programmer, are creating this control to help with your programming
efforts. Once you design the control, though, the end-user will actually interact with the control.

Figure 17.4. You'll work from a familiar environment when creating an ActiveX control.

The terms runtime means something different when you create controls from when you create regular applications.
Whereas a control's designtime occurs when you create and edit the control, a control's runtime occurs in either of these
two situations:

• When a programmer inserts the control into an application at the application's designtime, the control is a
compiled and executing control that responds to the programmer's setup instructions.

• When the programmer compiles and runs the application, the control is also running, except that it runs while
responding to an end user.

Often, programmers distinguish these two kinds runtimes by calling them designtime running and runtime running,
respectively. Generally, the context of the run mode is obvious as you create and work with the ActiveX control.

Designtime running is the term applied to a control that you "run" to test when you create the control. The user interacts
with the control. Runtime running is the term applied to a control that executes along with an application.

Beginning Customization

Remember that you can add your new ActiveX control to your toolbox window. Therefore, one of the first things to do,
once you've decided on the goals of the control, is to pick an icon for your new control. The control's ToolboxBitmap
property sets the icon you want to use. The gray box that looks somewhat like a form window in the upper-left corner
of the editing area is your actual control, but the control is still blank. Therefore, when selected, the Properties window
displays property values for your control.

Scroll through the Properties window to locate the ToolboxBitmap property. When you double-click the property, the
Load Bitmap dialog box opens so that you can locate an icon on your disk to use as the ActiveX control's icon. For this
control, select Plan.bmp from the \Graphics\Bitmaps\Assorted folder, which resides in Visual Basic's Common folder
(assuming you installed the extra graphic files when you installed Visual Basic).

Tip

You can create your own bitmap image in Windows Paint (or a similar drawing program). Keep the image at 15-by-16
screen pixels so that it appears in the same area as the other toolbox icons.

The Plan bitmap is an icon of a scroll, and a scroll icon would work well for this new text box's toolbox entry. The
bitmap will appear in the control form's upper-left corner when you specify the ToolboxBitmap property.

Information about your control will appear in applications that use your control, so you'll want to document the control.
Select Project, Properties and change the project name from Project1 to TextSizeUL. Add a description in the text
box labeled Project Description so that subsequent applications that use your control will be able to display this
information. Type the following for the description:

A text box control that controls its own size and supports upper- and
lowercase conversion.

Change the control property's name to NewControl. Now that you've named the control and the project, save the
control and save the project when prompted. Visual Basic saves the control under the name NewControl.ctl, although
you'll eventually convert this control to an ActiveX file.

Subclassing the Control

You can now subclass your new control from the regular text box control so that it can take on the properties, events,
and methods of the text box control. As you subclass the control, the ActiveX Control Interface Wizard will enable you
to extend the functionality of the control.

The ActiveX Control Interface Wizard is a wizard that guides you through the process of subclassing of a new control.

The ActiveX Control Interface Wizard is not part of the default Visual Basic environment. You can add the wizard to
your Visual Basic environment by following these steps:

1. Select the Add-Ins menu.

2. Select Add-In Manager to display the Add-In Manager dialog box shown in Figure 17.5.

Figure 17.5. Adding Visual Basic's ActiveX Control Interface Wizard to your environment.

3. Double-click the item labeled VB 6 ActiveX Ctrl Interface Wizard. The "Loaded" message that appears to the
right of the entry informs you that the wizard is now part of the environment.

Tip

If you often find yourself creating ActiveX controls, you may want to click the Load on Startup option so that the
ActiveX Control Interface Wizard always loads with your Visual Basic environment.

4. Click the OK button to close the dialog box.

Although you've loaded the wizard, you're not yet ready to start it because you must add an initial text box control to
your blank ActiveX control to subclass from. However, you can see whether Visual Basic added the wizard to your
environment by displaying the Add-Ins menu. The last option on the menu should read ActiveX Control Interface
Wizard. Whenever you add components to your Visual Basic environment, they'll appear on the Add-Ins menu.

Before you start the wizard, you must add an intrinsic text box control to your project. Therefore, place a text box
control on your control's background. Name the text box txtParent. This text box will be controlled by the new
ActiveX control that you add, not by a programmer. The programmer who uses your ActiveX control will resize the
new control and, in doing so, the event procedures of the new control will modify the internal text box. The text box
control provides the functionality that you'll need to subclass.

Tip

In a way, the intrinsic text box will act like a hidden control (much like a local object of a public control) that other
projects will use. Your control will use the intrinsic text box control, modify the behavior there, and then present that
modified behavior to other applications.

Starting the Wizard

You're now ready to start the ActiveX Control Interface Wizard from the Add-Ins menu. The first wizard window that
appears is an introductory screen that you can optionally hide upon subsequent runs by clicking the check box at the
bottom of the window. After reading the introductory screen, click Next to see the Select Interface Members window,
which is shown in Figure 17.6.

Figure 17.6. You can select the items from the parent control that you want to include in your new
ActiveX control.

The wizard displays two lists of information. The left list contains some or all the properties, events, and methods
available that you can include with your new ActiveX control. The wizard generated the list by analyzing your current
control and noticing that you placed an intrinsic text box control on the editing area.

The list on the right contains several properties, methods, and events that the wizard selected from the complete list on
the left. You can select additional items if you want by clicking an item in the left window and then clicking the >
command button to send that item to the right list of selected items. Additionally, you can select items in the right list
and click < to remove that item.

Tip

The >> button sends all items to the right list from the left, and the << button erases all items in the right list so that you
can start over.

Surprisingly, the wizard does not send several properties needed for subclassed text boxes to the right list; therefore,
you need to select and send the following items to the right list:

• Alignment
• Change
• FontBold
• FontItalic
• FontName
• FontSize
• FontStrikethru
• FontUnderline
• MultiLine
• PasswordChar
• ScrollBars
• Text
• ToolTipText

You'll want to be able to apply all these properties to your new ActiveX-based text box control as well as new
properties that you define. After adding the items, click Next to display the Create Custom Interface Members window,
as shown in Figure 17.7.

Figure 17.7. You now can add your own properties, methods, and events.

The list box in the center of the window is blank because you have yet to add your own items to the control's set. You
cannot just type the item, such as the property that automatically sets the new ActiveX-based text box's size. Instead,
you must click the New button to describe the new property (or method or event) that you want to add.

When you click New, you'll see the dialog box shown in Figure 17.8 in which you enter the new item. As you enter an
item's name, you must also select the item's type (whether it's a property, method, or event) by clicking one of the
options at the bottom of the dialog box. As you enter a name and item type, click OK to send that item to the wizard's
list box that shows your added items.

Figure 17.8. Describing the new item's name and type.

For the ActiveX control you're now creating, enter the following two new items:

• AutoTSize (property)
• ULText (property)

Click Next to move to the next wizard window. This window, the Set Mapping window, is the place where you map, or
connect, properties, events, and methods to the text box equivalents. In other words, the list you see in the list labeled
Public Name is the list generated from the items selected earlier as well as the new items you added in the previous
window.

You must tell the wizard how you want each of the properties, methods, and events to behave. In the case of the new
text box you're creating, you want all properties, methods, and events to act the way they normally do for normal text
boxes. (You could, however, change the mapping if you wanted. For example, you could map a MouseDown event to a
MouseClick event; then, when the user clicks your control, a MouseClick event will be generated every place a
MouseDown event would normally occur.)

The only two properties that you do not/ want to map to a normal text box control's behavior are the two new property
items you added earlier: the AutoTSize and the ULText properties. Therefore, select all the items in the list except the
AutoTSize and ULText properties.

Tip

The list supports multiple sections, so one quick way to select all but your two new properties is to click the top item in
the list and then press Shift+End to highlight every item. Then, hold down the Ctrl key while clicking the ULText and
AutoTSize properties to deselect them.

Select the item that you want to map all these items to. Open the Maps to Control drop-down list box and select
txtParent. All these public items, except the two unselected items, are applied to the embedded text box control that
you placed on the form. You want the internal text box to behave normally so that your ActiveX control can access that
internal text box control as usual. The two new properties will certainly not apply to the internal text box—that's why
you did not map those two properties to the internal control.

Click Next to display the Set Attributes window shown in Figure 17.9. The Set Attributes window is where you'll map
the new properties to the new control.

Figure 17.9. You can now map the new properties to your control.

If you had added new methods and events to the new control, they, too, would appear in the Set Attributes window.
You've already mapped the known properties, methods, and events to the internal control, and now you'll map the new
properties to the new control. Follow these steps to prepare the new properties:

1. For the selected AutoTSize property, change the default value from 0 to 1. (The rest of the fields are already
correct.) If you'll recall, the AutoTSize property will take on one of four enumerated values, and those values
range from 1 to 4. The value 1 will be the default (that is, the initial startup property when you place the
ActiveX control on a form), so you'll have to replace the 0 with 1.

2. Type the following description for the AutoTSize property:

Determines the percentage, 25%, 50%, or 75% of the text's font_
size in relation to the Height property.

3. Select the ULText property. All of its fields are correct, but you must add this description:

Sets the text to uppercase, lowercase, or no change.

4. Click Next to complete the wizard's task. The wizard can now build all its required information necessary to
generate the control. You can click Finish to generate the control. If you leave the option labeled View
Summary Report checked, the wizard displays a summary of what is left to be done.

Obviously, the ActiveX control is incomplete. You have not told it how to behave when the AutoTSize or ULText
properties are selected. The wizard sets up the control's parameters, but you still have to add code and manually
complete the ActiveX control to make it fully functional.

Completing the ActiveX Control's Body

The wizard could not add code to activate your AutoTSize or ULText properties because it has no way of knowing
what you want done with those new properties. On the other hand, the wizard could map the existing properties,
methods, and event properties to the parent control because those items are already defined.

To complete the ActiveX control, you must add code, and you do that, of course, from the code window. Select View,
Code to look at the code window for the ActiveX control as it now stands. As you scan through the code, you'll notice
that much of the code window is devoted to mapping the new control's properties, events, and methods to the
underlying txtParent text box control's properties, events, and methods. In other words, when a programmer using
this new control sets at designtime running (that is, when the completed control is used while another application is
being designed) the BackColor property, the code actually sets the underlying text box's BackColor property. The code
is complex in places, so don't expect to understand everything.

Do Don't

DO look through the code to see all the Let and Get event procedures. As you may recall from Day 11,
"Working with Forms," these two special function qualifiers are used to set and return property values for the
properties you create. The wizard, in effect, created properties for the parent text box control when you mapped
those properties to the new control.

Caution

Although you'll edit this code directly, never make changes to code prefaced with the following remark:

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 'LINES!

The code that follows those warning remarks are critical to your new control's operation and are to be left as is.

Do Don't

DO complete any sections that contain remarks that begin with the words TO DO. You'll see such sections if
you ever create new ActiveX controls based on any of the list controls. The wizard cannot handle lists properly,
so you are expected to add the necessary code to process lists if you ever use a list control as the parent control.

Listing 17.2 shows the first few lines from the code. These lines are devoted to the new properties you added to the
project.

Listing 17.2 The wizard initialized the default values for your new properties.
1: 'Default Property Values:
2: Const m_def_AutoTSize = 1
3: Const m_def_ULText = 0
4: 'Property Variables:
5: Dim m_AutoTSize As Variant
6: Dim m_ULText As Variant

The Const keyword declares named constants, not variables. Therefore, in line 2, m_def_AutoTSize is not a variable
but rather a named constant. Just as Visual Basic includes several named constants such as vbWhite and
vbInformation, you can declare your own named constants, and they can be local or global. (Named constants are
often global because they cannot change; therefore, they are in no danger of being inadvertently changed by a
procedure that should not have access to them.)

Lines 2 and 3 declare named constants for the default values of your two new properties. You set these default values in
the wizard's Set Attributes screen. These are the default values that will appear in the Properties window for these two
properties when a programmer eventually places the ActiveX control on a form. Whenever the rest of the code refers to
one of the named constants, the constant value of 1 or 0 is used, because these are the values that lines 2 and 3 in
Listing 17.2 create for the named constants.

Lines 5 and 6 declare Variant variables that will represent the current value of the properties. When a programmer sets
one of these property values at designtime running (or when the final application, through code, sets these values in
assignment statements), the variables are the places where these values will be held.

You must define the enumerated values for the two properties that will appear in the Properties window. You define the
enumerated list in an enumerated block of code that begins with the Enum statement. Directly below the General section
of the code window, type the code in Listing 17.3.

Listing 17.3 You must define the enumerated values that will appear in the Properties window.
1: Public Enum AutoTSizeEnum
2: NA = 1
3: Small = 2
4: Medium = 3
5: Large = 4
6: End Enum
7: Public Enum ULTextEnum
8: AsIs = 0
9: Uppercase = 1
10: Lowercase = 2
11: End Enum

Declare all enumerated values as public so that all the code has access to them. The Enum statement begins the
definition of enumerated values. Remember, these are the values that will appear in the drop-down list box for these
two property values inside the Properties window. The AutoTSize values will appear in the following common format
(which you've now seen for many other property values:

1 - NA
2 - Small
3 - Medium
4 - Large

To set an initial value, the programmer can select one of these values from within the Properties window when working
with the ActiveX control. In addition, the code inside the application that uses this ActiveX control can assign 1, 2,
3, or 4 to the property to set the control to one of those property values. Also, the assignment statement can assign the
enumerated values, as done here:

NewControl.AutoTSize = Medium ' Assigns 3

In the same way, the enumerated type ULTextEnum defines the ULText property's enumerated values, so assignments to
that property work as expected.

The new control's sizing code is extremely simple, because the new control should size just as the parent text box
would size. Often, a new ActiveX control needs to size differently than the control or controls that it subclasses from,
especially for subclassed aggregate ActiveX controls (defined earlier in today's lesson). However, if a one-to-one
correspondence occurs with the parent's size and the new control's size, you can add a UserControl_Resize() event
procedure by typing the Resize event procedure shown in Listing 17.4 in the code window.

Listing 17.4 The new ActiveX control will be located and scaled the same as the internal text box
control.
1: Private Sub UserControl_Resize()

2: ' Set the height and scaling to the underlying control
3: ' Stretch the control to the width and height
4: If UserControl.Height <> txtParent.Height Then
5: txtParent.Height = UserControl.Height
6: End If
7: txtParent.Move 0, 0, UserControl.ScaleWidth
8: End Sub

Line 4 makes sure that, if the programmer using this control resizes the new control, the embedded text box control
resizes also, because the internal text box control works as a holding area for the new control. Line 7 uses the Move
method to move the parent's text box to the new control's upper-left coordinate (0, 0) and then sets the same scale for
both properties. This ensures that the internal text box moves every time the programmer moves the new control.
Again, the internal control is what the new control manages as the programmer moves and resizes the new ActiveX
control. The Move method performs both the movement and the scale setting for the existing control to keep both
controls equal. Therefore, the internal text box acts like a transparency over the ActiveX control and always stays right
on top of the ActiveX control to accept and display text.

Now that the resizing is out of the way, your primary job is to set up the enumerated value display, write the code to
handle selection of the AutoTSize property, and to convert the ActiveX control to uppercase or lowercase, depending
on the ULText property. The wizard created placeholder code for the AutoTSize and ULText properties, but you must
fill in the details.

You're now ready to set up Get and Let procedures for the new property values. When the user (that is, the
programmer who ultimately uses this ActiveX control in an application) sets a property value, the Let procedure runs.
When the user accesses a property value, the Get procedure runs.

The simplest of the two methods is the Get method. The wizard created sample Get function procedures for the two
property values, but you'll have to change them. Instead of the Variant return data type, you'll need to use the
enumerated data types, as shown in Listing 17.5.

Listing 17.5 The Get procedures for the new properties must return their corresponding enumerated
values.
1: Public Property Get AutoTSize() As AutoTSizeEnum
2: AutoTSize = m_AutoTSize
3: End Property
4:
5: Public Property Get ULText() As ULTextEnum
6: ULText = m_ULText
7: End Property

Listing 17.5 only assigns the current member's value to the state property. Converting the Variant to the enumeration
for the return value is the only necessary change you must make.

You'll also have to change the two Let procedures' return data types. They require additional code as well. When a
value is assigned to one of the two new properties, several things must take place, such as the sizing of the text or the
conversion to uppercase or lowercase letters.

You now have two more procedures to complete: the corresponding Let procedures for the two properties. The wizard
created shell code for these procedures. This code is shown in Listing 17.6.

Listing 17.6 You must complete the Let procedures for both properties.
1: Public Property Let AutoTSize(ByVal New_AutoTSize As AutoTSizeEnum)
2: m_AutoTSize = New_AutoTSize
3: ' Test the property's state and change the size
4: ' according to the value of the property.
5: '
6: Select Case New_AutoTSize
7: Case 1: ' No change necessary
8: Case 2: Font.Size = 72 * 0.25 * (Height / 1440)
9: Case 3: Font.Size = 72 * 0.5 * (Height / 1440)
10: Case 4: Font.Size = 72 * 0.75 * (Height / 1440)
11: End Select
12: PropertyChanged "AutoTSize"
13: End Property
14:
15: Public Property Let ULText(ByVal New_ULText As ULTextEnum)
16: m_ULText = New_ULText
17: ' Test the control's state
18: ' and change the text box accordingly
19: ' (ignore a ULText of 0 which means As Is)
20: If New_ULText = 1 Then
21: Text = UCase(txtParent.Text)
22: ElseIf New_ULText = 2 Then
23: Text = LCase(txtParent.Text)
24: End If
25: PropertyChanged "ULText"
26: End Property

Do Don't

DO be sure that you change the passed data types in these Get AutoTSize() and Get ULText() procedures so
that enumerated data is received instead of the Variant data types they receive by default.

Lines 8, 9, and 10 adjust the internal text box control's font size to be a factor of the text box's Height property. Again,
the programmer is working directly with the new ActiveX control, but the ActiveX control is actually just a go-between
for the internal text box that appears on the form. The UCase() and LCase() internal functions in line 21 and 23
convert the text values to uppercase or lowercase, depending on the value assigned to the property. If the programmer
who uses the ActiveX control assigns the ULText property at designtime or runtime, this procedure executes.

You're now finished designing and creating the ActiveX control. You must now prepare the control for insertion into
another application and test it to be sure that it works as expected.

Implementing the ActiveX Control

Not only can you insert your new control into an application and place it on the form window just as you do other
controls, but the new ActiveX control takes on every single benefit given to intrinsic controls. Therefore, the control's

Properties window will act like other controls. Also, when a programmer who uses the ActiveX control inside a code
window types an assignment to assign a property value, even the code window's Quick Info pops up to let him or her
select a property. Also, the toolbox that holds the ActiveX control automatically displays a ToolTip describing the
control's name. You'll be proud of your new ActiveX control when you begin using it, because the control will act as
though it was supplied by Microsoft with Visual Basic!

When you compile the ActiveX control, Visual Basic compiles the control into an ActiveX file that you can then insert
into a project just as you can other ActiveX controls. If you do not create the OCX file, you cannot use the control in an
application.

You should save your control before compiling it. Choose File, Save Project to save both the control and the project.
You can't run an ActiveX control by using the normal F5 keypress, because all ActiveX controls must be compiled
before they can execute. Remember, of course, that the term execute actually means work as the other controls work
when a programmer uses the ActiveX control inside an application.

To compile the ActiveX control, select File, Make. Visual Basic displays the Make Project dialog box shown in Figure
17.10. You can select the location of the compiled ActiveX control. You might want to place the control in your
\Windows\System folder or in a Visual Basic work folder that you've created. (This is the folder you search when you
want to load the ActiveX control into another Visual Basic application's toolbox from the Project Properties dialog
box.) If the compiler notices errors, Visual Basic won't build the control and will highlight the error lines in the code.
As soon as you eliminate the bugs, the compiler returns you to the development environment.

Figure 17.10. Enter the filename of the ActiveX control and Visual Basic saves the control with the
.OCX filename extension.

Visual Basic supports two ways to test the control:

• Open a new project and test the control from that project. A multiproject development environment is available
only for testing ActiveX controls.

• Open a new Standard EXE project and drop the control into that new project.

You'll now test your new control by actually putting it to use. Select File, New Project and create a new Standard EXE
file. Press Ctrl+T to open the Components dialog box. As Figure 17.11 shows, the TextSizeUL control appears at the
top of the dialog box. The description you used for the control appears in the dialog box for easy selection.

Figure 17.11. Your ActiveX control's Project Description text appears in the Components dialog box.

Select the ActiveX control and close the dialog box. The control's bitmap image that you selected when you created the
control appears in the toolbox. To use the control in a simple application, follow these steps:

1. Change the form name to frmActiveX and change the form's caption to Test the ActiveX Control. Expand
the form's Width and Height properties to 7575 and 5775, respectively.

2. Point to the TextSizeUL control and read the ToolTip that the ActiveX control wizard created for you. The
name is rather boring: NewControl is not very fancy, but that's the name used because that's the project name
under which you saved the control. For this practice session, the control's action is what we're concerned about
more than its name.

3. Double-click the new control to add it to the form. (You could also drag and draw the control onto the form
window.) Notice that the control looks like a normal text box control except for the two extra properties that it
supports. Size the TextSizeUL control to approximately 4,815 twips (the Width property) by 1,215 twips (the
Height property). Change the FontSize property to 18 and the FontBold property to True.

4. Click the ULText property's arrow to open the drop-down list box. You'll see the three enumerated values AsIs,
Uppercase, and Lowercase, just the way you programmed them. For now, leave the control at its default AsIs
state.

5. Click the AutoTSize property to see its enumerated values. Again, leave the default value in place.

6. Change the Name property to MyFirstCtl and blank out the Text property.

7. Add five command buttons to the form using the property values shown in Table 17.1.

Table 17.1. Set these command button controls and properties on the form.

Control Property Value

Command button #1 Name cmdSmall

Command button #1 Caption &Small text

Command button #1 Left 1320

Command button #1 Top 2640

Command button #2 Name cmdMedium

Command button #2 Caption &Medium text

Command button #2 Left 3120

Command button #2 Top 2640

Command button #3 Name cmdLarge

Command button #3 Caption &Large text

Command button #3 Left 4920

Command button #3 Top 2640

Command button #4 Name cmdUpper

Command button #4 Caption &Uppercase

Table 17.1. Set these command button controls and properties on the form.

Control Property Value

Command button #4 Left 2160

Command button #4 Top 3600

Command button #5 Name cmdLower

Command button #5 Caption &Lowercase

Command button #5 Left 3960

Command button #5 Top 3600

8. Add the event procedures shown in Listing 17.7.

Listing 17.7 These event procedures will test the new ActiveX control.
1: Private Sub cmdSmall_Click()
2: ' Test the Small text conversion
3: MyFirstCtl.AutoTSize = Small
4: End Sub
5:
6: Private Sub cmdMedium_Click()
7: ' Test the Mediumtext conversion
8: MyFirstCtl.AutoTSize = Medium
9: End Sub
10:
11: Private Sub cmdLarge_Click()
12: ' Test the Large text conversion
13: MyFirstCtl.AutoTSize = Large
14: End Sub
15:
16: Private Sub cmdUpper_Click()
17: ' Test the uppercase conversion
18: MyFirstCtl.ULText = Uppercase
19: End Sub
20:
21: Private Sub cmdLower_Click()
22: ' Test the lowercase conversion
23: MyFirstCtl.ULText = Lowercase
24: End Sub

As you type the code, notice that Visual Basic helps you locate the new ActiveX control's property values when you
type the equal (as shown in Figure 17.12) with a drop-down list box of choices. The choices offered are the only
possible values that Visual Basic will let the control receive. Therefore, the selection list that appears when you type
the equal sign is incredible, given that you did absolutely nothing to produce this feature.

Figure 17.12. Your ActiveX control supports the pop-up list box Quick Info help.

Compile and run the application. Type a value in the ActiveX control's text box area using a combination of uppercase
and lowercase letters. Click the three sizing buttons to see the text change size. Remember that these buttons are linked
not to a Font.Size property but to new the property values you've created for the control. In addition, click the case-
conversion command buttons to see the text change case.

Note

Once you convert the ActiveX control's text to uppercase or lowercase, the original case is lost until you type a new
value in the control's Text field.

Figure 17.13 shows the running application. You didn't need a new control to perform these conversions; however, the
new control supports built-in conversion properties that you can set at any time to control the text's size, based on the
control's Height property, as well as the text's case.

Figure 17.13. The ActiveX control's properties now perform conversions.

Summary
Today's lesson explained how to work with special ActiveX objects. Not only do ActiveX objects add new controls to
your toolbox window, but they work in other kinds of Windows applications that you may use, such as Visual C++ and
Internet browsers. For this reason, ActiveX controls are available from a wide variety of sources. Once you learn how
to use an ActiveX control, you then can use it in other applications.

You can even create your own ActiveX controls by taking advantage of the ActiveX Interface Control Wizard. You can
subclass an ActiveX control from an existing control (even if that control is another ActiveX control that you or
someone else has written). You'll eventually build a library of controls that help you create other controls and
applications.

Tomorrow's lesson, "Interacting with Data," shows you how to integrate Visual Basic applications with databases so
that your programs can access and manipulate large amounts of information.

Q&A
Q: Why should I create new group tabs on my toolbox window?

A: The tabs only exist to organize your controls. By grouping the controls together, you'll more easily
locate the controls you need for a given purpose. For example, if you're creating a database-related
Visual Basic application, you can group the set of database-related controls in their own tabbed group to
access them more easily. You then do not have to search through all the controls in the General section
to find one that you need. Despite the tabbed groups, all the controls on the toolbox window are always
available for you to use.

Q: Can I get rid of tabbed groups that I create?

A: Certainly. Right-click any group name to display a pop-up menu that contains a Delete Tab option. In
addition to deleting the tabs, you can also rename them from the right-click pop-up menu.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next lesson. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: What does automation mean?

2: What happens if your application uses CreateObject() for a Word document and Word is already running?

3: Why can't you directly assign applications to object variables?

4: What is the purpose of the system object's Err.Number?

5: What are the three ways to create ActiveX controls?

6: Which method of ActiveX control creation is the easiest to use?

7: True/False. When you subclass a control, the new ActiveX control borrows properties, events, and methods
from the parent.

8: What are enumeration blocks used for?

9: What extension does Visual Basic use for compiled ActiveX controls?

10: Which two procedures do ActiveX control properties require?

Exercises

1: Use the Components dialog box to search your disk for ActiveX controls. You'll probably find some that
aren't in the Windows folder. For example, if you're a member of Microsoft Network's online service, you'll
find several ActiveX controls in the Microsoft Network folder.

2: Change the ActiveX control and the application that you created at the end of this lesson. Modify the AsIs
enumerated value so that it reads AsEntered. Change the ActiveX control so that, if a program changes the
text from AsEntered to either Uppercase or Lowercase, the control remembers the text as it appeared
before the conversion. Rewrite the final application in this lesson to add a sixth command button that reads
As Entered. When the user clicks this command button, the text should revert back to its previous form .

Bonus Project 8: Elements That Spruce Up Apps
This Bonus Project describes how to create an application that includes the following items:

• An About box displayed from the Help, About menu option
• A sound file that automatically plays when the About box appears
• A picture box that moves to show simple animation
• A timer that controls the animation
• An array of picture box controls

This project contains nothing fancy. Despite the animated picture box, you'll see that the animation is rather dull. That's
okay, though, because you'll understand the principle behind moving objects within picture boxes and you'll have
hands-on experience with using an About box and adding a WAV file to your applications.

 The Application's Goal
Figure BP8.1 shows the form as it will appear during the animation. (When you first run this application, the envelope
is sealed and the letter is not on the screen.) The form is simple and large enough so that the letter can fly out of the
open envelope when the user clicks the Animate button.

Figure BP8.1. The application simply shows a letter flying out of the envelope.

Note

Once the user starts the animation, the letter keeps flying out of the envelope and the button caption changes to Stop.

Figure BP8.2 shows the About box that will appears when the user selects Help, About.

Figure BP8.2. A WAV file plays when the user displays this About box.

Creating the Primary Form
Table BP8.1 contains the controls and properties you need to set to create the primary form that appears when the user
starts the application. You must have installed the Graphics folder when you installed Visual Basic; otherwise, you'll
have to insert your Visual Basic CD-ROM and point to its Graphics folder or you'll have to install the Graphics folder
by running Visual Basic's Setup file once again. In addition, you must press Ctrl+T to add the multimedia control to the
toolbox window before you can add the multimedia control to the form.

Note

Many of the controls in this project, such as the timer control and the picture boxes that you place during design time,
are located along the outer edges of the form, just to keep them out of the way while you add the remaining controls.
The timer control never appears to the user, so you can place it anywhere you want. The picture boxes will move to
show animation, so their initial design time placement doesn't matter either.

Tip

This project contains three picture box controls that are part of a single control array. Although you could create three
separate Picture box controls, making the array is good practice for projects that require numerous controls that are
similar in appearance and purpose. To create the array, create the first array element's picture box control, picAni2 (the
Picture box control named picAni1 is not part of an array but is a single standalone control). Once you place picAni2
and assign its properties, copy picAni2 to the Clipboard with Edit, Copy. When you select Edit, Paste, answer Yes to
the dialog box that asks if you want to create a control array. Visual Basic turns the original nonarrayed picAni2 into

picAni2(0), the first element in the control array. Paste once again for the third item in the picAni2 control array
when you're ready to place that control on the form.

To give you a better idea of your form window's appearance, Figure BP8.3 shows the form window as it will look after
you place all the controls from Table BP8.1. The executing program will make some of the controls invisible and will
animate others to take on the appearance of a letter flying out of an envelope.

Figure BP8.3. Your form window will look like this after you place the controls on it.

Table BP8.1. Set these controls and properties on the form.

Control Property Name Property Value

Form Name frmEnvelope

Form Caption Mailing a Letter

Form Height 5790

Form Width 7845

Menu option #1 Caption &Help

Menu option #1 Name mnuHelp

Table BP8.1. Set these controls and properties on the form.

Control Property Name Property Value

Menu option #2 Caption &About

Menu option #2 Name mnuHelpAbout

Command button Name cmdAni

Command button Caption &Animate

Command button Left 2940

Command button Top 2880

Timer Name tmrAni

Timer Enabled False

Timer Interval 300

Timer Left 1410

Timer Top 3405

Picture box #1 Name picAni1

Picture box #1 Height 495

Picture box #1 Left 3330

Picture box #1 Picture Common\Graphics\Icons\Mail\Mail01a

Picture box #1 Top 1485

Picture box #1 Width 1215

Picture box #2 Name picAni2(0)

Picture box #2 Height 495

Picture box #2 Left 5895

Picture box #2 Picture Common\Graphics\Icons\Mail\Mail01a

Picture box #2 Top 2520

Picture box #2 Width 1215

Picture box #3 Name picAni2(1)

Picture box #3 Height 495

Picture box #3 Left 5520

Picture box #3 Picture Common\Graphics\Icons\Mail\Mail0lb

Table BP8.1. Set these controls and properties on the form.

Control Property Name Property Value

Picture box #3 Top 3240

Picture box #3 Visible False

Picture box #3 Width 1215

Picture box #4 Name picAni2(2)

Picture box #4 Height 495

Picture box #4 Left 3960

Picture box #4 Picture Common\Graphics\Icons\Mail\Mail03

Picture box #4 Top 1080

Picture box #4 Visible False

Picture box #4 Width 1215

Multimedia control Name mmcEnv

Multimedia control DeviceType WaveAudio

Multimedia control PlayEnabled True

Multimedia control Filename \Windows\Media\Chimes wav

Multimedia control Left 2520

Multimedia control Top 4080

Multimedia control Visible False

Multimedia control Width 3540

Note

The sound, Chimes.wav, that plays when the user selects Help, About is a standard sound file that comes with
Windows.

Adding the Opening Form's Code
Listing BP8.1 contains the code you need to add to the opening form. The code activates the form and controls the
animation that takes place. The animation is simple. It results from moving a picture box control to and from only three
locations on the form.

Listing BP8.1 Animation code can be simple.
1: Private Sub cmdAni_Click()
2: ' Use the command button to control the animation
3: If cmdAni.Caption = "&Animate" Then
4: cmdAni.Caption = "&Stop"
5: tmrAni.Enabled = True
6: Else
7: cmdAni.Caption = "&Animate"
8: tmrAni.Enabled = False
9: End If
10: End Sub
11:
12: Private Sub mnuHelpAbout_Click()
13: mmcEnv.Command = "Open"
14: mmcEnv.Command = "Play"
15: frmAbout.Show
16: End Sub
17:
18: Private Sub tmrAni_Timer()
19: ' Determine the correct picture
20: ' location to display
21: '
22: ' The following variable begins at zero
23: ' and retains its value every time the
24: ' procedure executes.
25: Static intCounter As Integer
26:
27: Select Case intCounter
28: Case 0:
29: picAni1.Picture = picAni2(1).Picture
30: picAni2(2).Visible = True
31: picAni2(2).Left = 3840
32: picAni2(2).Top = 1220
33: intCounter = 1
34: Case 1:
35: picAni1.Picture = picAni2(1).Picture
36: picAni2(2).Visible = True
37: picAni2(2).Left = 4040
38: picAni2(2).Top = 1120
39: intCounter = 2
40: Case 2:
41: picAni1.Picture = picAni2(1).Picture
42: picAni2(2).Visible = True
43: picAni2(2).Left = 4240
44: picAni2(2).Top = 1220
45: intCounter = 3
46: Case 3:
47: picAni1.Picture = picAni2(0).Picture
48: picAni2(2).Left = 4440
49: picAni2(2).Top = 1320
50: intCounter = 4
51: Case 4:
52: ' Stop the animation
53: picAni1.Visible = True
54: intCounter = 0
55: picAni2(2).Visible = False

56: End Select
57: End Sub

Analysis
The cmdAni_Click() event procedure toggles the command button's caption from Animate to Stop. If the button
shows the Animate caption, line 4 changes the caption to Stop and enables the timer control in line 5. By enabling the
timer, the command button's Click event begins triggering line 18's tmrAni_Timer() event. The timer's Interval
property value of 300 means that the tmrAni_Timer() event procedure executes every 300 milliseconds, thus
producing the animation. The animation continues until the user clicks the Stop button. Then line 7 changes the button's
caption back once again and line 8 disables the timer.

Moving on the tmrAni_Timer() event procedure that begins in line 18, remember that the Timer event causes this
procedure to execute every 300 milliseconds. The procedure performs one of four actions, controlled by the Select
Case statement in line 27. The variable that determines which of the five actions takes place is a static variable. The
static variable, declared in line 25, begins with a value of 0 (as all static variables begin). Once assigned a value,
subsequent executions on tmrAni_Timer() will retain the value that intCounter had in it the previous procedure's
run. Therefore, intCounter has one of five values, from 0 to 4, updated each time through the procedure.

Each of the first three cases performs the following actions:

• Assigns the closed envelope the open envelope icon (see lines 29 and 35).
• Makes the letter icon visible (see lines 30 and 36).
• "Moves" the letter icon by changing its Left and Top properties (see lines 31 and 32).
• Increments the intCounter static variable so that the next time tmrAni_Timer() executes, a different set of

Case statements execute.

This process continues until the Case value is 4. At this time, in line 53, the procedure shows the closed envelope once
again and once again hides the letter icon (line 55). Unless the user clicks the Stop button at this time, the letter will
once again fly out of the envelope after another 300 milliseconds go by, because line 54 assigns 0 to the static variable
to force the first Case to execute once again.

The remaining event procedure, mnuHelpAbout_Click(), controls the display of the About box in line 15 after lines
13 and 14 open the WAV device and play the WAV file. The About form's properties are described in the next section.

Note

Although the About box does contain code, the code comes from the form template that you use for the About box
(described in the next section). You don't need to add to or edit this code. The code ensures that the system information
routine begins when the user clicks the command button to request the system information.

Creating the About Box
Use the About Box form template for the About box. After creating the first form, right-click the Project window and
select Add, Form. Select About Dialog to add the About dialog box to your Form window. (This adds both the form
and its code to your project.)

Table BP8.2 contains the control values you'll use for the About box. These controls are already on the form, and Table
BP8.2 contains only those properties you need to change.

Table bp8.2. Set these controls and properties on the about box form.

Control Property Name Property Value
lblDescription Caption Seeing simple animation and hearing a sound
lblDescription Font size 14
lblDescription Font style Bold
lblDisclaimer Caption Warning: Programmer on board!

Note

The code that comes with the About box adds the About box title and version number from the system objects
App.Title, App.Major (for the major version), App.Minor, and App.Revision to produce the 1.0.0 version number.

Day 18. Interacting with Data
Today's lesson shows you how to access databases through your Visual Basic applications. A database is a collection
of files that work together to form a complete data-management system. A database system, such as Microsoft Access,
creates the database your Visual Basic applications might need to connect to. By using the special database controls
and methods, your applications can communicate with the database itself.

Today, you learn the following:

• Which databases Visual Basic interacts with
• About database terminology
• About the importance of index fields
• About the Visual Data Manager's capability to analyze database structures
• About the data control
• How the ADO controls compare to the data control
• How the Visual Basic Application Wizard can analyze tables and generate forms

Database Data and Visual Basic
By offering you the ability to interact with databases, Visual Basic gives you the power to access and manipulate large
data resources from a Visual Basic program. The databases that Visual Basic can access take on many forms and
formats. Visual Basic supports the following popular database formats:

• Microsoft Access
• Excel
• dBASE
• FoxPro
• Lotus spreadsheet-based databases
• ODBC-compliant databases
• Paradox
• Text files formatted with comma-delimited data

A database is an organized collection of data. The data is not usually text based, as word processing data is, but rather
it's based on groups of items that you must track, whether those items are personnel, customers, vendors, inventory,
books, or software (in other words, any kind of data you must keep track of, report on, and change). Often, you use a
database system, such as Microsoft Access, to create and manage the database structure. Visual Basic can access the
database you create from within the database system.

Note

Visual Basic can access and manage data from many different versions of these database systems. As long as you use a
version that has been around as long as Windows 95, you can be sure that Visual Basic supports the data format
(although Visual Basic supports some versions of the listed database systems that go back further than Windows 95).

To understand how Visual Basic supports database use, you must understand terms related to database technology.
Today's lesson only scratches the surface! You're reading this book to learn Visual Basic, not database technology. If
you want more of an in-depth look at databases and Visual Basic's advanced access to database systems, check out
Sams Teach Yourself Database Programming with Visual Basic in 21 Days and Database Developer's Guide with
Visual Basic.

You don't have to be a database expert, however, to get to know Visual Basic's database access techniques. Visual
Basic includes numerous controls that support database access in a structured environment. The rest of today's lesson
will introduce you to those tools and to database processing in general.

Learn the Terms
Historically, one usually begins learning about a database by starting with data files in general. You have an advantage
already because you learned about records and fields in Day 12, "Interact with Files." Figure 18.1 illustrates a typical
scenario that clearly shows the concept of records and fields. A record is thought to be one row of information in a data

file, even though one logical record could extend into two or three actual physical lines in the file. Each record is
broken into fields, or columns, that help distinguish each record's piece of data.

Figure 18.1. A typical data file is broken into records and fields.

Note

The data file in Figure 18.1 shows seven records and five fields. If more items were added to the inventory, the number
of records would increase, but the number of fields would remain the same. Your data files are not necessarily fixed,
however, in that you can expand the number of fields. You must change the file's design to do this, though, and adding
fields is not normally the same process as adding and removing records. Most often, you add and remove items to and
from the inventory, which adds and removes records from the database.

Caution

The field names are never part of the data. They serve only to label the fields, just as a variable name labels the
contents of the variable.

The file shown in Figure 18.1 is known as a flat-file database because the file stands on its own, and a program can
access the information simply—either sequentially or randomly. The records don't have to appear in any particular

order, although usually the database designer will keep the file sorted by some access field, such as the part number,
because such a file is often easier to use when you're locating sorted data. Today's database systems go far beyond the
single flat-file data concept shown in this figure.

In today's database terminology, a table is one data file, and the database is the collection of those tables. Therefore,
your database might consist of a customer data table, a vendor data table, an employee data table, and an inventory data
table. By putting these tables into a single database, programs that can access the database have access to all the tables
at the same time. Therefore, the program could determine which vendor sold a part wholesale to you or which
employee sold a particular product. In other words, a database system can take these separate tables and produce
consolidated information from them.

A query is used to retrieve information from a database. In other words, a program queries the database for data when a
certain record or combined record of data is needed. Also, a database table usually has at least one index defined. An
index is a key field with unique values for every record. The index works just like a book's index: When you need to
access a particular record in a table, you can specify the index value, and the database jumps directly to the row without
searching the entire table (as would be done in typical sequential file access routines). In Figure 18.1, the best field for
the index would be the Part Code field, because every part has a unique part number.

Note

Do you sometimes feel as though you're just a number? Are you tired of all those account numbers you have (checking
account, savings account, loans, car tags, drivers license, social security number, and so on)? You now have a better
idea why the numbers are so important: The computer can more quickly identify you. If a company stored information
by name, that information would often be difficult to find. For example, several people in a national credit card file
would probably have your same name. If your name were MacDonald and you called for your current balance, the
receptionist might search for McDonald or Mac Donald or MAC DONALD, and the computer would probably not
match the name. (Computers are so literal!) The unique identification number used for index fields means fewer
mistakes will occur. Also, companies can automate to save time, and their saved time ultimately is reflected in better
prices and interest rates for you.

When working with databases (instead of just single data files), programmers prefer the term table to file, as you read
earlier. However, in addition, they also use columns and rows to refer to fields and records. That makes sense, because
the files, or tables, are rectangular in theory (though not in reality; they are stored physically quite differently) and are
made up of rows and columns, as shown in Figure 18.1. Also, multiple files inside a single database file could get
confusing, thus the term table for one occurrence of one data set (one data file) inside the database. In addition, most of
today's database systems are relational, meaning that no two tables contain exactly the same data so that file
redundancy is eliminated as much as possible. Microsoft Access is such a relational database. For database files that are
not relational, such as pre-dBASE 4.0 files, you have to add fairly complex Visual Basic code to make the database file
mimic relational access before performing I/O with Visual Basic's database tools.

Most databases inherently support the user's interface, as well. For example, database files can contain predefined
reports that produce output based on the data, screen forms to display and receive new data from users, stored queries
so the user does not have to create a new query every time information is needed, and database definitions so that

programs can analyze the database and read the format using standard procedures. These procedures let programmers
know how many tables exist and how their structures look.

Obtaining Sample Data
Visual Basic comes with the following two sample database files, both in the Microsoft Access format:

• BIBLIO.MDB—Contains a database of computer book dealers and titles.
• NWIND.MDB—Contains an imaginary company's complete database system, including inventory, customers,

vendors, employees, marketing statistics, and more. The company's name is Northwind Traders, Inc.

All Access database files end in the extension .MDB (for Microsoft database). An Access database file can be huge—
one file contains all the tables, reports, forms, screens, and stored queries in the database. The advantage of a single file
is that you can more easily back up your entire database (that is, you don't have to keep track of multiple files every
time you perform a backup).

To make today's introduction of databases easy, this lesson uses the supplied NWIND.MDB database to demonstrate
some of the data-related controls and commands. However, not every Visual Basic programmer has access to an
outside database system. Fortunately, Visual Basic does include a special add-in tool called the Visual Data Manager
with which you can create and modify database files.

The Visual Data Manager is an add-in program available from within the Visual Basic environment that you can use to
create databases, enter and edit data, and modify and report on the data structure. The files you create and analyze from
the Visual Data Manager help you write and test Visual Basic programs that must work with similar data.

Caution

If you use the Standard edition of Visual Basic, you don't have the Visual Data Manager. Your version of Visual Basic
still comes with the NWIND.MDB database file, however, so you can still work with some of the following examples.
Unfortunately, though, you'll be unable to use the Visual Data Manager.

The Visual Data Manager is the only default add-in tool in the Add-Ins menu. Select Add-Ins, Visual Data Manager,
and Visual Basic starts the Visual Data Manager by opening the VisData window (see Figure 18.2).

Figure 18.2. The Visual Data Manager helps you create and analyze database files

With the Visual Data Manager, you can perform the following tasks:

• Create new database files
• Enter new data into data files
• Edit existing database file structures
• Edit existing database data
• Search for database fields, queries, and recordsets

A recordset is just a collection of records. Several kinds of recordsets exist. The default recordset is simply all the
records (rows) in a table. You might create a new recordset by retrieving only records that meet a specific criteria (such
as "All records that contain a Balance field greater than $500"). A dynaset is a changing recordset that continues to
meet a certain criteria when you request the recordset. A snapshot is a recordset from a specific point in time, such as
all records that meet a specific criteria on the last day of the month.

In other words, the Visual Data Manager acts like a database system, not unlike Microsoft Access. Remember, though,
that the Visual Data Manager is extremely limited and is more of an administrative tool for analyzing database files
than it is an actual database system. You cannot, for example, create data reports and forms for the user of the data.

Caution

Again, this lesson provides only a cursory overview of database technology and terminology. Mastering a complete
database system, such as Microsoft Access, takes almost as long as mastering the Visual Basic development system.

Here are the general steps you would follow to create a new database using the Visual Data Manager:

1. Create the database file by selecting File, New and then choosing the type of database you want to create by
picking vendor from the list. The Visual Data Manager can create and edit all the database formats listed in the
first section of today's lesson.

2. Create each table in the database by right-clicking the database window and selecting New Table from the pop-
up menu. The Visual Data Manager displays the Table Structure form, shown in Figure 18.3, into which you
can enter the name of the table, each field in the table, the field types (each database field supports a unique data
type, just as each variable does in Visual Basic), security and validation requirements (such as password-
protected fields), and the indexed fields (a table may have multiple indexes depending on how the application is
to access the data).

Figure 18.3. You can design each table and its field structure from the Table Structure form.

3. Click the Build the Table button to build the table structure and to add additional tables.

4. Click the toolbar button whose ToolTip text reads "Use Data Control on New Form" so that Visual Data
Manager has a tool (called the data control) to use for entering the database table data.

5. Double-click one of the table names in the database window and enter each record of data using the data entry
form shown in Figure 18.4.

Figure 18.4. Enter each table's data so you have a database to work from.

Note

If you first clicked the toolbar's dynaset-type recordset button or snapshot-type recordset button, the data you enter
would take the form of one of these advanced recordset types.

6. Select File, Close to close and save the new database.

Although creating a database requires much more detail than described here, you now have a general idea of the steps
needed to create a database using only the tools Visual Basic provides.

Tip

If your programming eventually requires extensive database work, you'll not want to rely on the Visual Data Manager
to produce and edit your database files. Although the Visual Data Manager is helpful for deciphering database formats
and for creating simple databases for the testing and debugging of programs, its capabilities do not come close to those
of Microsoft Access, FoxPro, or the other database systems on the market. For example, you would not want to use the
Visual Data Manager to design and create a company's complete database. The Visual Data Manager is not flexible or
simple enough to work with on a regular basis when you're managing a live database file. For serious database
programming, you'll want to add a database system to your collection of programs.

Although the Visual Data Manager offers several query tools that let you search for data and create complex queries for
locating records, the Visual Data Manager is limited to database administration only. You've got Visual Basic waiting

patiently along the sidelines ready to wrap a complete end-user application around a database file when you want to
really work with the database. Now that you've had an overview of the Visual Data Manager, you're ready to see how
Visual Basic can access the database files that you create, whether you create them with the Visual Data Manager or
with a standalone database system such as dBASE. Remember that because Visual Basic comes with the complete
database file NWIND.MDB, you don't have to create a database to begin learning how Visual Basic's database tools
work in today's lesson.

The Data Control
The data control, the final intrinsic toolbox window control you have to learn, is often considered by many to be a slow,
cumbersome tool for managing data. Nevertheless, in its defense, the data control is still useful for the following
reasons:

• The data control is simple, which makes learning how Visual Basic interacts with database files easier.
• The data control is always on the toolbox window because it's an intrinsic control. Therefore, you don't have to

locate and add an ActiveX control to use it.
• Visual Basic's Standard edition does not come with all the advanced database tools that the Professional and

Enterprise editions come with. (In today's final sections, you'll learn how some of these advanced database tools
and techniques help the Visual Basic programmer access a database in more ways than the data control allows.)
However, not everyone has the Professional or Enterprise edition. Therefore, these more advanced techniques
simply are not available to all, whereas the data control is.

The following sections describe how to use the data control to access the NWIND.MDB database. Once you've
mastered the data control, the more advanced controls will not seem nearly as daunting.

Setting Up the Data Control

When you want to access a database, the simplest way to do so is to use the data control. When you place the data
control on a form, it looks somewhat like the multimedia control you learned about in Day 14, "Introducing VB
Graphics and Multimedia." After extending the data control's width somewhat, you'll see that the control looks like the
one shown in Figure 18.5.

Figure 18.5. The data control contains buttons that help you step through a database.

A data control has these parts:

• Two inner arrows that let you move forward and backward through a database table one record at a time.
• Outer arrows that move you to the first and last records in a database table.
• A middle area that displays whatever information from the database that you want to display.

The data control is a bound control. You can bind many Visual Basic controls, such as a text box control, to a database.
When a user steps through a database, the text box displays the field you've set up. When you bind the control to the
database, you don't have to worry about displaying the field data, because Visual Basic does all the work.

A bound control is a control that is bound to your database data in a way that makes traversing the database simple for
a Visual Basic program.

If you want to display one record at a time from a recordset that you've defined in the database, use a bound control.
Bound controls usually display only the current record or a field within the current record. As a user traverses the
database, clicking the buttons on the data control, the current record changes to reflect the user's position in the
database table.

Using the Data Control

To see the data control in action, take a moment to create an application that displays records from one of the
NWIND.MDB database tables. The following steps describe how to create the application:

1. Create a new application and add the data control to the form. Change the data control's Width to 4620 to make
room for the text that will appear on the control's middle field display section. Move the control toward the
bottom of the window so that its Top property value is 3240.

2. Name the data control dtaBooks.

3. Use the DatabaseName property to connect the data control to the database. Double-click the DatabaseName
property to select the file named NWIND.MDB from your Visual Basic folder. The data control is an intelligent
control that can distinguish between multiple tables in a single database. The data control will only be able to
access one table's records at a time (or, more accurately, one recordset at a time), and after you specify the
DatabaseName property, the data control can decipher the tables within the database.

4. Double-click the RecordSource property and select the Customers table from the list (Customers is the name of
one of the database tables). The RecordSource property specifies which recordset the data control will report
from when the application accesses the database.

5. Change the data control's caption to Click to change customers. The caption appears in the center of the
data control.

6. Add a label control to the form with these properties:

Name: lblCust
Alignment: 2-Center
FontSize: 18
Height: 915
Left: 1680
Top: 1440
Width: 4320

7. Open the label's DataSource property. This is a property you've never had to set before. You're going to bind
the label to the data control. (A label is one of several controls that can be bound controls.) The label's
DataSource property will enable you to select the value of dtaBooks, because dtaBooks is the database table
the data control is attached to. If multiple data controls resided on the form and were attached to databases
already, the DataSource property would list each of those databases so that you could select the source for this
label's data.

8. Now that you've bound the label to the correct table, you must bind the label to the correct column (field) in the
table. Open the DataField property and select ContactName as the column in the table whose data is to appear
in the label.

9. You're ready to run the application. Press F5 to run the application: The first customer name will appear
automatically in the label. Remember that the label is bound to the data control, which is bound to the database.
As you click the data control's buttons, the label's contents changes to reflect the current customer (Figure 18.6).

Figure 18.6. You can now step through the database, one record at a time, either forward or
backward.

10. Click the application window's Close button to terminate the program and save your project.

You're certainly not limited to one column in the table. You can add as many labels as you want to display multiple
columns. Figure 18.7 shows a complete customer record displayed. The extra labels simply have their DataField
values bound to specific columns in the table. In addition, extra labels help describe the data being displayed. (You'll
have the chance to modify this database program by adding these extra columns in the first exercise at the end of
today's lesson.)

Figure 18.7. Displaying multiple table columns requires only additional labels.

Tip

If you want to display columns from multiple tables, you'll have to create a recordset, such as a dynaset, from within
your database system that pulls the columns out of the appropriate tables. More advanced Visual Basic controls and
commands let you perform advanced database selection, as you'll see throughout the final sections of today's lessons.

Tip

To display data formatted with the Boolean data type, use a check box or an option button to indicate the True or
False value of the Boolean field. The option can indicate the Yes or No and True or False data values that often appear
in database tables.

Advanced Data Control Usage

Your database applications certainly don't have to be read-only. You'll want to be able to let users change the database.
Several ways exist to do this. The simplest approach is to display the data control's table data in text boxes instead of in
labels. Your users will see the information just as they do with labels, but they can also edit the information inside the
text boxes to update the database.

Caution

Keep security in mind at all times. You may need to issue a password dialog box to limit the database update to certain
people (see Day 15, "Using Form Templates"). In addition, the database itself might limit what kinds of updates can

occur. The data control's Exclusive property determines whether a user can have exclusive rights to a database and be
the only user with access to it (for networked systems), but the data control itself offers little in the way of security.
You'll have to master more advanced controls and commands (some of which are discussed in the rest of today's
lesson) to incorporate true database security in your applications

As your programming skills improve, you'll learn ways to use the data control for more advanced database access. For
example, the data control supports several Move-related methods you can use to move the current record pointer to the
same locations the data control's buttons do. The following methods move the record pointer to the first, last, next, and
previous records in the database pointed to by the data control's DataSource property:

dtaCust.Recordset.MoveFirst ' Moves to the first record
dtaCust.Recordset.MoveLast ' Moves to the last record
dtaCust.Recordset.MoveNext ' Moves to the next record
dtaCust.Recordset.MovePrevious ' Moves to the previous record

The record pointer keeps track of the current record in an open database's table. When you first open a database table,
the record pointer points to the first record. As you read through the table sequentially, the record pointer moves
forward in the table. The Move-related methods manipulate the record pointer so that you can access various records in
the table.

The data control's default recordset is defined by the property values you set. For example, if you add a command
button that includes a Click event procedure which, in turn, contains one of these methods, the label displays the
record selected by the method every time the user clicks the command button. In addition to the record-movement
controls, methods exist that add and delete records to and from the database.

Tip

Use the BOF and EOF Boolean properties to see whether the record pointer is at the beginning or the end of a table.
Visual Basic programmers often use a Do...While loop to step through every table record. The loop terminates when
dtaCust.Recordset.EOF is equal to True.

Advanced Database Controls

The Professional, Enterprise, and Visual Studio editions of Visual Basic support an advanced set of controls, properties,
methods, and events you can use if you have to write major database-access applications. The texts listed in this
lesson's first section provide in-depth training for these controls. Although this 21-day course cannot explore all the
advanced database concepts, this lesson does introduce you to these advanced concepts. If you have to add more
database coverage to your applications, you'll at least know what Visual Basic is capable of and you'll better understand
some of the terminology.

Note

Bonus Project 9, "ADO Controls," walks you through the creation of an ADO-based database project.

Starting with version 6, Visual Basic supports a wide range of ADO objects (ADO stands for ActiveX Data Objects).
Because these objects are ActiveX-based, they work across different platforms and programming languages (unlike the
data control, which works strictly in the Visual Basic environment). The ADO objects support database access both for
local as well as remote data objects (known as RDO). Remote data can come from across a network or a
communications line.

Mastering the ADO controls is important because they offer several advantages over the data control. Despite the
background necessary to work with the ADO controls (you still have more to learn in order to use them fully), they are
the current choice among Visual Basic database programmers due to their power and flexibility.

ADO technology supports faster database access than the data control does. Although today's computers run quickly,
you'll notice speed degradation when you use the data control for large database tables, especially ODBC-based
databases.

When you use ADO, you'll generally write more program code than you would with the data control. Although you can
write code that accesses the various data control methods, straightforward database access is less involved with the data
control. ADO enables you to control data access in a much stricter way than the data control. The ease of the data
control reflects its inability to be flexible. Also, the overhead of the data control doesn't burden ADO-based programs.

Perhaps the most important advantage of ADO is its capability to access many kinds of data. Not limited to just
relational and nonrelational database information, ADO controls can access, through advanced programming, Internet
browsers, email text, and even graphics.

Caution

Multiple ADO controls placed on the same form can begin to degrade the application's performance, because each
control works independently of the other and consumes its own set of resources.

The ADO technology supports (in all editions to some extent, but fully in the Professional, Enterprise, and Visual
Studio editions) the following data controls:

• ADO Data control— Works like the data control by connecting to a database and letting the user step through
the records

• ADO DataCombo control— Resembles a standard list box but gives your users access to a column showing
multiple records for that column

• ADO DataList control— Resembles a standard combo box but gives your users access to a column showing
multiple records for that column

Note

Non-ADO versions are available for these controls.

Using the VB Application Wizard
Visual Basic can do much of your database work if you use the Visual Basic Application Wizard to generate an
application that contains database access. Although the wizard provides more limited access than you could otherwise
obtain throughout ADO programming, you can create an initial application and then modify it to produce a more
complete application through programming.

The code that results from the wizard's application generation is fairly complete and forms the basis for a true database
application. Figure 18.8 shows the wizard window that first offers database access.

Figure 18.8. The Visual Basic Application Wizard lets you create database programs.

Suppose you wanted an application that provides database access for the BIBLIO.MDB file so that your users could
view and update this sample database that comes with Visual Basic. After starting the Visual Basic Application Wizard
and running through the initial windows, you'll see the window shown in Figure 18.8. Here, you let the wizard know
that you need it to generate forms that access database data. Although you can create these forms yourself (select the
SDI option), you can let the wizard do the initial work and then you can customize the forms yourself.

Once you click the Create New Form button to generate a form, the wizard will ask you for a profile setting in case
you've use customized profiles. For this example, click Next to select a database type for the application to access. The
BIBLIO.MDB database that comes with Visual Basic is a Microsoft Access database, so select Access and click Next.

Next, the wizard requests a database name in the window shown in Figure 18.9. Specify the path and filename for the
database. (You can click the Browse button to locate the file.)

Figure 18.9. The wizard requests the database to use.

After you've specified the database and clicked Next, the wizard asks for the name of the main form (enter frmADO for
this example) and for the layout of the form you desire. You have these five choices for the layout:

• Single record— Lets users access, display, and edit one record at a time
• Grid (datasheet)— Lets users access, display, and edit multiple records at a time in a table-like view
• Master/Detail— Lets users access, display, and edit detail records related to a single master record; for

example, all products (the detail record) that a vendor (the master record) bought in the past through a one-to-
many relationship

• MS HFlexGrid— Lets users access, display, and edit multiple records in a tabular format
• MS Chart— Lets users access, display, and edit multiple records in a chart format

A one-to-many relationship exists among some records throughout the tables in most databases. One record might
contain a column value that resides in several records of another file. For example, an author database would contain a
table of authors, and a book table might exist with multiple books written by the same author. The author would appear

as the master record, and the books would appear as the detail records in this author-to-books, one-to-many
relationship.

You must also specify the binding (the way Visual Basic binds the database information to the controls). The wizard
offers these three data bindings:

• ADO Data control— Uses the ADO Data control to bind controls to the data
• ADO code— Uses ADO code to bind controls to the data
• Data class— Creates a special data class for the database and binds data to controls through that class

For this example, select ADO Data Control and click Next. At the next window, the wizard needs to know which table
(or which recordset) you want to access in the database. Open the Record Source drop-down list box to select from the
Publishers table. Immediately, as Figure 18.10 shows, the Available Fields list updates to show all fields, or columns,
from the Publishers table.

Figure 18.10. Visual Basic analyzes the table and locates the fields for you to select.

The fields you select determine the fields the wizard places on the ADO-based form it generates. You can select one of
the fields in the left list and click the .button to send that field to the right list. The wizard uses the right list to generate
matching fields on the resulting form. For this example, send all the fields to the right list.

Rearrange the field order so that the Company Name field appears first in the list. Click the Company Name field and
then click the up arrow three times to move this field to the top of the list. To ensure that the form displays the records
in alphabetical order by company name, select Company Name from the Column to Sort By list.

Click the Next button to display the Control Selection window shown in Figure 18.11. This window lets you specify
the buttons that will appear on the form that accesses the data. The buttons reflect the abilities you give the user. If you
want to keep your users from deleting records from the table, uncheck the Delete button option. For this example, keep
all the buttons checked.

Figure 18.11. You can control the user's ability to add, change, and delete fields from the database
table.

When you click the Finish button, Visual Basic generates the application.

Caution

The Finish button does not complete the wizard, just the database form- creation portion of the wizard. You must
complete the wizard in the normal manner. For this example, when you return from the form-generation windows, you
can click the wizard's Finish button to complete this section's application.

Once you run the application, the Publishers form displays, as shown in Figure 18.12. The wizard placed all the
necessary text boxes and buttons on the form so that the fields of the data could be accessed properly. You can add to
the form, perhaps customizing it to make it fancier, once you see that the generated application works correctly.

Figure 18.12. The wizard generated the form with all the necessary fields and database buttons.

Summary
Today's lesson explained database access with Visual Basic. The simplest way to access a database (assuming that you
don't use the Application Wizard) is to add the data control to your form. The data control takes care of updating the
underlying database and changing the bound controls as you move between records. Methods can be used to extend the
functionality of the data control.

The ADO interface can require extensive programming, but you get much more control and flexibility when accessing
your database. Although your application must update controls and move between records as its events are triggered,
the overall database application is faster.

Tomorrow's lesson explores ways to integrate the Internet with Visual Basic. The computer world is quickly becoming
an online world, and your applications often need to be able to offer Internet capabilities.

Q&A
Q: Do one-to-many relationships always exist in database tables?

A: Several kinds of relationships exist among data, and some or all of these may appear in a database at any one
time, depending on the database structure. Again, it's not the goal of today's lesson to delve deeply into
database theory. However, the one-to-many relationship is required for many Visual Basic applications, so
understanding something about it at this point is good. Often, you'll need to display all the records related to
a particular key value, and the one-to-many relationship provides this.

The wizard's Master/Detail view is a great way to create applications that provide this relationship among
data. At least one field must match in both tables for a one-to-many relationship to exist. A one-to-one
relationship sometimes appears in data when one column in a table relates to another column in another table.
This might be the case if the same part is sold by two vendors. Many-to-many relationships also exist. All
these relationships are part of the relational database design, and they form the basis for understanding how
relational databases work. The key to these relationships is not how you access them. These relationships are
designed and developed when the database is developed. Your job as the Visual Basic programmer is to
access these relationships, but you won't be reconstructing them in the data unless you're also the author and
designer of the database itself.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next lesson. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: What tool does Visual Basic supply that lets you edit and look at database files?

2: What is the difference between a file and a table?

3: True/False. As you add records to a table, the number of columns in the table grows as well.

4: True/False. A table is a subset of a recordset.

5: What is a bound control?

6: What are the differences between a recordset, a dynaset, and a snapshot?

7: Name two advantages of ADO over the data control.

8: What do the EOF and BOF values determine?

9: What's the difference between a Master view and a Detail view?

10: What tool does Visual Basic offer that generates database forms directly from your database structure?

Exercises

1: Change the database access application you created (shown in Figure 18.6) so that it displays all the fields
from the Customer table. Your form should mimic the form shown in Figure 18.7. (Be sure to add the
descriptive labels so the user knows what each column contains.)

2: Use the Application Wizard to generate a Master/Detail view of the BIBLIO.MDB database that presents the
author's name in the Master view and all his or her books'ISBNs in the Detail view.

Bonus Project 9: ADO Controls
This Bonus Project describes how to create an ADO-based database application. You'll use the sample BIBLIO.MDB
database that comes with Visual Basic as data for this project. The ADO database controls support extra programming
statements (as you'll see in this Bonus Project), but the ADO control as described and used here is easy to understand.

The Application's Goal
Figure BP9.1 shows the form that you'll create. The form contains several lines and controls and may take some time to
create. The form offers a complete database-management system for the BIBLIO.MDB database that comes with Visual
Basic. Although this Bonus Project cannot describe every action of the ADO control, it does describe how to begin
manipulating the BIBLIO.MDB database with the ADO control. After working through this project, you'll understand
some of what is involved when working with ADO applications.

Figure BP9.1. Your ADO-based application will manage this book database system.

Note

Although this application somewhat mimics what the Visual Basic Application Wizard can produce, by completing this
bonus project, you'll gain an insight into the requirements of ADO controls. You'll learn how to incorporate ADO
control-based programming statements that can access and change database tables without the user's intervention.

Caution

This bonus project will not fully teach you how to master the ADO control or the programming language behind the
control. However, you will learn the fundamentals of ADO programming. Fortunately, many Visual Basic
programmers never have to program the ADO control using the in-depth language that you'll read about here. This
bonus project is intended to provide an introduction to the skills needed to use the ADO control effectively.

Creating the Initial Form
To begin, create the initial form by placing the controls and setting their respective values as described in Table BP9.1.
Press Ctrl+T to open the Components dialog box and select the Microsoft Active Data Control 6.0 to place the ADO
control on the Toolbox. You'll add more properties to these controls before you've completed this bonus project.

Table BP9.1. Set these controls and properties on the form.

Control Property Name Property Value

Form Name frmBookTitle

Form Caption Book Titles - ADO Application

Form Height 4590

Form Width 7740

ADO Name adoBooks

ADO Height 735

ADO Left 5400

ADO Top 0

ADO Width 2055

Label #1 Name lblApp

Label #1 Alignment Center

Label #1 BorderStyle Fixed Single

Label #1 Caption Book Titles

Label #1 FontStyle Bold

Label #1 FontSize 18

Label #1 Left 2520

Label #1 Height 495

Label #1 Top 240

Label #1 Width 2535

Label #2 Name lblTitle

Label #2 Alignment Right Justify

Label #2 Caption Title:

Label #2 FontSize 10

Label #2 Left 720

Label #2 Height 255

Label #2 Top 840

Label #2 Width 495

Label #3 Name lblYear

Label #3 Alignment Right Justify

Label #3 Caption Year Published:

Label #3 FontSize 10

Label #3 Left 120

Label #3 Height 255

Label #3 Top 2400

Label #3 Width 1455

Label #4 Name lblISBN

Label #4 Alignment Right Justify

Label #4 Caption ISBN:

Label #4 FontSize 10

Label #4 Left 2880

Label #4 Height 255

Label #4 Top 2400

Label #4 Width 495

Label #5 Name lblPubID

Label #5 Alignment Right Justify

Label #5 Caption Publisher's ID:

Label #5 FontSize 10

Label #5 Left 120

Label #5 Height 255

Label #5 Top 3000

Label #5 Width 1455

Label #6 Name lblSubject

Label #6 Alignment Right Justify

Label #6 Caption Subject:

Label #6 FontSize 10

Label #6 Left 3480

Label #6 Height 255

Label #6 Top 3000

Label #6 Width 855

Text box #1 Name txtTitle

Text box #1 DataField Title

Text box #1 DataSource adoBooks

Text box #1 Height 1095

Text box #1 Left 1320

Text box #1 Top 840

Text box #1 Width 5535

Text box #2 Name txtPub

Text box #2 DataField Year Published

Text box #2 DataSource adoBooks

Text box #2 Height 345

Text box #2 Left 1680

Text box #2 Top 2400

Text box #2 Width 975

Text box #3 Name txtTitle

Text box #3 DataField Title

Text box #3 DataSource adoBooks

Text box #3 Height 345

Text box #3 Left 1680

Text box #3 Top 2400

Text box #3 Width 975

Text box #4 Name txtISBN

Text box #4 DataField ISBN

Text box #4 DataSource adoBooks

Text box #4 Height 345

Text box #4 Left 3480

Text box #4 Top 2400

Text box #4 Width 3495

Text box #5 Name txtPubID

Text box #5 DataField PubID

Text box #5 DataSource adoBooks

Text box #5 Height 345

Text box #5 Left 1680

Text box #5 Top 3000

Text box #5 Width 1575

Text box #6 Name txtSubject

Text box #6 DataField Subject

Text box #6 DataSource adoBooks

Text box #6 Height 345

Text box #6 Left 4440

Text box #6 Top 3000

Text box #6 Width 1575

Command button #1 Name cmdSave

Command button #1 Caption &Save

Command button #1 Left 240

Command button #1 Top 3600

Command button #1 Width 735

Command button #2 Name cmdAdd

Command button #2 Caption &Add

Command button #2 Left 1200

Command button #2 Top 3600

Command button #2 Width 735

Command button #3 Name cmdNew

Command button #3 Caption &New

Command button #3 Left 2160

Command button #3 Top 3600

Command button #3 Width 735

Command button #4 Name cmdDelete

Command button #4 Caption &Delete

Command button #4 Left 3120

Command button #4 Top 3600

Command button #4 Width 735

Command button #5 Name cmdCancel

Command button #5 Caption &Cancel

Command button #5 Left 4080

Command button #5 Top 3600

Command button #5 Width 735

Command button #6 Name cmdPrec

Command button #6 Caption &<

Command button #6 Left 5160

Command button #6 Top 3600

Command button #6 Width 495

Command button #7 Name cmdNext

Command button #7 Caption &>

Command button #7 Left 5760

Command button #7 Top 3600

Command button #7 Width 495

Command button #8 Name cmdExit

Command button #8 Caption E&xit

Command button #8 Left 6600

Command button #8 Top 3600

Command button #8 Width 855

Line #1 Name Line1

Line #1 X1 120

Line #1 X2 7440

Line #1 Y1 2160

Line #1 Y2 2160

Line #2 Name Line2

Line #2 X1 0

Line #2 X2 7800

Line #2 Y1 3480

Line #2 Y2 3480

Line #3 Name Line3

Line #3 X1 5040

Line #3 X2 5040

Line #3 Y1 3480

Line #3 Y2 4280

Line #4 Name Line4

Line #4 X1 6480

Line #4 X2 6480

Line #4 Y1 3480

Line #4 Y2 4280

As you place these controls, notice that the text boxes are bound to their respective fields from the BIBLIO.MDB table,
which is pointed to by the ADO control named adoBooks. You learned to do this same kind of binding with the simple
Data control in Day 18, "Interacting with Data." Unlike the Data control, however, the ADO control has more potential,
as you'll see before you finish this bonus project.

Connecting the ADO Control to the Data
When you use an ADO control, you must connect the control to the data the control will access. Of course, you also do
something similar with the data control; however, the ADO control can, you'll recall, connect to data that's not
necessarily in a database table. The ADO control can access e-mail, graphics, and virtually any data source that might
reside outside your application.

Most of the time, a programmer will connect to databases, either a local database on the current PC or on a networked
database connected to the user's machine. Therefore, your first step in making the ADO control work is to connect the
control to the data source. In this project, that source will be the BIBLIO.MDB Access 97 database that comes with
Visual Basic.

Caution

The ADO control is much more difficult to connect to a simple database than the Data control is. Nevertheless, the
benefits far outweigh the complications due to the greater efficiency of the ADO control and its capability to connect to
virtually any kind of data.

You can connect a data source to the ADO control in two ways:

• Set the ConnectionString property
• Use code to connect the control to the data

When you use the Properties window to connect to data, you can use the dialog boxes that help simplify setting up the
connection. If you use code, you'll have to write some rather cryptic code. (This section will demonstrate both ways.)

Making the connection in the Properties window is not as simple as doing so with the data control. For example, when
you click the ConnectionString property, the dialog box shown in Figure BP9.2 appears. You must determine which
option meets your data source's type.

For this example, as with many of the applications you'll create with the ADO control, you're going to create a simple
connection string that points to your database file. The first two options, a Data Link file option (used for passing data
between two locations) and an ODBC file option (used for ODBC-compliant databases), are not needed for this
project's simple database access. Click the third option to specify a connection string.

Figure BP9.2. The ADO control's Property Pages dialog box helps you specify a connection string.

Connection strings can get rather lengthy, but Visual Basic can help you build the string. To specify the string, follow
these steps:

1. Click the Build button to display the Data Link Properties dialog box.

2. Double-click the first option labeled Microsoft Jet 3.51 OLE DB Provider. Access 97 databases have as their
underlying database access system the Jet technology that Microsoft uses for fast database access. After
selecting Jet access, the Data Link Properties dialog box appears so that you can select the database.

3. Click the ellipses button to the right of the first text box and locate the BIBLIO.MDB database on your disk.

4. Click the Open button to attach the database to your ADO control.

Tip

To ensure that you've connected properly to the database, click the Test Connection button. If you've specified the
correct connection string properties, Visual Basic displays a message box that lets you know you've connected
properly. If you don't get a proper connection, the message box will let you know. You can then go back to the other
dialog box's tabbed pages and fix the problem.

5. To see what you've specified, click the All tab to see the connection string summary dialog box page shown in
Figure BP9.3. The other items listed in the dialog box are available for you to modify from the other dialog box
pages if you want to (for example, you can set the security access).

6. Click the OK button to return to the first Property Pages dialog box page; then click OK to close the dialog box
and return to your form.

Instead of selecting from the dialog box, you can use code to create a connection string anywhere in the application.
For example, you may want to build the connection string when the form loads or perhaps not until the user needs
access to a database table. The longer you wait to connect to data, the less likely that a power outage or a system hang-
up will adversely affect your data. Your application will start faster if you wait to build the connection string at the time
the database access is required.

Figure BP9.3. Visual Basic reviews your connection string settings.

Caution

Even if you use code to access the data, you need to place the ADO control on your form. You'll set its Visible
property to False if you don't want to give your users access to the control but you still want to use the control, along
with code, to access data. You cannot use both code and the Properties window to set the connection string, however,
so be sure to keep the ConnectionString value blank if you use program code to set the connection string.

To set the ADO control to the database with code, you could place the following statement in the Form_Load() event
procedure:

adoBooks.ConnectionString = "Provider=Microsoft.Jet.OLEDB.3.51;" & _
"Persist Security Info=False;" & _
"Data Source=C:\Program Files\Microsoft Visual" & _
"Studio\VB98\Biblio.mdb"

The statement assigns the very same connection string created at the beginning of this section when you set the
connection string with the dialog box. As you can see, the format can get tricky, but all the information from the dialog
box goes into the ConnectionString property.

The control is not quite ready to display data from the database, however. You'll need to specify exactly which rows
from which table in the database are to be available to the rest of the application. You must use SQL (a database
programming language that Visual Basic supports as a RecordSource property) to tell Visual Basic to access all the
records (indicated by the wildcard character, *) from the Titles table in the BIBLIO.MDB database with this statement:

adoBooks.RecordSource = "Select * From Titles"

Table BP9.1 listed the data fields for each text control on the form. Therefore, by setting the ADO control's Visible
property to False, erasing any ConnectionString property value you may have assigned with the dialog box that
appears when you double-click the ConnectionString property in the Properties window, and by assigning the
DataSource and DataField properties described for each text control in Table BP9.1, you can set up the form with an
invisible ADO control that accesses the data. Of course, without the control being visible, your program's code must
step through the data as needed. For this example, the command buttons at the bottom of the form require code to step
through the data, and that's what you'll do in the next section.

Note

When you run the application with the code-based ConnectionString and RecordSource properties (set as described
here) but leave the rest of the fields as you entered them from Table BP9.1, no database data will yet appear in the text
fields. Even though the text fields all point to the ADO control, the control isn't connected to the database until it loads,
and by then the text controls have failed to locate any data because their DataSource property, the ADO control, is not
connected to a database. Once you link the first text field to the newly connected data source, however (as described in
the next section), all the fields linked to the ADO control will display their data.

Code or Control?
Should you let your users control the ADO control by clicking the control's buttons or by hiding the control
and using code to step through the connected table? In this project, you're learning both ways. A user can
click the ADO control buttons to see data bound to the control or he or she can click the buttons at the
bottom of the form to step through the database.

The choice of offering the control or performing the database traversal using code depends on the
application you're writing. Often, the application is to update or display a single record or a record that
meets specific criteria. Your application needs to be able to retrieve a specific record, or perhaps step
through all records, computing totals and averages. Such data processing of a table requires code, because
the code will step through the data in the background.

Finding Data
To make sure that the Title field displays the titles for the books, you must connect the title's DataSource property to
the ADO control and the title's DataField property to the Title field in the table. To do so with code instead of setting
the properties from the Properties window, you could use these two statements:

Set txtTitle.DataSource = adoBooks
txtTitle.DataField = "Title"

Remember that you cannot assign this field in the Properties window if you connect the ADO control to the database
with code at runtime, as described in the previous section.

Once you link one text box to the ADO control, you can either do the same for the rest of the text boxes or you can use
the DataSource and DataField properties described in Table BP9.1, because they will work once you set one text
control on the form to the newly connected database table.

Traversing the Data
When you run the application after assigning the first text box to the ADO control, as described in the previous two
sections, the first record and its related fields appear as shown in Figure BP9.4.

Figure BP9.4. The first record can now appear.

Caution

The table's fields do not all contain accurate or complete data. For example, the first record in the BIBLIO.MDB database
shows nothing in the Subject field, and some subjects contain strange values such as 2nd, which is perhaps the edition
number but not the book's subject.

Only the first record will appear because the user has no access to the invisible ADO control and the command buttons
are not connected to code. You can double-click the Next button (the button with the Caption property &>) to add code
to activate this button. The following code moves the table pointer to the next record in the table so that the bound
controls can access the data:

1: Private Sub cmdNext_Click()
2: ' Move forward one record in the data
3: If Not adoBooks.Recordset.EOF Then
4: adoBooks.Recordset.MoveNext
5: If adoBooks.Recordset.EOF Then
6: adoBooks.Recordset.MovePrevious
7: End If
8: End If
9: End Sub

The recordset, used in lines 3 through 6, is the list of records that you're currently working with. You specified the
recordset earlier with the SQL statement that limited the records to the Titles table only. The recordset's method called
MoveNext moves the pointer in the database forward one record in line 4. All other controls bound to the table move as
well.

A problem can arise in the following situations if you do not check for them:

• If no records exist in the final record database table, an error will occur if you attempt to move forward.
• If the current record is the final record in the database table, an error will occur if you attempt to move forward.

Therefore, the If statement in line 3 ensures that the table is not already at the end of file by checking the recordset's
EOF property using a Not operator. In effect, line 3 says "if the recordset is not at the end of file, then continue." Line 5
ensures that, if the MoveNext method moves to the end of file, the MovePrevious method backs up once again, always
keeping the pointer from moving past the end of the table. MovePrevious is the recordset method that moves backward
through the table one record at a time.

You can use the MovePrevious method to add an event procedure to the Previous button (the button with the Caption
property &<) that moves backward through the table:

1: Private Sub cmdPrev_Click()
2: ' Move backward one record in the data
3: If Not adoBooks.Recordset.BOF Then
4: adoBooks.Recordset.MovePrevious
5: If adoBooks.Recordset.BOF Then
6: adoBooks.Recordset.MoveNext
7: End If
8: End If
9: End Sub

The BOF recordset property checks for the beginning of the file, so you must ensure that you do not let the user attempt
to back up to a previous record when the table is already at the beginning.

Note

You can place an End statement inside the Exit command button's Click event procedure so that the user can easily
exit the program.

Table Updates
The ADO control automatically updates the underlying table record if a user makes a change in a bound text box
control. Therefore, if you change a title or subject, that change stays with the table. Then, when you later run the
application once again, the modified data appears in the form.

Nevertheless, you, yourself, must be able to save data to a database using code, as well. Such code writing can get
lengthy and tedious and is far beyond the scope of this project. For example, you may want to keep unique values in a
certain field and issue an error message if the user enters a bad value. Also, you may get data from another source and
want to assign that data to the database.

To give you an idea of what's involved in updating database data using the ADO control, the record-saving procedure
in Listing BP9.1 writes data from the text boxes on the control to the database. (Of course, this is redundant for this
application because the text boxes are already bound to the table. However, when the text boxes or outside data are not
bound to the table, you'll use code similar to the code found in this listing.)

Listing BP9.1 You can use methods to write data to the table through code.
1: Private Sub cmdSave_Click()
2: ' Assign all the text boxes to the fields.
3: ' Assign only non-null data
4: ' (long lines are continued)
5: adoBooks.Recordset!Title = _
6: IIf(txtTitle = "", "N/A", txtTitle)
7: adoBooks.Recordset![Year Published] = _
8: IIf(txtPub = "", "N/A", txtPub)
9: adoBooks.Recordset!ISBN = _
10: IIf(txtISBN = "", "N/A", txtISBN)
11: adoBooks.Recordset!PubID = _
12: IIf(txtPubID = "", "N/A", txtPubID)
13: adoBooks.Recordset!Subject = _
14: IIf(txtSubject = "", "N/A", txtSubject)
15:
16: ' Make the actual update to the recordset
17: adoBooks.Recordset.Update
18:
19: End Sub

The IIf() function is used throughout Listing BP9.1 so that the value N/A (for not applicable) is written to any saved
fields that have no data in them. The IIf() ensures that each value written is non-null. The bracketed field name in line
7 is required because the field contains a space. Visual Basic treats [Year Published] as a single field name, but
without the brackets it would not be able to recognize the embedded space.

Listing BP9.1 adds only changed data from this project's form at this time, but you can easily adapt the code to retrieve
the data to save to the table from other sources. For example, in line 14, you would now look at the external data, such
as a user's input into an input box, instead of going to the form's text box for data to write to the table. Line 17 is
required to make the actual update, because the table will not accept the new data without the Update method.

The code in Listing BP9.1, therefore, actually writes the edits the user makes to the form's data to the table, even
though those values would be written anyway due to the bound text box controls in this example. If you want
completely new data to be written to the table (added at the end of the table), you must first clear the form's fields so
that the user can enter the data. (You could connect this code to the New command button, but this application does not
take the time to do that.)

Before the new record can be written, the table pointer needs to be moved to the end of the file to accept the new data
(instead of overwriting the data at the current record pointer) with this code:

adoBooks.Recordset.AddNew ' Prepare for new record

The data you subsequently save to the table will appear as a new record in the table.

Concluding with the ADO Control
As you can see, programming the ADO control is not as simple as the Data control, but the ADO control's power and
speed is its advantage. You've been working on this bonus project for awhile now, but its functionality—although
getting closer to being finalized—is still incomplete. Consider the following issues required to complete the task:

• When writing the Add or New command buttons'code, you must clear the fields on the form as well as reset the
focus to the first field so that the user can save the current record or add a new one.

• The AddNew and Update methods always update the table with new or updated bound field data.
• Use the MoveLast method to move the table pointer to the very end of the table before you ever add a new

record.
• Program the Cancel button so that the user can click it in order to not save his or her edits or new record data.

The Cancel button's event procedure needs to call the form-displaying procedure once again to return the record
to its prior settings.

Tip

To really master the ADO control and its related programming, consider get ting Sams Publishing's Sams Teach
Yourself Database Programming with Visual Basic 6 in 21 Days, which explains ADO in detail and completes your
study of the subject.

Day 19. Adding Internet Access
Today's lesson shows you how to access the Internet from Visual Basic applications. No Visual Basic tutorial worth its
price would be complete without some mention of Visual Basic's ties to the Internet. Visual Basic is one of the easiest
programming tools available today to use for Internet access. Bear in mind, however, that even with Visual Basic,
programming for Internet access is challenging. Today's short lesson only scratches the surface, offering a glimpse of
how Visual Basic views and works with the Internet.

Today, you learn the following:

• About Visual Basic's Internet connection
• How to add a Web browser to an application

• About the Visual Basic Internet controls
• How to work with encapsulation
• About ActiveX documents
• How to turn virtually any Visual Basic application into an Internet application

The Internet Wizard
The Visual Basic Application Wizard does some of the work for you when you want your application to access the
Internet. Simply by you selecting the appropriate choices, the wizard can add Internet access to your application, giving
it worldwide communications capabilities.

Note

The Internet tools described in this lesson work equally well for Internet and intranet applications. Both the Internet and
intranet technologies support a common protocol, so they both can run the same kinds of applications.

An intranet is a local networked system (perhaps a network inside a single building or even a small area on the same
floor) that provides the same features as the Internet.

A protocol enables two computers to communicate. Internet and intranet connections use a common protocol called
TCP/IP, which stands for Transfer Control Protocol/Internet Protocol. It's used for universal Internet connections.

This section explains what the Visual Basic Application Wizard does when you use it to add Internet access to your
application. Although the wizard supports access, it specifically gives your application the capability to browse World
Wide Web (WWW) pages.

Note

Your application's users must already have an Internet service provider, or they can't access the Web with your
application. Also, you must have Internet Explorer 4 or later installed on your own development system to work with
Visual Basic's full Internet support. Visual Basic offers Internet Explorer 4 as an installation option when you install
Visual Basic.

An Internet service provider, also known as an ISP, is an organization that offers accounts that connect to the Internet.
Company-provided Internet services wired directly to the PCs need no ISP.

When you create an application shell with the Visual Basic Application Wizard, the sixth dialog box you see (shown in
Figure 19.1) is the Internet Connectivity dialog box, which sets up Internet Web access for the application you're
building.

Figure 19.1. You can select Web access from the wizard's Internet Connectivity dialog box.

The wizard supplies a default URL—Microsoft's home page. You need to change this default URL if you want your
users to see something else. When a user triggers the browser inside the application, the browser logs on (using the
user's own Internet service provider) and connects to the URL you specify in the wizard. You might, for example, want
to insert the URL of your company's home page in the default URL text box. When you select the Yes option button,
the wizard actually inserts the engine for a Web browser in the application you're producing.

An URL (uniform resource locator) is a Web site address. Every Web site has a unique URL.

Always begin the URL with http://. (The letters http stand for Hypertext Transfer Protocol and designate the
standard communications procedure used to access Web pages.) Although most modern browsers do not require the
http:// prefix, the wizard does require the prefix.

You can quickly build a test application that accesses the Internet. Follow these steps to add an Internet-browsing
feature to the wizard's generated application:

1. Create a new project and double-click the icon labeled VB Application Wizard.

2. Click Next to bypass the first dialog box.

3. Select Single Document Interface (SDI) to keep the generated application simple.

4. Click Next to move through the next four dialog boxes and to accept the default menu options.

5. At the Internet Connectivity dialog box, click Yes. For this example, leave the Microsoft Web site's URL
address in the text box.

6. Click Finish to finalize and generate the application.

Note

If this is the first time the Internet controls have been used since your Visual Basic environment was installed, you'll
see the dialog box shown in Figure 19.2. Click OK to unpack these controls to prepare them for loading into your
Visual Basic environment.

Figure 19.2. Visual Basic will have to prepare the Internet controls the first time you use them.

When you return to Visual Basic's development environment, notice the toolbox. Figure 19.3 shows the tools the
wizard has added to the usual collection of intrinsic controls. You've used some of these added controls before in this
tutorial: the common dialog box, the toolbar, the image list, and the slider. (Note that the toolbox window in Figure
19.3 is resized to distinguish the tools better.)

Figure 19.3. The wizard added new tools to your toolbox.

The extra tools give the application's Web-browsing portions the control they need to do their job. Obviously, the Web
browser control is the primary tool this lesson is concerned with.

To get a feel for the application's shell, press F5 to run the application. The screen you see looks no different than the
other screens for wizard-generated applications you've seen before. The default menu and toolbar display on the form.
The Internet feature appears, however, when you choose Web Browser from the View menu. In the middle of the
application's screen, a Web-browsing dialog box appears and requests that you log on with your typical provider's
logon dialog box (unless you are already logged on or have automatic logon capabilities). After you enter your user
name and password, an Internet Explorer–like window appears in the center of the application screen and displays
Microsoft's Web site (see Figure 19.4).

Figure 19.4. Your wizard-generated application is now hooked into Microsoft's Web site.

Tip

The Internet Explorer window you see is actually a small application wrapped around a huge ActiveX control. The
Web browser that Visual Basic's wizard inserted is an example of such an ActiveX control. Although the application's
Web browser is simpler than the full-blown version of Internet Explorer (fewer toolbar buttons appear and no menus
exist), the embedded browser supplies all the common browser features needed, such as a Previous button, Next button,
Home button, and so on. If you click the toolbar's Search button, Internet Explorer uses Microsoft's search site to
launch the search request.

If you want to log off the Internet, you must close the Web browser, double-click your service provider's taskbar icon,
and then select the logoff option. Although the Web browser doesn't include a logoff feature, you could add one
through programming.

Looking at Some Internet Controls
If you use Visual Basic's Professional or Enterprise edition, you can use several advanced Internet-based ActiveX
controls to add and control Internet access from within your applications. The previous section's example demonstrated
the power of one single control—the WebBrowser control. This section explains more about these controls.

Several Internet controls appear when you choose Components from the Project menu. This section reviews those
controls and explains how and when you can use them in projects that access the Internet.

Note

Internet access can mean many different things in today's world—for example, it can refer to a complete application
that a user accesses and runs from the Web. The Internet provides more services than Web page viewing and file
downloading these days, especially with all the new ActiveX controls available, which work across the Internet as
easily as they work inside single-computer applications. When you activate Web pages with programs, Visual Basic
can be the engine you use.

The Encapsulation Controls

The term encapsulation refers to different things, depending on whether you're encapsulating data, code, or both.
Nevertheless, in a broad sense, encapsulation always refers to packaging. Visual Basic includes some Internet controls
that encapsulate, or package, your existing applications and code into Internet-aware applications. These controls
encapsulate your applications so that they work with Internet technology.

Encapsulation refers to the packaging of components, as occurs with Visual Basic objects that support properties,
methods, and events.

Here's a list of the encapsulation controls:

• Internet transfer control—Encapsulates the three most popular Internet protocols: HTTP, FTP (File Transfer
Protocol), and Gopher (a searching protocol to help you locate information on the Internet). You can download
files directly from within your Visual Basic applications by using FTP.

• WebBrowser control— Encapsulates a Web browser directly inside your application.
• WinSock control— Gives you a Windows common connection and data-exchange control that provides two

protocols: UDP (User Datagram Protocol) and TCP (Transmission Control Protocol).

You saw one of these encapsulation controls—the WebBrowser control—in the previous section. The Visual Basic
Application Wizard uses the WebBrowser control to insert a browser in the generated application. As you saw, the
WebBrowser control isn't as full functioned as Internet Explorer, but it does provide simple and direct Internet access
for any user who subscribes to an Internet service.

Internet Explorer Controls

Visual Basic comes with several controls you can add to a project so that it can interact with the Web using Internet
Explorer technology. These controls begin with the IE abbreviation in the Components dialog box. This section
describes those controls.

Table 19.1 helps you locate the controls described in this section. Often, the control names don't describe their
capabilities. Table 19.1 describes the control you select from the Components dialog box to get the functionality you
need. (To access the Components dialog box, choose Components from the Project menu.)

Table 19.1. Several components include Internet Explorer–related capabilities as well as other
Internet controls.

Component Name Description

IE Animated Button Animated display showing Internet Explorer's connection

IE Popup Menu A menu control that appears on the Web page

IE Preloader Preloads a page from a site before the visible Internet access begins

IE Super Label A Web page label

IE Timer Provides timing operations for Internet services

Microsoft Internet Controls Web browser control

Microsoft Internet Transfer Control 6.0 The Transfer Protocol control

Microsoft Winsock Control 6.0 The Windows connection to common Internet protocols

Note

If you use The Microsoft Network online service, a set of controls comes with Visual Basic 6 that offers Microsoft
Network–related services from the applications you write, such as the MSN mail control. These controls begin with the
MSN abbreviation in the Components dialog box.

Preview of Advanced Issues
Assuming you want to use Visual Basic to interact with the Internet when building your applications, you've already
seen a start of what's in store. The simplest way to add Internet capabilities to your applications is to use the Visual
Basic Application Wizard, as you did earlier in this lesson. If you want to go further than that, you have somewhat of a
steep learning curve ahead of you.

This section discusses some of the terms and concepts you'll first face as you dive into the Visual Basic–to-Internet
foray. By learning what's in store now, you won't be faced with a completely new environment if and when you learn
the details needed to provide comprehensive Internet interaction from your applications.

ActiveX Documents

If you want to develop an Internet-only Visual Basic application, you can use ActiveX documents to get started. An
ActiveX document acts and looks just like a regular Visual Basic application on a form window, except that an ActiveX
document sends ActiveX controls to the end user's computer if the computer doesn't contain the ActiveX controls used
by the document. The document comes to the user looking like a regular HTML-based Web page. For example, the
ActiveX document can contain hypertext links (ActiveX controls that are downloaded or used, depending on the end
user's machine contents). Also, the ActiveX document's menus can be automatically merged with its parent application
(like OLE servers).

HTML, or Hypertext Markup Language, is the primary language for Web page formatting. A Web browser can
decipher all HTML codes to format and display the Web page and application the HTML code describes. The final
section of today's lesson shows an example of HTML code. An HTML file is strictly a text file that contains HTML
codes. Although you can create an HTML file using a text editor, numerous visual tools exist to let you create and
design Web pages without typing any HTML code. Even Visual Basic can help you design Web pages when you select
the DHTML Application Wizard. All HTML files contain the .HTM filename extension.

Visual Basic 6's Professional and Enterprise editions support DHTML (Dynamic Hypertext Markup Language), which
responds to actions on a Web page. The ActiveX document links to an HTML page that you create or use. When the
end user clicks the link to your ActiveX document, your ActiveX document activates, the controls get to the user's
computer, and the Web page's ActiveX document code executes as the user views the page. The content is dynamic,
meaning that settings such as text color and style might differ on each user's machine depending on the user's settings.

Note

The ActiveX document isn't static. The document in ActiveX document is, in every respect, a running application. Using
a document concept helps programmers see how Web pages use the embedded ActiveX document.

Perhaps the most important reason for creating an ActiveX document is that Internet Explorer can run it as though it
were a control program or operating system program launcher. The ActiveX document's menus merge with those of
Internet Explorer (and override functionality when needed), and you don't have to learn a new language, such as Java,
to activate the Web pages.

Java is an Internet programming language, based on C++, used to activate Web pages and interact with users by
sending small Java programs, called applets, along with a Web page. The applets run on the user's PC when the user
views a Web page that contains Java applets.

Note

The New Project dialog box contains two icons—ActiveX Document EXE and ActiveX Document DLL—that create
ActiveX document shells. (Figure 19.5 shows these icons.) After you start creating the ActiveX document, you can add
whatever features you like to the form window, just as you do for regular applications.

Figure 19.5. Start the New Project Wizard to locate the ActiveX Document Wizards.

The ActiveX Document Migration Wizard

One of the easiest ways to port your applications to the Internet is to let Visual Basic do it for you! When you add the
ActiveX Document Migration Wizard to the Add-In Manager menu option, you add a powerful tool that will turn
virtually any Visual Basic application into an Internet-ready application. You can place your converted ActiveX
document applications on a Web server, and users can interact with your applications through a Web browser, just as
they can interact with Web pages that contain HTML, VBScript, and Java code.

To see how easy it is to convert an application into an Internet-ready application, follow these steps to use the ActiveX
Document Migration Wizard:

1. Select Add-Ins, Add-In Manager and double-click the entry VB 6 ActiveX Doc Migration Wizard to add the
wizard to your list of add-ins.

2. Click OK to close the Add-In Manager dialog box.

3. Open the sample Calc.vbp project that comes with Visual Basic. You will have to locate your Samples folder on
the installation CD-ROM or on your hard disk if you installed the samples when you installed Visual Basic.

4. Press F5 to run the application. As Figure 19.6 shows, the application simulates a pocket calculator on your
screen.

Figure 19.6. The Calculator application mimics the features of a pocket calculator.

5. Stop the running application.

6. Select Add-Ins, ActiveX Document Migration Wizard to start the Migration Wizard.

7. Click the Next button to bypass the introductory window.

8. The second window appears, as shown in Figure 19.7, which lists all the current project's forms in a checked
list. Of course, the simple Calc.vbp project contains only a single form, so that's the only form you'll see listed
here. Click the Calculator entry to select it.

Figure 19.7. Select the application's form that will ultimately appear on the Web page in an
ActiveX document.

Note

If several forms resided in your project, you could elect to send only some of the forms to Web-compatible ActiveX
documents. Each form will become its own ActiveX document.

9. The Options window, shown in Figure 19.8, determines how the wizard handles the elements that it cannot
convert. Some kinds of advanced communications code cannot work inside an ActiveX document, although
most Visual Basic code will run smoothly. If you check the first option, Visual Basic will place remarks before
all code that the wizard cannot convert. Although the resulting application may not be complete, you can search
for the remarks and fix the code, or remove it if it's not vital to the application. No invalid code exists in the
Calc.vbp application, so you'll not have to choose this option.

Figure 19.8. Set the options for the ActiveX document that will appear.

In addition, you may want to remove the forms that you convert from the project, because those forms will
reside in an ActiveX document after the wizard completes. Leave the ActiveX EXE option checked so that the
wizard creates an executable module as opposed to a DLL.

A DLL, or dynamic link library, is a compiled routine that more than one compiled application can share.

For this example, leave the Options dialog box with its default settings and click Next to continue the wizard.

10. Leave the default settings alone and click Finish at the Finished window to start the migration of the Calc.vbp
application to an ActiveX document. Once the migration is completed, a final dialog box appears.

11. Click OK to close the final dialog box.

Tip

After each migration, a Summary Report window appears, such as the one shown in Figure 19.9. The Summary Report
window is important, because the instructions within the window let you know what you're to do next to test the
migration. After you read through this report, you can click the Save button to save the text and close the window. For
this example, you can close the window without saving the report.

Figure 19.9. The Summary Report window describes your next and final actions necessary to
complete the migration.

Now that you've completed the migration, you must run the application once more inside the Visual Basic environment
to prepare an executable ActiveX document object. In a way, Visual Basic compiles the application, but unlike the
typical program compilation (Day 21, "Distributing Your Applications," explains more about Visual Basic
compilation), running the migrated application creates an ActiveX document with the filename extension .VBD (for
Visual Basic Document). (You will still have to compile the ActiveX document into its EXE format if you want to use
the ActiveX document without the Visual Basic environment running.)

As soon as you run the application, Visual Basic displays the Project Properties dialog box shown in Figure 19.10. The
Project Properties dialog box determines how the ActiveX document will behave when you run the program. Look at
the Project window and you'll see two components—the usual Calc form and a second object named docCalculator.
The docCalculator object is the ActiveX document component you created when you pressed F5 to run the
application.

Figure 19.10. Specifying the ActiveX document's project properties.

When you click OK, Visual Basic will start the ActiveX document inside your Internet Browser. Figure 19.11 shows
the result. Notice what has happened:

Figure 19.11. Internet Explorer is the platform from which the Calculator application now runs.

• The Internet browser, itself, is executing your Visual Basic application.
• You wrote no messy HTML code to produce the Web page.
• The Calculator application is successfully migrated to a Web application.
• If you close the project, you can, at any time, restart the Internet browser, select File, Open, locate the

docCalculator.vbd file, and execute the compiled ActiveX document-based application from inside the browser
without starting Visual Basic.

• If you place the application on your Web server (assuming you have access to a Web server from where you can
offer Web pages to those on the Internet), any Internet user in the world who owns a Web browser that is
ActiveX compatible will be able to run your application. The application will execute on the user's machine
after downloading along with the Web page. (This simulates the action of a Java applet as well.)

After you close your Internet browser, you can select Run, End to stop Visual Basic's execution.

Tip

Any container that can hold an ActiveX control can hold an ActiveX document. That's important to understand,
because you can see how universal an ActiveX document can become. In other words, if you use an application, such
as a drawing application or another programming language, that lets you embed ActiveX controls inside that
application, you'll be able to add your ActiveX documents to those applications as well. An ActiveX document is just a
fancy term for an ActiveX control that you migrated from a Visual Basic application. Today's second exercise shows
you how to use this drop-in feature if you have Microsoft Office Professional installed on your computer.

HTML and VBScript

Although you only need to know the Visual Basic programming language to access all the Internet connectivity
features found in Visual Basic 6, you need to master two auxiliary languages to tie things together well. HTML is the
formatting language behind Web pages. The HTML language is designed to achieve the following goals:

• Format Web pages in columns, with graphics, and appropriate titles
• Allow the integration of additional Internet service programs, such as VB ActiveX documents and Java (a small

programming language that activates Web pages)

HTML is known as a scripting language. The language doesn't compile and become executable as Visual Basic
programs do. Instead, HTML formats Web pages, specifies where graphics and dividing frames go, and allows for
embedded activated applications such as ActiveX documents and Java programs.

VBScript, as the name implies, is another scripting language, but Microsoft designed VBScript based on the Visual
Basic programming language. Therefore, you'll feel right at home with VBScript. VBScript is useful when you want to
add key Visual Basic features to a Web page, such as pop-up messages, input boxes, loop-through calculations, and so
on. VBScript, despite its foundation in Visual Basic, doesn't replace Visual Basic's ActiveX documents but instead
loads the ActiveX documents into an HTML page for execution. Therefore, VBScript is the medium through which
HTML documents locate and execute Visual Basic ActiveX document applications.

Note

VBScript wasn't originally designed to be used solely as a launcher for ActiveX documents—in fact, VBScript was
around before ActiveX. The loading of ActiveX documents into HTML pages is one of VBScript's many jobs, but for a
VB6 programmer, the ActiveX document is perhaps VBScript's most important job.

Listing 19.1 shows an example of the first few lines of HTML code for Microsoft's Web site.

Listing 19.1 A few lines of HTML code can reveal to you how the formatting codes work to format
Web pages.
<HTML>
<HEAD>
<TITLE>MSN.COM</TITLE>
<meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1">
<META http-equiv="PICS-Label" content=
 '(PICS-1.0 "http://www.rsac.org/ratingsv01.html"
 l comment "RSACi North America Server" by
 "Microsoft Network"'>
</HEAD>
<FRAMESET rows="20,*" frameborder="0"
 framespacing="0" border="0">
<FRAME src="/pilot.htm" name="pilot"
 NORESIZE scrolling="no" marginwidth="0"
 marginheight="0" frameborder="0" framespacing="0">
</FRAMESET>

</html>

Log on to the Internet and point your Web browser to Microsoft's home page at http://www.microsoft.com. Although
the page might vary slightly from the page that Listing 19.1 describes, the page looks nothing like Listing 19.1! HTML
is a formatting page description language. Listing 19.1's commands tell your Web browser how to display the
informational text and graphics that come to your computer when you point your Web browser to that page.

Listing 19.2 shows a section of a VBScript example. Notice how much of the VBScript listing you can understand
because you know the Visual Basic language.

Listing 19.2 A sample of a VBScript listing shows you how close to Visual Basic the VBScript
language is.
<SCRIPT Language="VBScript">
 Call PrintWelcome
 Call ModMessage

Sub PrintWelcome
 If Date() = "2/2/98" Then
 document.write ". . . .Kathy's Birthday!"
 End If
 If Date() = "2/5/98" Then
 document.write ". . . .Eric's Birthday!"
 End If
 If Date() = "5/17/98" Then
 document.write ". . . .Michael's Birthday!"
 End If
 If Date() = "7/25/98" Then
 document.write ". . . .My Birthday!"
 End If
 End Sub
 Sub ModMessage
 Document.Write "
This page was last modified:
 "+Document.lastModified +"
"
 End Sub
 </SCRIPT>

VB to Java?

One technology you can look for shortly is Visual Basic–to-Java conversion programs. Some vendors already sell such
tools, and others have announced their intent to do so. The big advantage of these conversion tools is that you do not
have to worry much with Internet-based controls. If you can write an application that uses any VB controls, the
conversion program translates the Visual Basic project into a Java-based project. In Java, you can embed the
application inside your intranet or Internet Web pages, and the application automatically ends up on the end user's
screen over the intranet or Internet as soon as the he or she displays the Web page.

These Java conversion tools don't necessarily replace the ActiveX Document Migration Wizard you read about earlier.
However, some non-Windows systems support Java, but not ActiveX, so active Java applications can be more
universally accepted than ActiveX-based applications.

Note

If Java is new to you, note that Java provided true active content on Web pages long before ActiveX controls appeared
on the scene. Java works through Web pages and executes on the end user's machine, even if that user's machine and
operating system vary from the developer's. If you want additional information on Java, check out Sams Publishing's
Sams Teach Yourself Java in 21 Days for one of the best well-rounded introductory texts on the Java technology.

Tip

Visual J++ is Microsoft's Java-like implementation. Visual J++ contains a programming interface that looks and acts a
lot like Visual Basic's programming interface. (Both environments support the Visual Studio style.) Therefore, you'll
already understand the programming environment if you use Visual J++ as your Java language.

Visual Basic Internet Application Types

Visual Basic can create the following two kinds of Internet applications:

• IIS applications— The simplest way to incorporate the Internet into Visual Basic applications is to do so as an
Internet Information Server (IIS) application. The Web browser that you embedded in the application you
created earlier from the Visual Basic Application Wizard was an IIS application. The server handles all the
processing of the Visual Basic commands.

• DHTML applications— Enables you to write code that responds to events on an HTML Web page. The end
user's Web browser interprets and carries out these commands so that the remote server has little to do but
respond to special requests when they arise, such as fetching additional Web pages.

Do Don't

DO remember that today's lesson provides only a high-level overview of creating Visual Basic applications. No
matter how strong a programmer you are, the world of an Internet programmer, not unlike that of a database
developer, requires training in online protocol management, scripting languages, communications-based
ActiveX controls, and client/server computing.

In online terminology, the client is the application that accesses the Internet, and the server is the computer that holds
the Web pages the end user (the client) views and interacts with. The entire online world is transaction based; that is,
the user issues a request in the Web browser, for example, and the service processes that request and sends a resulting
transaction back to the user in the form of a Web page or ActiveX control applet.

Visual Basic supports these two Internet development application types so that you can develop the applications inside
Visual Basic as well as test them with the debugging tools that you'll master in Day 21's lesson. For a more in-depth
study of Internet programming with Visual Basic, check out Sams Publishing's Web site for some of the best books on
the subject (http://www.mcp.com).

Summary
Today's lesson previewed Visual Basic's role as an Internet player. Obviously, this lesson can't cover even a small
fraction of the details needed to truly turn Visual Basic into an Internet programming tool. A huge background is
needed in just about every aspect of Internet technology before you tackle Visual Basic's interface. Several good books
and online references exist, but your first and best bet is to study the online references that come with Visual Basic 6.
There you'll find step-by-step descriptions that detail your role as an Internet programmer.

Don't be scared away from learning to write applications that interact with the Internet. Please realize that the promised
goal of keeping every lesson a reasonable day's length could not be met if today's lesson were to teach many of the
Internet specifics needed to write Internet programs. Nevertheless, Internet programmers are well rewarded for their
abilities due to the in-depth study required and the rapid pace they must maintain to keep up with the technology.

Tomorrow's lesson describes how you create Help pages for your Visual Basic applications. You'll gain insight into the
way HTML works when you create an interactive Help system using HTML-like pages.

Q&A
Q: I have an application that contains three forms. Does the ActiveX Document Migration Wizard compile these

three forms into a single ActiveX document?

A: The ActiveX Document Migration Wizard converts forms but not complete applications to ActiveX
documents. In other words, if your application contains four forms, each of those forms will result in a
separate ActiveX document (assuming the forms contain no code that violates the ActiveX document
requirements). You'll be able to link the documents together with hypertext links by using HTML code, but
each form does become its own ActiveX document. Therefore, the migration wizard does not actually
convert a whole application to a single ActiveX document if the application contains numerous forms.

Q: What kinds of applications does the ActiveX Document Migration Wizard not migrate?

A: The Migration Wizard converts most Visual Basic applications, except those with embedded OLE objects,
because OLE is an older technology that Internet browsers do not support. In addition, certain advanced
communications commands and controls may not work as expected in the migrated ActiveX document.
Nevertheless, most Visual Basic applications should convert with little problem.

The limitation of one ActiveX document per form, discussed in the previous question, does pose a problem if
any form in the application uses the Hide, Show, Load, or Unload methods to hide or display another
form. The Migration Wizard comments out these methods, as well as the End command, because an ActiveX
document's application does not end in the usual sense that an application does—the ActiveX document's
application stays active until the user displays another page or closes the Internet browser.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next lesson. Answers are provided at the end of today's lesson.

Quiz

1: What does the Web-browsing application you generate with Visual Basic's Application Wizard do with the
URL you supply?

2: True/False. Your application's end users must use the Internet Explorer Web browser before your Visual
Basic Web-browsing control will work.

3: True/False. You must use the Internet Explorer Web browser before your Visual Basic Web-browsing
control will work.

4: What is encapsulation?

5: Which online service do some of the Visual Basic controls support?

6: What's the difference between an intranet and the Internet?

7: What's the difference between an ActiveX document and a regular Visual Basic application?

8: What does Java do?

9: Which scripting language works with HTML to load and execute ActiveX documents?

10: How can you convert existing applications into an ActiveX document?

Exercises

1: If you have Microsoft Office Professional, you can use the Office Binder to hold ActiveX documents! Try it
using the calculator's ActiveX document you created in today's lesson.

2: Select an application that contains multiple forms, such as the sample project named Controls. Convert that
application to an ActiveX document.

Day 20. Providing Help

Today's lesson explains how to help your users. By the time you finish this lesson, you'll know how to add a Help
system to an application so that your users can read online documentation to help them better understand your
application. The online Help system is online not because you send users to the Internet but because the information is
available instantly when the user requests the help—instead of the user having to refer to a printed manual. The help
that you provide is nice because it mimics the online Help found in virtually all other Windows programs. Therefore,
your users won't have a startup learning curve ahead of them when learning how to use your application's online Help
system.

To prepare you for the online Help, this lesson first teaches you how to add ToolTips to controls. The all-important
What's This? Help can also add after you've mastered the creation of Help files.

Today, you learn the following:

• About ToolTips and What's This? Help
• Preparing HTML help files
• How to decide between offering HTML help or the traditional WinHelp-based Help
• How to create and format the text in Help files
• About the RTF file format's requirements
• How to link Help messages to controls
• How to use the common dialog box control for controlling Help screens
• How Help context IDs point to specific Help topics

Caution

Several ways exist for you to add online Help to Visual Basic applications. Today's lesson teaches you about two of the
most fundamental ways to add Help to your applications. This lesson describes how to add the online Help that you still
see in most of today's Windows applications called WinHelp. Starting with Visual Basic version 6, you can also add
HTML-based Help to your applications. Some of today's lesson explains what you must do to add HTML help to your
applications. Not all users will have Web browsers capable of displaying the HTML-based Help, so you cannot ensure
that your application will be compatible with such systems unless you add Help using the standard online Help
described today.

ToolTip and What's This? Help
ToolTips are simple to add to various objects, and the special What's This? Help relies heavily on your Help file. You
can add ToolTips to a control when you add the control to the form. The Properties window's ToolTips property value
holds text that you can enter. When a user rests the mouse pointer over any control with a ToolTips property, the
ToolTip appears after a brief pause. Also, as long as you've created a detailed Help file, adding eye-catching What's
This? Help is simple.

ToolTips are the pop-up Help descriptions that appears when you rest your mouse cursor over a control.

The What's This? Help is a context-sensitive Help (meaning the Help that appears depends on where the user requests
the Help) that describes controls on the screen. The user clicks the What's This? question mark in the window's upper-
right corner or selects Help, What's This?, and the cursor changes to a pointing question mark. Then whatever control
the user clicks produces Help about that control.

Tip

Offer What's This? Help when your application's screen contains many elements that might confuse new users. They
can click the What's This? title bar button or select Help, What's This? (depending on the link to the What's This? Help
you provide) and then click with the pointing question mark on whatever screen object they want to know more about.

In addition to ToolTips, you can provide What's This? Help to give your users additional information for your
applications. What's This? lets the user see the Help text for any object that supports What's This? Help. Figure 20.1
shows one program's What's This? Help box that appears after the user selects Help, What's This? and clicks the
Browse button. (The pointing question mark turns into a regular pointing cursor as soon as the What's This? Help box
appears.)

Figure 20.1. The user can ask, "What's this?"

Note

Make your What's This? Help match the objects. Figure 20.1 uses the closest Help page available for the Browse button
from the Help pages set up. (This process is described throughout the rest of this lesson.)

One of the reasons you're learning about ToolTips along with What's This? Help is their similarity to the user. The user
either needs to rest the mouse over a control to read a ToolTip or click the What's This? trigger to get Help on the
control. Despite these similarities for the user, you might be surprised at how much more difficult it is to add What's
This? Help to applications than it is to add ToolTips (which is extremely simple). Therefore, the rest of this section
describes how to add ToolTips, and the final section of today's lesson describes how to add What's This? Help (after
you learn how to create Help files that you can integrate into What's This? online Help).

You may be surprised at how easy it is to add ToolTips-based Help to any control that you place on the form. To add
ToolTips to any object, you only need to enter the ToolTips text in the object's ToolTipText property. Visual Basic
does the rest of the work. Look through the Sample folder for the MDI Notepad application named Mdinote. When
Microsoft's programmers created this application, they added ToolTips to almost every control on every form. You can
select almost any control and read its ToolTipText property to see what will pop up when you rest the mouse pointer
over that control.

Do Don't

DO get in the habit of adding ToolTips text as you add controls to your applications'form windows, given how
easy ToolTips are to add. You're less likely to add ToolTips later, so add them when the purpose for the control
is fresh in your mind.

How Help Fits into an Application
Although writing an online Help system can be a daunting task, you can borrow the Windows Help system for your
applications. All you really have to do is write the text that becomes the Help text and then use the Windows Help
system to display that Help text at the right time and place in the application. Your users won't have a learning curve,
because they already know how to use the Windows Help system.

Tip

Don't wait until your application is completely finished before designing the online Help system. The best time to write
the Help text is when you design and create the application. At design time, you have a better working knowledge of
the application than at any subsequent time, and you'll be better equipped to write the kind of help your users need.

HTML-Based Help Systems

If you use Visual Basic's Help system, you will see the Help based on HTML help files. In other words, the Help
appears in a Web browser-like format with hyperlinks. You can click the Back button to display previous Help screens
you've visited. The left pane contains the summary topics and, when you double-click a topic, the right pane shows the
details for that topic.

HTML stands for HyperText Markup Language and is the language that formats Web pages to look the way they do.

You can add such HTML-based Help files to your Visual Basic applications. This kind of help is new because before
Web browsers appeared, all Windows applications used the same Help engine called WinHelp. This displays online
help and also utilizes hyperlinks but not in a browser-like format (see Figure 20.2). The WinHelp version of the online
help system in Windows applications has been the same for several years. Programmers predict that HTML help will
become the standard online Help system for Windows applications within a few years, but WinHelp still maintains a
strong lead.

Figure 20.2. WinHelp uses an Explorer-like two- pane window.

WinHelp is the online Help system used in most Windows applications that may someday be replaced by the browser-
based HTML Help system.

Caution

Despite the modern look and feel of the HTML-based Help, the users who use your application will be unable to obtain
online Help if those users have no Web browser installed on their system or have a Web browser that appeared before
Internet Explorer 4.0. Therefore, you limit your audience base considerably if you require Internet Explorer 4 for all
your application's users. Until a Web browser is guaranteed on the user's system, you must stick with the standard
WinHelp online Help described in the next section. In the meantime, this section explains what is in your future as the
computing world continues to move toward a browser-based PC interface.

The way that you connect an HTML help file to a Visual Basic application is identical to that of the WinHelp Help file:
Specify the HTML help file name in the HelpFile property. In addition, you can set the HelpContextID property for
any object on the form so that a specific context-sensitive Help topic appears when the object is selected on the screen
when the user requests help.

The big deal is not connecting the Help file to your application and the application's objects, but creating the Help file.
Beginning in the next section, you walk through a rather tedious example that creates a WinHelp-based Help file and,
despite the length, the file is still rather incomplete. Help screens for even simple applications can be numerous and the
more you provide complete hyperlinks, the more tedious your job as a Help file designer will be.

Note

HTML help files have the filename extension .CHM and WinHelp files have the extension .HLP.

Tip

Creating a Help file, whether it is an HTML file or a WinHelp file, takes more effort than it is often worth.
Nevertheless, the practice you get beginning in the next section serves a good purpose because you will better
understand how a Help file's text interacts with an application. Do yourself a favor as soon as you complete this lesson:
Go to your local software retailer and look for a more automated Help-creation tool. Many software utilities are
available that make authoring much simpler than creating a Help file from scratch. In addition, the newer Help-
authoring tools produce both WinHelp and HTML help from the same instructions that you provide.

Several tools exist—in addition to the Help authoring programs available now—with which you can create HTML
pages to use for the Help files. Even many of today's word processors, such as Microsoft Word 97, saves and reads
HTML files. Instead of a word processor, however, if you don't have access to an HTML-based Help-authoring
program, use a Web page designer to create the HTML files. Microsoft provides a version of its HTML Web page
designer program called FrontPage Express with Internet Explorer 4. FrontPage Express is also available for download
from Microsoft's Web site.

Complete texts exist that explain how to create HTML pages, including Web and Help page elements such as
hyperlinks and embedded graphics. For a more complete description of using HTML help with a Visual Basic
application, pick up Sams Teach Yourself More Visual Basic 6.

Using RTF Help

The following sections explain how to build and link the Help topic file to your application using the traditional
WinHelp method. Not only must you write the Help topic file, but you must also build a Help project that you then
compile into a Help system that links to the application. The text that goes in your Help topic file must be in the special
RTF (Rich Text Format) format, which the application can use to embed hypertext jumps from topic to topic when
appropriate.

Tip

A hypertext jump is a link to another topic in the Help system.

Note

You must have access to a word processor or text editor that creates RTF files. In addition, your word processor must
support footnotes. Microsoft Word is perhaps the most popular word processor used for Help files. If you do not use
Word, see if your word processor supports RTF file formats and footnotes.

Remember that a good reason to build WinHelp-based Help files is that every user who uses your application is going
to be able to access your Help files. Every copy of Windows comes with a special Help-producing system called the
Windows Help Viewer that is capable of managing the WinHelp-based RTF source files that you compile as described
here. (The Windows Help Viewer cannot display HTML-based Help files; your users must have a Web browser
available for that.)

The Windows Help Viewer is a Windows-supplied tool that all users will have. The Windows Help Viewer displays
WinHelp-based files.

The compiling that you perform for Help files is not related to the compilation of your actual application. In tomorrow's
lesson, "Distributing Your Applications," you'll learn how to compile your application for distribution. In order for
your application, compiled or not, to access a Help file, you must compile that file into a file that has the standard .HLP
file extension, as the next section explains.

Preparing for the Topic File

When you use Word to create the Help file, you should turn on the hidden formatting codes. Although most people
write documents without the codes showing, the hypertext jumps require hidden text, which you need to be able to see
even though that text will be hidden from all eyes but yours. Click the Show/Hide button (the paragraph symbol) on
Word's toolbar to display hidden codes.

Creating Hypertext Jumps

Most of your Help file will consist of regular text that describes the Help topics. Regular Help text requires no special
formatting, but you can vary the font size and style as much as you want. The hypertext jumps require some special
formatting, however, so that the Help system can recognize hypertext jump keywords and know where the linked topics
reside.

The more you cross-link your Help file topics with hypertext jumps, the more useful your Help system will be to your
users. When you add hypertext jumps, your users don't have to use a menu to select every topic that might benefit
them; instead, they can "jump" directly to the topic they want to read.

The requirements for creating hypertext jumps are as follows:

• Double-underline all hypertext jump phrases. Hypertext jump phrases appear in green text when users see the
jump phrases in the Help window. You can double-underline in Word by highlighting the word or phrase,
choosing Font from the Format menu, and selecting Double from the Underline drop-down list box. You can
also press Ctrl+Shift+D to double-underline selected text as well as customize Word by putting a double-
underline icon on the toolbar.

• Follow the hypertext jump phrase with a unique tag called the context string, which holds the jump target topic
and is formatted as hidden text. Don't add a space between the hypertext jump and the context string. Be sure to
format only the context string as hidden text and nothing else (not even punctuation or paragraph marks). You
can hide text by choosing Format, Font and clicking the Hidden check box. You can also press Ctrl+Shift+H to
hide selected text as well as customize Word by placing a hidden text icon on the toolbar.

A context string is a string that follows a hypertext jump phrase that appears when the user requests context-
sensitive Help.

• Separate the topic page that contains the hypertext jump from the target jump page with a page break. You can
insert a page break from the Insert menu when you choose Break, Page Break (or press Ctrl+Enter).

• Connect the text for the hypertext jump to the jump page with at least one of three custom footnote symbols

Symbol Description
Used to connect to the jump page via the context string
$ Used to place the jump page title in the Help system's Locate text box and to connect the hypertext to the jump

page's title
K Used to connect to a topic search on one or more particular keywords

Many Help topics link to their jump pages with all three footnote symbols. In other words, users can jump from topic to
topic, the topic titles appear in the Help system's Locate text box, and users can find topics by searching with multiple
keywords.

• Display pop-up Help descriptions and definitions by underlining the topic to define with a single underline. You
can underline text from the Format menu by choosing Font and then choosing Single from the Underline drop-
down list box. You can also press Ctrl+U or click the toolbar's underline button to underline selected text.

Describing the Help file is much more involved than showing you an example. Therefore, the next section illustrates
the different ways you can set up hypertext jumps and jump targets.

Tip

If you use the K footnote symbol to designate a topic search, add as many search topics as you can. As you'll see in the
example, K footnotes often contain multiple entries separated by semicolons. The following footnote entry tells the
Help system that the Help topic should appear in four entries in the Help index:

 KChange Options;Menu
commands;Change;Changing text

Practice Creating a Help File

Earlier in today's lesson, you loaded the sample MDI Notepad (Mdinote.vbp) project to see how the ToolTips Help
worked. This example begins to create an auxiliary Help system for that MDI sample program. The application uses
MDI forms to manage a tiny multiwindowed text editor. Although the application's text editor is fairly complete and
extends past the Windows Notepad editor (because MDI Notepad supports multiple windows and Windows Notepad
does not), the MDI Notepad application supports no online Help beyond that of the ToolTips.

Note

This example uses Microsoft Word to create the Help file. You might need to use a different word processor,
depending on the contents of your system.

Figure 20.3 shows a sample opening Help screen in Word for the MDI Notepad application. Remember that the double-
underlined phrases are the hypertext jump phrases that will appear in green on the user's Help system. All hidden text is
turned on, so the dotted-underlined text represents the hidden text that holds the context strings.

Figure 20.3. MDI Notepad's opening Help screen contains hypertext jumps.

Figure 20.2 shows six jump phrase context strings: MDI_DEF, CREATE_FILES, EDIT_TEXT, SEARCH_TEXT,
CHANGE_OPTIONS, and MANAGE_WINDOWS. Therefore, at least six more Word pages must appear below the opening
Help screen. You connect these pages to their original hypertext jump links with one or more of the special footnote
symbols. The first jump, MDI_DEF, will be a pop-up definition box for the term MDI.

The entire Help file needs a Help context ID value so that the underlying application can reference this opening Help
screen when needed. Figure 20.4 shows two footnotes created for the opening Help text. To add a footnote, you would
move the text cursor before the first character in the title, choose Footnote from the Insert menu, and type # for the
custom symbol that indicates the hypertext jump page location. Repeat these steps to enter the $ footnote for the
hypertext jump link's title. The two footnote symbols appear to the left of the opening text as well as next to their
respective footnote text in the bottom window. The application can use the Help context ID to reference this Help
screen, and the Help engine's search tools can display the title that appears next to the $ footnote symbol.

Figure 20.4. The entire opening Help window now appears when its context ID or title is called for.

Caution

Don't use the K footnote symbol for the opening Help window. Remember that K is reserved for those times when you
want a pop-up Help box to appear if the user clicks an underlined Help topic. Also, you'll use a K footnote along with #
and $ so that every topic appears on the Help dialog box's indexed list of topics.

In the next few paragraphs, you'll learn that the RTF document contains a different kind of Help context ID than the
type Visual Basic wants to use. As a result, you'll have to map the RTF file's textual context ID values to numeric
values before an application can use context-sensitive Help.

The remaining Help hypertext jumps now need corresponding Help pages as well as footnotes to connect the pages to
the opening screen. The first Help topic to create is the pop-up definition for MDI. The page below the opening Help
screen must contain the following information:

• The MDI title on the first line
• A separating blank line
• The definition of MDI

The footnote in Figure 20.5 completes the connection between this page and the opening page's MDI location by
adding a Help context ID to the definition. In addition, the K footnote symbol indicates that the connected page is a
pop-up definition and not a hypertext jump.

Figure 20.5. The definition will now pop up thanks to the K footnote symbol.

Note

The Help file in today's lesson typically uses the same Help context ID (in uppercase) as the topic title that the context
ID links to, but these values don't have to be the same.

Finally, Figure 20.6 shows the first part of the remaining Help hypertext jump topics. The # footnote connects the
opening page's hypertext jump topics to the subsequent jump pages.

Figure 20.6. Subsequent jump pages are now linked to the opening Help page.

Tip

Any of these subtopics can contain additional links to additional pages (and to each other) as well as pop-up Help
definitions.

As soon as you finish your RTF Help file, you must save the document. Be sure to select the Rich Text Format file type
when saving the file. Now you must create the Help project file by using yet another file type—the ASCII text file type.
Word can save ASCII text files, and you can even use the MDI Notepad sample application to create this file. The
following project file was used for the Help file just described:

[OPTIONS]
contents=HID_CONTENTS
title=MDI Notepad Help

[FILES]
MDINote.rtf

The [OPTIONS] section describes the opening Help page context ID and the title bar text. The [FILES] section
describes the Help file being compiled (you might need to specify a path name if the file resides in a special location).

Enter the name of the RTF Help file you created and saved earlier. You can set other Help project file options from
within the Help compiler.

Save the project file under any filename (the name of the application file is perhaps the best project filename). Use the
.HPJ extension, however.

You need to run the Help compiler from your Visual Basic installation CD-ROM, because the Help compiler doesn't
install with the normal Visual Basic installation. At this writing, you must run the Help system by following these
steps:

1. Insert the Visual Basic Installation CD-ROM in your CD-ROM drive.

2. Select the Start menu's Run option.

3. Execute the HCW.EXE program located in the CD-ROM's \Common\Tools folder. Figure 20.7 shows the
program window that appears, along with a helpful tip.

Figure 20.7. The Help compiler window offers a tip to get you started.

After starting the Microsoft Help Workshop program, load your Help project file when you want to compile the project.
After you click the Compile toolbar button and accept all the default values, the compilation will begin. Read the
warnings and errors that the compiler might display after the compilation finishes. Often, warnings occur that won't
affect your Help system, but you should attempt to eliminate all warnings completely to perfect your Help file under all
conditions. If errors exist, the compiler will be unable to compile the file.

After you compile the Help system, you can run it to test your Help entries. You won't learn how to connect the system
to the application until the next section, but you can follow these steps to test the Help file:

1. Start the Windows Explorer.

2. Locate the Help file's folder. You'll see the Help file in the list of files with a Help icon.

3. Right-click the Help file and choose Open. The Windows online Help system begins, and you can check out
your Help file.

The first Help window that appears (which you can return to by clicking the Contents button at any time) displays the
opening Help page. The Index page shows a complete listing of all K footnote values that cross-reference Help topics.

Displaying the Help File

After you generate the Help file, you need to connect the application to the file. The Help context IDs associate the
various Help topics to controls and parts of the application. Also remember to add a Help menu option so that users can
request help at any time on any subject in the Help file.

The number of Help connections varies dramatically from application to application. You can use the depth of the Help
file as well as the complexity of the application to predict how much help users will need. The rest of this section
explains some of the ways you can connect the Help file to the application. (Visual Basic supports a number of Help
file connections, but this section describes the most common ones.)

The Project Properties Dialog Box

The Project Properties dialog box, shown in Figure 20.8, is the primary link between your project and the Help file. The
Project Properties dialog box ensures that the Help file connects to the user's F1 key press.

Figure 20.8. Connect the Help file to your project.

Note

You don't need to worry about changing the text box labeled Project Help Context ID. Any Help context ID you enter
there determines the type of Help that appears when you click this application's Help toolbar button from within the
Object Browser.

The Common Dialog Box Control

You've taken care of the easiest part of the Help system connection now that you've gotten the F1 key to generate the
complete Help window. The window will contain your Help file because your project's properties point to that file. If
you want to add context-sensitive Help to your application so that users can press F1 to get help when a control has the
focus or during a menu selection, you must complete a few more steps.

Day 9, "The Dialog Box Control," showed you how to use the common dialog box control to produce various dialog
boxes such as the File Open and Print dialog boxes. Now that you've created a Help file, you can use the common
dialog box control to display the interactive Help screens as well.

When you place the common dialog box control on a form, set the :HelpFile property and then set the ShowHelp
method. Visual Basic runs the Windows Help engine that interprets your Help file and provides the usual Contents,
Index, and Find pages that other Windows applications support.

Tip

You can limit the Help engine's ability to show just the Contents, the Index, or the Find tab by modifying the
HelpContext property (see the online Help for values). However, you'll usually offer all three tabs.

If you offer context-sensitive Help, you must describe to the Help engine exactly which Help window page to display
when the user selects context-sensitive Help. Doing so requires that you edit the Help project file and map the textual
context IDs to unique numeric context IDs. This sounds more difficult than it really is.

Note

If you fail to add context-sensitive Help to all controls, but the user selects context-sensitive Help, Visual Basic
displays the Help file's Contents page (the opening Help page).

You now must reedit the project file and map the textual context IDs to numeric ones. To do so, you'll add a [MAP]
section to the project file. Given the MDINote.rtf Help file and the associated project file described earlier, the
following code provides such an edit of the project file:

[OPTIONS]
contents=HID_CONTENTS
title=MDI Notepad Help

[FILES]
MDINote.rtf

[MAP]
HID_CONTENTS 1
MDI_DEF 2
CREATE_FILES 3
EDIT_TEXT 4
SEARCH_TEXT 5
CHANGE_OPTIONS 6
MANAGE_WINDOWS 7

Make sure that no two context ID numbers are the same. The mapping can begin at 1, but many Visual Basic
programmers reserve series of numbers to represent different kinds of Help topics. For example, all command button
Help topics might range from 1000 to 1050. The numbers, therefore, don't have to be sequential. Recompile the project
file to embed the new map information in the Help file.

Tip

If you play around with the Help Workshop, reading the Help screens and familiarizing yourself with their operation,
you'll learn how the Help Workshop program makes mapping unique context IDs even faster than editing them with a
text editor.

Your sleuthing now begins. You must locate every control and form to which you want to add context-sensitive Help.
For example, in the MDI Notepad application, you could display the frmFind form (the form that supports the Find
menu option that locates data in the document) and change the Find command button's HelpContextID property to 5.
If that were the only change you made, users would always see the standard opening Help Contents screen when they
run the application and press F1, except when the Find button has the focus; users would then see the Help topic for the
Search page. Of course, you would want to add additional context-sensitive Help displays to other controls, including
some forms, for your users'benefit.

Note

As you add the context-sensitive Help to controls, you'll likely find other areas of the application that need explanation.
Therefore, you might add to your RTF Help file many times before you've provided ample Help support to the
application.

Tip

When you add Help pages, try your best to locate every place in the application from which users might need specific
help. Every time you add context-sensitive Help, your users won't have to search through the Help Index or Contents
page that otherwise would appear.

Listing 20.1 shows code that displays the Help topic supplied by a specific context ID. You can incorporate code such
as this into a command button or Help menu option if you want to offer specific Help topics from your Help file.

Listing 20.1 You can display context-sensitive Help.
cdbHelp.HelpFile = "MDINote.hlp" ' Point to the help file
'
' You can now provide specific help for a particular
' topic by pointing to the number in the .HPJ's [MAP]
' section (your textual context IDs)
cdbHelp.HelpContext = 3 ' Point to the section
cdbHelp.HelpCommand cdlHelpContext ' Request context-sensitive
cdbHelp.ShowHelp ' Display the context-sensitive help

Adding What's This? Help
Now that you better understand how to create a Help file, you can create What's This? Help. You must add a Help page
for every What's This? Help feature that you want to support. After you add the pages and connect them to the other
Help pages in the system through the custom footnotes described earlier in today's lesson, you must map the pages to
the numeric context ID. The What's This? Help engine uses those context ID numbers to determine the proper Help box
to display when the user requests the What's This? Help.

The secret to What's This? Help is twofold:

• Make sure that the form supports What's This? Help by setting the form's WhatsThisButton property to True
and the WhatsThisHelp property to True.

• Enter the Help page's context ID in the object's WhatsThisHelpID property.

The What's This? Help from the MDI Notepad application (if you've followed the earlier sections and created a Help
file with Help pages that you can use) requires only that you perform these steps:

1. Open the Project window and double-click the form named frmFind to display the Find dialog box's form.

2. Assign True to the WhatsThisButton and WhatsThisHelp properties. When you subsequently display this
form when the application executes, you'll see the What's This? question mark button on the form.

3. Repeat the assignment for the other two forms in the application.

4. Look through the Help project file's [MAP] section for context ID numbers and assign these context ID values to
various menu options (use the Menu Editor) and form objects that might need the description. Although the
Help file is far from complete, several of the Help pages work well for the objects, especially the menu bar
items.

Summary
Today's lesson explained how to incorporate Help in your Visual Basic applications. Several forms of Help are
available to Visual Basic developers. By using the HTML help or the WinHelp Windows Help engine, you can build a
complete hypertext jump system with interconnected Help pages and pop-up definitions. Your user can get context-
sensitive, access-specific Help pages by pressing F1. The common dialog box control assists in providing this Help,
enabling users receive help at the push of a button.

Adding context-sensitive Help allows your users to locate the help they need. You can assign context-sensitive Help to
various objects so that specific Help text appears when a users selects an object and press F1. The context-sensitive
Help feature keeps your users from having to search through the index every time they require help.

Two simple Help features that you can add quickly are the ToolTips and What's This? Help elements. ToolTips are
extremely simple and require only that you add the ToolTips text in the Properties window. Before you can assign
What's This? Help, you must build a comprehensive Help file and assign various numeric context IDs to objects.

Tomorrow's lesson concludes your 21-day training by showing you how to test, debug, and distribute your applications
to others.

Q&A
Q: Why can't I create my application's Help file after I complete the whole application?

A: You can. That's what you did today for the MDI Notepad application. Nevertheless, you understand the ins
and outs of your application the best at the time you write the application. Therefore, you'll provide better
help if you create ToolTips, What's This? Help, and Help files as you create your project. You can keep your

word processor open in a second window and switch to the it (by using Alt+Tab) when you're ready to add
more to the Help file.

Q: Why is adding Help in the Help file so tedious?

A: The tedium arises from the fact that you must ensure that all the hypertext jumps connect to appropriate
topics, that all topics are covered that need to be covered, and that you use proper formatting in the RTF Help
file. Of course, the Help compiler will catch improperly formatted Help files, so you'll debug your Help file
when you compile it. Actually, as you build and test your application, you may want to compile the Help file
as well so that it stays accurate as you build the project. Creating a Help file incrementally like this makes the
overall process less tedious.

Many Help-authoring tools exist that you use to add help to your Visual Basic programs that assist you in
building Help files without using the tedium of creating RTF or HTML files. Do not use HTML-based Help
unless you assume that your user has an Internet browser active that is ready to display the HTML files.

Using these visual Help designer programs will make your Help file creation go smoothly. In addition, you'll
not inadvertently type as many Help file errors as naturally happens when you use the RTF approach. In
addition, these programs let you create Help diagrams that show visually how hypertext jumps connect,
thereby further reducing the amount of RTF coding you have to do to build your Help file.

Q: Why not use these tools and forego today's lesson entirely?

A: Visual Basic supports the online Help described today as well as other kinds—such as HTML-based Help.
You can use third-party tools to make creating Help much easier, and if you develop many applications,
you'll certainly want to look into these tools. Nevertheless, you've started with Visual Basic, and Visual
Basic does contain all the tools needed, except for an RTF editor, to create the Help support described today.
In addition, not all your users will have Web browsers to view HTML help, so this is not for universal
applications unless you require that a Web browser be installed before your application runs. By creating
Help files using today's lesson's "old-fashioned method," you learn more about how the Help system works
and you appreciate the complexities of a hypertext system. Despite today's lesson's RTF file approach, most
of the tedium does not come from the approach, actually, but from the design of the Help system. The more
complex and complete you make your Help system, the better your users will appreciate your application.
Such complex Help systems, however, are not trivial to produce. That's why you should create the system
along with the application to ensure that you've offered the appropriate Help that your application deserves.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next lesson. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: What file format must you use to create an online Help file?

2: How can hypertext jumps improve a Help system?

3: Which custom footnote symbol creates pop-up Help definitions for underlined Help page text?

4: What are some of the features of the Help project file?

5: After you compile a Help file, how can you attach such a file to an application so that the Help file appears
when a user presses F1?

6: How do you connect context-sensitive Help to the Help file topics?

7: True/False. The context-sensitive Help uses the textual context IDs in your Help file.

8: What's the difference between the What's This? Help and ToolTips?

9: How can you add the What's This? button on forms?

10: True/False. You can offer What's This? Help for forms as well as for objects on the form. (Hint: Check the
form's properties.)

Exercise

 Add What's This? Help to every object in MDI Notepad. This task might seem tedious (and it is somewhat),
but you'll quickly get the hang of working with What's This? Help, context IDs, and Help pages.

Day 21. Distributing Your Applications
Today's lesson shows you how to test, debug, and distribute your Visual Basic applications. No application is ever
complete. You always can add more features, and many times errors appear long after you think you've removed all of
them. Therefore, long-term maintenance is part of the programming process. You can take steps to eliminate some of
the maintenance headaches, however. Throughout the previous lessons, this 21-day tutorial has offered tips to help you
better document your code and reduce maintenance problems.

One of the best ways to reduce maintenance problems is to thoroughly debug and test your application before you
distribute it to your users. This lesson describes some of the debugging tools Visual Basic supplies, as well as some
testing procedures you might want to run your application through before you distribute it.

You've reached the final day of this 21-day tutorial. After you finish this lesson, you can consider yourself graduated
from the University of Visual Basic 6 with a degree in Programming Arts and, more important, consider yourself

primed for the rank of Visual Basic guru. Your next step is to develop as much as you can with Visual Basic to hone
the skills you've gained throughout this tutorial.

Today, you learn the following:

• About the types of bugs a program can generate
• How to locate bugs while writing code
• About the debugger's many windows
• How to use the debugger's single-step mode to locate specific areas of the program during execution
• About multiple breakpoints
• How to create an installation routine for your application
• How to use the Package and Deployment Wizard
• The importance of supporting application installation

Debugging and Testing
All applications need testing. Too many bugs can find their way into an application during the programming stages.
When you test an application, you run it through a series of test-case executions. During the testing, you enter random
and extreme values in all the user-entry controls to ensure that the application can handle values outside the typical
range. You'll find that bugs almost always appear during the testing phase.

Debugging is a three-step routine:

1. Determine the problem bugs and their locations

2. Correct the bugs

3. Retest the application to ensure that you eliminated the bugs

Bugs range from mild errors, such as misspellings or text-alignment mistakes, to serious errors, such as when an
application terminates the entire Windows session and loses data. To your users, a bug is anything that doesn't match
expected program results or prevents the application from running.

Programmers face many debugging problems when looking for bugs. You must decide that you've found as many bugs
as you can possibly find, and you must test and retest to ensure that the bugs are gone and don't reappear. Careful
planning before, during, and after the coding process helps you reduce the time it takes to debug your application.

Tip

You should develop and test your application from within the Visual Basic development environment. The
development environment contains debugging tools that help you track and locate errors. Only after you're satisfied
with your test results should you then compile and distribute your application to users.

Windows and the powerful Visual Basic development environment help you locate errors. When you run a Visual
Basic application, Visual Basic might find an error during the compilation or preparation for the program's execution
(such as a misspelled keyword) and display an error message, such as the one shown in Figure 21.l.

Figure 21.1. Visual Basic helps you locate bugs.

If, when you run an application, you see such an error message before the first form appears onscreen, you probably
typed a syntax error in your code. The error in Figure 21.1 is a syntax error. The error message rarely reads Syntax
Error, but if an error occurs due to a spelling or grammar mistake, the error was a result of a syntax problem.

A syntax error is an error in a programming language's grammar or spelling.

Notice that Visual Basic not only told you about the error in Figure 21.1, but it also located the error inside the code
window. Even if the code window is closed when you try to run the program, Visual Basic highlights the error. The
problem is that a proper End statement was not used. After you fix the syntax error, you then can click the Run toolbar
button to start the program from the corrected error.

If you have the Auto Syntax Check box selected on the Tools, Options dialog box's Editor page, Visual Basic checks
for syntax errors as you type program code into the code window. Some programmers, however, like to have more
freedom at design time to sprinkle partial statements here and there that they will repair later in the programming
process. However, such incomplete code can lead to errors later if you're not careful; you may forget to correct a
statement that you've left undone. Nevertheless, there are times when you'll want to fill in gaps of code at a later time,
perhaps after checking with the users to answer a design question.

Therefore, you can turn off automatic syntax checking. When the option is off, Visual Basic doesn't check for coding
errors, such as a missing parenthesis, until you run or compile the program. Either way, Visual Basic locates these

kinds of bugs for you with message boxes, such as the one shown in Figure 21.1, but the Auto Syntax Check option
gives you the choice of when you want Visual Basic to tell you about the code problem.

More difficult errors appear during the runtime of your application. A syntax error is easy to spot, because Visual Basic
finds it for you. A runtime error is more difficult to locate and correct. Consider the error shown in Figure 21.2. The
error involves program logic. No error message appears, but the field that should show a name shows an address
instead. Obviously, an address field was loaded where a name field should appear. Visual Basic does not know this is
unusual because it just follows the programmer's orders, even if logic errors result.

Figure 21.2. Visual Basic cannot catch logic errors.

Logic errors that you catch require that you stop the program. (Visual Basic doesn't recognize the error and stop the
program as it does with syntax errors.) You then must track down the problem.

To track the problem, you must search through the program code looking for traces where such a runtime logic error
might reside and then fix the problem. If the problem involves the form's or a control's appearance onscreen, you have
to trace all references to that part of the object. Often, but not always, the Object Browser can help you find the specific
code that goes with an object.

Visual Basic can locate some logic errors if the logic error results in a request for Visual Basic to do something
impossible. For example, Figure 21.3 shows what happens when a program asks Visual Basic to divide a number by
zero. Division by zero isn't defined mathematically, so Visual Basic cannot accomplish this calculation, even if no
syntax errors appear in the calculation. Visual Basic halts the program's execution and describes the error in a message
box.

Figure 21.3. Some logic errors request that Visual Basic attempt something impossible.

The application runs smoothly without the code window showing. However, as soon as Visual Basic realizes that the
program is requesting an impossible task, it displays the code window and locates the approximate place in the code
where the division by zero occurs. You can click the error dialog box's Help button to get more help with the error
message, click End to terminate the program's execution, or click Debug to enter Visual Basic debugging mode.

Tip

Notice that a division by zero error produces the error code 11 (see the error message in Figure 21.3). You can test for
errors in the Err.Number system object. Therefore, if you suspect that a calculation may result in a division by zero
error, due to missing data, you can trap the error with an On Error Goto statement. If the offending Err.Number is 11,
you can inform the user that a value is not filled in on the form instead of the user having to deal with an error message
box.

Using the Debugger
Visual Basic's development environment includes a debugging tool that becomes part of the development environment
when you request debugging help. The debug tool lets you do all the following tasks:

• Analyze variable contents at runtime.
• Stop the program at any statement and restart when ready.
• Set breakpoints throughout the code that automatically stop the program execution when one is reached.
• Change variables during the execution of a program to different values from their current state to test the

application.
• Set watch variables that halt the program's execution when one receives a specific value or range of values.
• Skip statements you don't want to execute during a test.
• Use the Debug object's output window to print values during a program's execution. The debug window lets you

capture output, such as variable values, without disturbing the normal form window.

You can enter debugging mode and have access to all the debugger's features (primarily found on the Debug menu)
when you do any of the following:

• Press Ctrl+Break to stop the program's execution in midstream.
• Receive a runtime error message box.
• Set a breakpoint, and execution reaches that breakpoint.
• Click a statement in the program and then, from the Debug menu, choose Run To Cursor to execute the

program as usual. Visual Basic halts the program and enters debugging mode as soon as execution reaches the
cursor.

Setting Breakpoints

One of the easiest breakpoints to set is the run-to-cursor breakpoint. To test breakpoints, load the Controls application
found in your Samples folder. The Test Buttons form, frmButton, changes a stop signal as the user clicks command
buttons. Suppose you suspect that the Controls application's code doesn't change the signal properly. You can click the
first executable statement in the standard module's ChangeSignal() function and select Run To Cursor from the
Debug menu. (Do not select a remark because a remark cannot be set for any kind of breakpoint or halt.) The program
starts up as usual, but it halts at the breakpoint and highlights the line.

The program isn't halted permanently. Up to this point, all the program variables have been initialized, the code has
run, and its effects are available. If output occurs before the cursor's location is reached (as done here when the initial
form appears), you see the output appear onscreen as usual. The program, as indicated by Visual Basic's title bar, is in
its break state, which is reached due to the breakpoint. The yellow highligh SSt is the line where the cursor rests when
you chose Run To Cursor from the Debug menu.

Listing 21.1 shows the procedure where this particular example stops.

Listing 21.1 You can analyze individual procedures at a breakpoint.
1: Private Sub ChangeSignal()
2: ' Check to see what color the light is, and then change
3: ' it to the next color. The order is green, yellow,
4: ' and then red.
5: If imgGreen.Visible = True Then
6: imgGreen.Visible = False
7: imgYellow.Visible = True
8: ElseIf imgYellow.Visible = True Then
9: imgYellow.Visible = False
10: imgRed.Visible = True
11: Else
12: imgRed.Visible = False
13: imgGreen.Visible = True
14: End If
15: End Sub

Perhaps the signal doesn't work because more than one color is visible at a time. Therefore, you can look at the current
value of the Visible properties for the three possible signals (named imgGreen, imgYellow, and imgRed) to ensure
that one and only one contains a True value when this procedure begins.

Looking at a control's (or even a variable's) contents has never been easier. As Figure 21.4 shows, all you need to do to
see the value of any variable or object's property value is rest your mouse pointer over the control.

Figure 21.4. Visual Basic displays all control and variable values when the program halts using the
debugger.

Suppose you check all three values and find that only one has True in it, which is correct. You've just determined that
the problem does not lie in the ChangeSignal() procedure, and you have to search back further in the code to see
where the signals got messed up. Then again, depending on when the problem shows itself during the program's
execution, you might want to run the program a little further. Either way, by stopping the execution and analyzing
controls and variables, you can determine if values are where they should be at runtime.

Retracing Your Steps

Before going further, display the Debug toolbar. From the View menu, choose Toolbars and then Debug to display the
Debug toolbar. (As you debug, the toolbar can float, or you can dock it to the upper toolbar area.) When you need to
see where the program's execution has been up to a breakpoint, you can use one of the most useful debugging
features—the call stack. Click the toolbar's Call Stack button. As Figure 21.5 shows, the Call Stack dialog box appears
and shows your program's execution, procedure by procedure, until its current position.

Figure 21.5. Use the Call Stack dialog box to retrace your program's procedures that have executed.

Note

If you see a call stack entry labeled [<Non-Basic Code>], execution occurred from another source, as happens when
code calls the Windows API.

The Windows API (for application programming interface) is a set of internal Windows procedures that you can call
from languages such as Visual Basic and Visual C++ when you need to borrow a routine or trigger a function from
Windows itself. The Visual Basic debugger does not have the capability or authority (due to Windows'system
protection) to trace through operating system procedures.

If you want to show one of the Call Stack dialog box's procedures, double-click that entry to move to the procedure.
From there, you not just look at code—you're actually looking at live values as well. Keep in mind that the application
is in a breakpoint stage still, so you can view the values of any control, variable, or named constant within that previous
procedure.

Single-Stepping Through Code

At any breakpoint, you can click the Debug toolbar's Step Into button to execute the next statement in the program.
Whatever statement normally comes next executes when you click Step Into (even if that statement is a call to another
procedure).

The Debug toolbar contains three step-related buttons. Table 21.1 describes how to use them. You might not want to
single-step through every statement in an application; the step buttons give you some freedom to determine how you
want the program to continue.

Table 21.1. The step modes determine how your application is to continue.

Step
Mode

Description

Step
Into

Executes only the next statement. Even if the statement is in another procedure (or a return to a previous
procedure), the next statement executes and the cursor is placed at that statement. Therefore, you can single-
step through an entire applic6ation by pressing F8 continually.

Step
Over

Executes the next statement unless the next statement is a call to a different procedure. The new procedure
executes in its entirety, and execution halts at the statement following the procedure call.

Step
Out

Finishes executing the current procedure and then, at the next statement outside the procedure, execution halts
again.

Note

Of course, at any breakpoint, you can click the Start button to continue execution in its normal manner. If subsequent
breakpoints are set, the execution halts at those breakpoints. Otherwise, the program behaves normally, as if you'd
never stopped it.

Tip

You can terminate debug mode at any time by clicking the Visual Basic toolbar's End button or by choosing End from
the Run menu.

Multiple Breakpoints

As your application executes, you might want to set breakpoints along the way. The breakpoints halt the program's
execution so that you can study variables and controls during mid-execution. For example, if you see runtime problems
that you want to analyze on the next program run, you can add a breakpoint by clicking the Debug toolbar's Toggle
Breakpoint button at the highlighted statement. You can set multiple breakpoints on additional lines by clicking the
Toggle Breakpoint button throughout the code. If you reach a breakpoint (indicated by a red highlight) that you set in a
previous session but no longer need, use Toggle Breakpoint again on that line to remove the breakpoint from that
location. You can also click to the left of any statement to add or remove a breakpoint.

Caution

You can set breakpoints only for lines that execute. You can't set a breakpoint on lines that declare user data types or
contain only remarks.

The Debug Window

At any breakpoint, you can display the Debug window to work outside the program's environment. The Debug window
is often called the Immediate window. When you click the Debug toolbar's Immediate Window button, the Immediate
window opens at the bottom of your code window (that is, in its docked position) or in a free-floating location if the
Immediate window isn't docked to the edge of the screen.

The Immediate window (another name for the Debug window) is a window inside the Visual Basic environment in
which you can view program values and print messages during the program's execution. By sending a message to the
Immediate window, you can read progress messages as your application executes by using the Debug.Print method.
Those messages will not interfere with the program's normal output.

You can type any Visual Basic statement in the Immediate window and see the results of that statement's execution
immediately. One of the most common Debug window methods used is Print, which prints variable values and
control properties. Print sends output to different objects (not just to the printer or form), including the Immediate
window. Figure 21.6 shows an object's value displayed to show that the values you work with in the Immediate
window are live values set by the part of the application that's executed to that breakpoint. Also, you can print the
results of any expression, If you need to, you can change variable values during execution. After you do that, the rest of
the program works with the new value instead of the one assigned originally in the code; that way, you can see the
results of the variable's change.

Figure 21.6. Using the Immediate window to print values and change results.

Tip

Although the interactive nature of Visual Basic's development environment makes such output less important than it
used to be in text environments, your program can write directly to the Immediate window by using the Debug object's
Print method. Therefore, if your program includes a statement such as Debug.Print cmdN6xt.Caption, the output
goes to the Immediate window, where you can view the output without having to interfere with the normal application's
output in the form window.

The Locals Window

When you click the Locals Window button on the Debug toolbar, Visual Basic displays the Locals window (see Figure
21.7). The Locals window shows the current value of all variables local to the current procedure (the procedure holding
the current breakpoint) as well as global constants and variables. Perhaps the most helpful aspect of the Locals window
is its display of all the values for the form's controls. You can expand and shrink the Explorer-like view to see as much
detail as you want.

Figure 21.7. The Locals window shows all variables that are local to the current procedure as well as
globals.

Note

If you modify a local variable from within the Immediate window, its value changes in the Locals window as well.

In addition to the variable name and value, the Locals window displays the variable's or control's data type. Click the
ellipsis button to the right of the Locals window's current procedure name to view a call stack list. When you click one
of the call stack procedure names, the Locals window updates to show that procedure's local variables.

The Watch Window

As your debugging process continues, you might find that a bug occurs only when a variable has a certain value.
Sometimes problems can't be traced to a single statement, so you have to watch a variable or expression throughout an
entire procedure. For this reason, Visual Basic provides the Watch window, in which you can enter values for variables

or expressions. You can set up the Watch window with values to watch for at design time or runtime by clicking the
Debug toolbar's Watch Window button. You can use either of the following two methods to add values to the Watch
window.

• From the Debug menu, choose Add Watch to display the Add Watch dialog box (see Figure 21.8).

Figure 21.8. Adding values to watch for in the Add Watch window.

• Right-click the Watch window (you must first display the Watch window by clicking its Debug toolbar button)
and choose Add Watch to display the Add Watch window.

When you're adding a watch expression, the context of the watch tells Visual Basic the scope of the watch (where it
should monitor the expression). Visual Basic can watch a single procedure, a form, a module, or the entire project.

The Watch Type area lets you specify how you want Visual Basic to respond to the watch value. Visual Basic can
display the data in the expression as the value changes at runtime, break the execution when the value is reached, or
break every time the watched value changes. During subsequent execution, Visual Basic updates the Watch window
according to your watched values.

Tip

Visual Basic includes the Quick Watch window, which lets you add watch values on the fly during any breakpoint.
Highlight a variable, expression, or control property and then click the Quick Watch button on the Debug toolbar. You
can add this expression to the regular Watch window by clicking Add. Many programmers find that using Quick Watch

during a program's debugging breakpoint is easier to do than trying to collect all the values to watch at design time
through the Add Watch dialog box.

Distributing Your Application
You've created, tested, and debugged your application. The final step is packaging it for distribution to others. If you're
creating the application for yourself, you'll probably just want to compile the application and then copy the compiled
application and its support files to the folder from where you want to run the program. You can use the Start menu's
Settings, Taskbar option to hook the application to your Start menu's structure.

If you want others to use your application, you need to automate the installation so that all the project's files get to their
proper location and the Windows Start menu gets the program. This section explains how to distribute an application
by using one of the sample applications that come with Visual Basic as a guide.

Compiling an Application

Visual Basic makes compiling your application simple. The compiled file is a final executable file with the .EXE
filename extension. All the related modules and forms work together to form the executable file. Although auxiliary
files might still be necessary—such as a Microsoft Access database file used for initial data—most of your project's
files combine into the executable to make distribution easier.

Note

The compiled application is more secure than a distributed source project. If you distribute the source code (the project
and its related files), anyone with Visual Basic can modify your work. However, most users couldn't even run the
source code for your program, because they don't have Visual Basic to load and run the program. Therefore, a compiled
file is necessary so that all can use your application.

Your compiled application runs much faster than the application running within Visual Basic's development
environment. You want your application to run as quickly and smoothly as possible without your users doing more than
necessary. The compiled executable file makes the application's execution simple.

Before you compile your application, make sure you've debugged the application as much as feasibly possible. You
can't debug compiled applications with the Visual Basic debugger, because you run compiled applications from outside
the Visual Basic development environment.

When you're satisfied that you have your program running as accurately as possible, choose File, Make. Visual Basic
displays the Make Project dialog box (see Figure 21.9). Select the folder where you want to store the compiled
application. (Visual Basic uses the project name as the default executable name.)

Figure 21.9. Compiling the application from the Make Project dialog box.

Before clicking OK to start the compilation, click the Options button to display the Project Properties dialog box (see
Figure 21.10). (You also can access this dialog box by choosing Properties from the Project menu.) The dialog box lets
you specify version information for the compiled application. If you plan to release several versions of the software, the
version numbers let you determine the order of versions. You can specify the version information from the
development environment's Project Properties dialog box so that you don't have to specify versions just at compile
time. The version numbers and description information stay with the project's source code.

Figure 21.10. Setting the compiled project's options in the Project Properties dialog box.

The Icon entry designates the application's icon that appears on the Windows Start menu and on a taskbar button.
Generally, you'll leave the primary form name in the Icon field. The form's Properties window also contains an Icon
entry from which you can select an icon for the form and, therefore, for the compiled application.

Click the Compile tab to display the Compile options page (see Figure 21.11). To optimize the compiled project to
make it run as quickly as possible, select the Compile to Native Code option. (If you compile to p-code, or pseudocode,
the application requires that your users keep a runtime Visual Basic–based DLL file in their Systems folder. Native
code runs faster and requires fewer files, but does still require the services of a DLL file.)

Figure 21.11. The Compile page holds the project's compilation options.

Note

If you select any of the options that appear when you click the Advanced Optimizations button, you forsake some of
the runtime error checking but gain execution speed.

When you close the Project Properties dialog box and click OK, Visual Basic compiles your code. Assuming that no
compile errors exist, Visual Basic creates the .EXE file (you'll see the compilation status in the upper-right corner).
You can exit Visual Basic and run the application by selecting the Start menu's Run option after locating the .EXE file.
The form's icon that you selected appears in the taskbar when you run the program.

The Package and Deployment Wizard

The Package and Deployment Wizard does a lot of work for you, including the following tasks:

• Compiles the application and compresses the files.
• Creates a setup program that can be used to install the application.

• Determines the best fit for installation floppy disks, creates the numerous setup disks, and splits extra-large files
across multiple floppy disks. The Package and Deployment Wizard tells you in advance how many floppy disks
the setup requires.

• Copies your compiled application to a hard disk so that you can install the application over a network or onto a
CD-ROM creator.

• Sets up your application for distribution across the Internet for Internet Explorer users.

The Package and Deployment Wizard generates a list of several files needed for the setup. A single Setup.exe file is not
the only thing to come out of the setup routine. Often, a Visual Basic application requires DLL and OCX files, and
those files must reside in the targeted setup area (floppy disks or a hard disk) with the compiled program and the
Setup.exe program.

Before you can run the Package and Deployment Wizard, you must load your application's project. After you've
debugged and compiled your project, you're ready to create the installation module. The Package and Deployment
Wizard will compile your code one final time just in case you've made an edit since your most recent compilation.

The Package and Deployment Wizard isn't part of Visual Basic's development environment. You need to select the
Package and Deployment Wizard from the Add-Ins, Add-In Manager. This loads the Package and Deployment Wizard
to the Add-Ins menu, where you can start the wizard. Figure 21.12 shows the opening window for the Package and
Deployment Wizard.

Figure 21.12. The Package and Deployment Wizard prepares your application for distribution.

The first Package and Deployment Wizard option (which is the option you'll probably select most of the time) creates a
standard Setup.exe routine that your users can install. The Package and Deployment Wizard can prepare this
installation routine on a hard disk, floppy disks, CD-ROM writer, or in special CAB files that you can send out over the
Internet for online distribution. The second option sends the installation routine to an Internet server that can install the
application remotely. During the installation creation routine, the Package and Deployment Wizard creates a script file
that describes the setup routine. In subsequent sessions, you can either modify a setup script that you've already created,
or you can create the setup from the original project. The third option on the Package and Deployment Wizard's
opening window lets you manage your installation scripts.

The first option generates the most common forms of an installation routine for most applications. After you click the
first option, you'll see the window shown in Figure 21.13. Unless your application requires external ActiveX controls
or database files, you can keep the first option selected.

Figure 21.13. Determining the kind of setup package to create.

Tip

If you want to set up an ActiveX control, be sure to select the Dependency File option so that the wizard can collect the
proper files in the order the application needs them.

Click Next to show the Build Folder dialog box, which requests distribution information. The Package and Deployment
Wizard needs to know where your final setup application should go. The directory you select should be empty.
Therefore, when the wizard finishes, you'll know that all the files in that directory are there as the result of the wizard.
When you click Next, the wizard scans your project file to determine which program files your application needs. The
wizard can't determine which database drivers are needed if your application contains any data-related controls. You'll
see the dialog box shown in Figure 21.14 if your application requires database access. Copy the application's required
database driver to the right-hand window.

Figure 21.14. You may have to select the data access files manually if your application requires data
access.

Caution

Your dialog box may differ depending on the type of data access (ADO, DAO, and so on) your application uses.

After clicking Next, you might see the DAO ODBC Access dialog box if your application requires ODBC support. If
so, you'll have to specify the kind of ODBC your application requires. If you didn't use a database with ODBC access,
you won't need to worry with this dialog box.

When you click Next again, the wizard collects all the application's files you've specified and displays the dialog box
shown in Figure 21.15. Make sure you look through the files to determine that every file is listed that your application
requires. You might need to add (by clicking Add) more files, such as Readme.txt or a database file. Additional

database support files might be needed. If so, you need to add those database files to the file list so that the installation
routine stores these database files along with the installation files in the setup package.

Figure 21.15. Looking through the files to make sure the Package and Deployment Wizard collected
all the files your project needs.

Caution

Make sure you have proper access to any ActiveX control you distribute with your application. You might not always
have the proper license authority to distribute ActiveX controls, unless you created those controls yourself. Therefore,
consult your ActiveX control vendor to learn the rules under which you can distribute the controls.

The Package and Deployment Wizard's next dialog box requests distribution information. You can create a single
distribution file, or you can request that the setup routine be placed across multiple floppy disks or other kinds of
media. After you determine how you want the Package and Deployment Wizard to divide your installation routine,
click Next to display the Installation Title screen. Here, you'll type your installation project's title and then click Next to
move to the Icons dialog box.

From the Icons dialog box, you create the submenu that will appear on the PC's Start menu. By clicking the New button
and displaying the Start Menu Items dialog box shown in Figure 21.16, you can add submenu items to the Start menu's

entry for this application. The submenu items might include a Readme file or an auxiliary program (such as a system
utility).

Figure 21.16. You can determine the way the application will appear on the end-user's Start menu.

The next screen you see, called the Install Locations screen, determines the locations of each of the installed files.
Although you'll want the majority of the files installed in the folder that the user selects during the installation
procedure, as specified by the system variable AppPath, you can select individual files in the Package and Deployment
Wizard's list and send those files to an alternate folder, such as the user's Program Files folder (specified by the system
variable ProgramFiles).

Note

As you can see, the Package and Deployment Wizard requires numerous decisions. With those decisions, however,
comes complete control over how and where your application arrives on the user's system.

Click Next to select any files you want to designate as shared files. A file may be shared not only by other users (as
would be the case for a database file the application might access) but also by other programs on the computer, as
might be the case with ActiveX controls your project contains. Designate which files are shared by clicking next to
each shared file (that is, by placing a check mark in the box next to that file).

After clicking Next, you'll see the final Package and Deployment Wizard screen, which asks what you want to call this
installation's script file. By creating a script file, you won't have to answer the long list of wizard queries you've had to
answer to this point the next time you create the installation routine. In addition, you can modify the script without
having to redo the installation screens if something changes in the installation process, such as the removal of a shared
file.

When you click Finish, the Package and Deployment Wizard will build the installation script, create the installation
routine, and place that routine in one or several files, depending on the options you selected. When this is finished, a
setup file (or files) will reside on your PC that you can distribute to install and re-create your application on other
computers.

After Generating the Setup

After the wizard generates the setup routine, you should test it. To test the routine, run the generated setup program to
make sure that no bugs appear and that the final application runs smoothly on the computer.

Tip

If you really want to test the setup routine, run the setup program on a computer that has never contained your
application. Even better, make sure that the computer doesn't even have a copy of Visual Basic installed. By testing
your application on such a clean machine, you help ensure that your application installs properly on other computers.

The Package and Deployment Wizard creates the setup file (or files) in the location you specified during the setup
process. If you generated the setup file in a single test directory, you'll find the Setup.exe file, the Setup.lst file (which
contains a list of all the install-related files), and possibly several other files whose filename extensions end with an
underscore (_). The files with the shortened extension are compressed; the Setup.exe routine expands those compressed
files onto the target machine or location.

The simplest way to test the generated setup routine is to choose Run from the Start menu and then find the Setup.exe
file. Click the Run button to start the application's setup. A typical setup installation will occur. The setup program will
analyze the target computer to ensure that no programs are running that may conflict with a file that is about to be
installed. Figure 21.17 shows a warning dialog box that greets your user if he or she runs the setup routine while
running other programs that use any of the routine's shared files.

Figure 21.17. Setup takes over and begins the installation process.

Note

If you cancel the setup program at any time before it completes, it closes after removing any files copied to that point.
Therefore, if you cancel the process at any time, setup removes all traces of the application's setup.

Uninstalling the Application

The Package and Deployment Wizard not only generates the installable setup routine, it also generates an application
uninstaller. This enables users to uninstall all the application's files at any time. The Package and Deployment Wizard
hooks to the system Control Panel's Add/Remove Programs icon. Therefore, if a user wants to remove the application
from the system, he or she only has to follow these steps:

1. From the Start menu, choose Settings and then Control Panel.

2. Double-click the Add/Remove Programs icon.

3. Select the application from the list of installed applications. After getting verification that the user wants to
remove the application, the uninstall routine takes over and removes the program and all its related files from
the user's computer.

The Package and Deployment Wizard stores the uninstall information in the same directory as the application. The file
that contains the removal instructions is named ST6UNST.LOG, and it holds the necessary details for the Add/Remove
Programs system utility to do its job. Not all files should be removed, especially system files that might be shared by
other programs. Before removing such potentially needed files (such as ActiveX controls), the removal utility displays
a warning dialog box that lets the user decide how to remove such files.

 Summary
Today's lesson explained how to use Visual Basic's powerful debugging tools. Learning how to debug an application
pays dividends when you need to track bugs. Although Visual Basic's debugging tools can't locate logic errors, the
debugger makes it easier for you to locate them. You can trace a program's execution, set breakpoints, and retrace a
program's execution from where it came.

One of the most powerful aspects of the debugger is its interaction with the program during a breakpoint session. When
your program reaches a breakpoint, all the values initialized and computed to that point are still live. Therefore, you can
view variables to see whether their intermediate results contain the same values you expect. Also, you can change a
variable's or control's value in the middle of the program's execution and watch how the rest of the execution reflects on
that change.

After you debug your application, you're ready to distribute the application to your users. Application distribution is
more involved than simply compiling your application. You must consider the installation routine and ensure that your
users have all the necessary files related to the application.

 Q&A
Q: Can I catch all my application's errors as I write the code if the Auto Syntax check box is checked?

A: As you type your program, this checked option will certainly catch many mistakes. The problem is that the
option catches only syntax errors. You can still make runtime errors, such as dividing a value by zero. The
code window cannot catch those kinds of errors.

Q: Which errors are the easiest to locate?

A: Sadly, syntax errors are the easiest to locate. (It's sad because not only are they easy to catch, but Visual
Basic locates them for you.) If you've turned on the Auto Syntax Check box option (or even if you haven't),
Visual Basic will locate all syntax errors either as you write your program or as soon as you attempt to run
your program. The logic errors are the hard ones to locate because Visual Basic will have no idea that
something is wrong. Even you won't always realize there's a problem at first. For example, suppose a general
ledger total is off by a dollar or two each day. The user might not notice the error for a few days, and then
other data will be affected by the problem. That's why you should test your applications extensively.

Q: How long should I test my application before distributing it?

A: The answer depends on the application's complexity. Certainly, if the application generates critical details
used for decision making, such as payroll reporting and accounting systems, one of the best ways to test the
application is to run a parallel test. That is, run your application along side the current system, whether that
system is manual or an older computerized application you're replacing. Check the results against the current
system and have your users do the same. Only after running the parallel test for a few cycles of the system
(which may be a month or two if accounting cycles are involved), should you have the needed confidence to
replace the original system with your application.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next bonus lesson. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: What is a syntax error?

2: What's the difference between a syntax error and a logic error?

3: True/False. Some runtime errors can cause the running program to stop executing.

4: True/False. Some syntax errors can cause the running program to stop executing.

5: How can you analyze variables during a program's execution?

6: How can the single-step mode help you debug a program?

7: True/False. You can change the values of variables and controls during the execution of an application.

8: Which runs faster: a compiled program or a Visual Basic program that you run from inside the Visual Basic
environment?

9: What tools does Visual Basic provide that let you create an installation routine for your application?

10: What happens if your installation routine is larger than a disk can hold, but you need to offer your application
on disks?

Exercises

1: What kind of error does the following statement contain?

If (a < b) Therefore
 lblTitle.Caption = "Too small"
End If

2: True/False. The following sentence contains two kinds of errors (this one takes some thought):

This sentence has two mistaks.

Day 22. Multidimensional Arrays
Day 10, "Adding Power with the Mouse and Controls," explained how to declare and use arrays. Arrays hold lists of
data values. If you must keep track of and process several items, you have the choice of putting those items in separate
variables with different names or storing those items in a single array with only one name. The advantage of an array is
that you can step through all the variables with a loop statement, such as a For loop. The For loop's counter variable
can increment through the array subscripts.

Visual Basic supports several different kinds of arrays. Although you can declare an array of any data type to hold a list
of variables, you can also declare control arrays that work like variable arrays but offer the advantage of multiple form
objects using one name and a similar set of property values. (Each control in the array does not have to have the same
property values, however.) You can step through the control array as easily as a variable array when you want to work
with the controls.

This bonus lesson takes the concept of variables one step further. The arrays you have learned about so far have been
called single-dimensional arrays, because they have one subscript. In this lesson, you are going to learn how to expand
on the array concept to produce arrays with more than one dimension, called multidimensional arrays. These
multidimensional arrays are sometimes called tables. They let you store values in a row and column format. They can
also expand the number of dimensions past two dimensions to create some useful data-storage areas.

Once you learn about multidimensional arrays in this bonus lesson, you'll learn about the grid control. The grid control
contains the functionality to present two-dimensional data efficiently; the most common multidimensional table you
create will contain two dimensions so the grid control will come in handy.

Today, you learn the following

• What multidimensional arrays are
• How to declare multidimensional arrays
• About the various ways to initialize multidimensional arrays
• How loops help you process multidimensional arrays
• About the limits that Visual Basic sets on multidimensional arrays
• About the grid control
• How the grid control's properties determine the number of rows and columns in the final grid
• About the methods used for assigning data to grids
• About the FormstString property
• How to display pictures in the grid's cells

Introduction to Multidimensional Arrays
Some data fits into single-dimensional arrays (the types of arrays you've seen so far throughout this 21-day tutorial).
Other data is better suited for table format. The arrays you've seen so far, single-dimensional arrays, are arrays that
have only one subscript. Single-dimensional arrays represent a list of values. Figure 22.1 shows that an array with a
single dimension has a sense of length and direction, just as a line has.

Figure 22.1. A one-dimensional array has length and direction.

Note

Keep in mind that arrays are stored inside your computer's memory without any sense of the direction that Figure 22.1
illustrates. The sense of a single direction, however, works well to demonstrate the linear nature of a group of array
elements that go together as a single array. As you add a dimension, you also add an additional sense of direction, as
you'll see in a moment when you learn about two-dimensional arrays.

The rest of this bonus lesson explains how to use arrays of more than one dimension, called multidimensional arrays.
Multidimensional arrays, sometimes called tables or matrices, have rows and columns.

A multidimensional array has more than one subscript and, therefore, more than one dimension. The number of
dimensions relates to the number of directions the table has. Therefore, a single-dimensional array has a sense of one
direction, but a three-dimensional array has three directions, just as an object in 3D space has width, length, and height.

Suppose that a softball team wants to keep track of its players'hits. The team played eight games, and 10 players are on
the team. Table 22.1 shows the team's hit record.

Table 22.1. A softball team's hit record works well as a table.

Player Game1 Game2 Game3 Game4 Game5 Game6 Game7 Game8

Adams 2 1 0 0 2 3 3 1

Berryhill 1 0 3 2 5 1 2 2

Edwards 0 3 6 4 6 4 5 3

Grady 1 3 2 0 1 5 2 1

Howard 3 1 1 1 2 0 1 0

Powers 2 2 3 1 0 2 1 3

Smith 1 1 2 1 3 4 1 0

Townsend 0 0 0 0 0 0 1 0

Ulmer 2 2 1 1 2 1 1 2

Williams 2 3 1 0 1 2 1 1

Do you see that the softball table is a two-dimensional table? It has rows (the first dimension) and columns (the second
dimension). Therefore, you call it a two-dimensional table with 10 rows and eight columns. (Generally, the number of
rows is specified first.) The table with two dimensions, therefore, it has two directions—a horizontal direction and a
vertical direction. The single-dimensional array has only one sense of direction at any one time. As with single-
dimensional arrays, multidimensional arrays are not literally stored in this table-like manner in memory, but the Visual
Basic language lets you manipulate the data as if it were stored in rows and columns.

Note

A matrix, just like a single-dimensional array, has only one name. In addition, a matrix can hold only one data type—
the data type with which you declare the matrix. If you declare the matrix to hold the Variant data type, the cells can
hold any kind of data that the Variant data type can represent.

A cell is one element from an array of any dimension. In a single-dimensional array, a cell is one element from the
array list, but in a two-dimensional array (such as the softball team's hit record in Table 22.1), a cell is comprised of a
row and column intersection.

In Table 22.1, each row has a player's name, and each column has a game number associated with it, but these headings
aren't part of the data. The data consists of only 80 values (10 rows times eight columns). In this case, every value is an
integer. If the table contains names, it's a string table, and so on.

The number of dimensions—in this case, two—corresponds to the dimensions in the physical world. The first
dimension represents a line, and a single-dimensional array is a line, or list, of values. Two dimensions represent both
length and width. You write on a piece of paper in two dimensions—two dimensions represent a flat surface. Three
dimensions represent width, length, and depth. You may have seen three-dimensional movies; not only do the images
have width and height, but they also (appear to) have depth.

Tip

The reason so much emphasis is placed on the way people view dimensions is that your job as a programmer is made
easier when you view, mentally, multidimensional data in space with its row and column (and possibly more)
dimensions.

Although Visual Basic lets you work with up to 60 dimensions, it is difficult to visualize more than three dimensions.
You can, however, think of each dimension after three as another occurrence. In other words, you can store a list of one
player's hit record for the season in an array. The team's hit record (as shown in Table 22.1) is two dimensional. The
league, made up of several teams'hit records, represents a three-dimensional table. Each team (the depth of the table)
has rows and columns of hit data. If more than one league exists, you can consider multiple leagues another dimension.

Note

Despite Visual Basic's generous allowance of up to 60 dimensions, you'll rarely write programs that require more than
three or four dimensions at the maximum. Most of the time, you'll work with one- and two-dimensional arrays.

Declaring Multidimensional Arrays

As you do with single-dimensional arrays, you'll use the Dim or Public statement to reserve storage for
multidimensional arrays. Rather than put one value in the parentheses, you put a value for each dimension in the table
in the parentheses. The basic formats for reserving multidimensional arrays are as follows:

Public taName(intSub) [As dataType][, taName(intSub) [As dataType]]...

Dim taName (intSub) [As dataType][, taName (intSub) [As dataType]]...

The table's intSub values can take on this general format:

[intLow To] intHighRow[, [intLow To] intHighColumn][, [intLow To]
intHighDepth][,...]

As is the case with single dimensions, actually reserving storage for tables is easier than the formats lead you to
believe. To declare the team data from Table 22.1, for example, you can use the following Dim statement:

Dim intTeams(1 To 10, 1 To 8) As Integer

This statement reserves a two-dimensional table in memory with 80 elements. The elements'subscripts are shown in
Figure 22.2.

Figure 22.2. The softball team table requires two sets of subscripts.

If you have an entire league of 15 teams to track, you add yet another subscript:

Dim intTeams(1 To 15, 1 To 10, 1 To 8) As Integer

The first subscript indicates each team in the league, the second subscript indicates the number of players in each team,
and the third subscript indicates the number of games each player played.

Tip

Think of a three-dimensional table as you would a three-dimensional chessboard, with layer upon layer of boards. A
four-dimensional representation would then be several three-dimensional chess sets. The fourth dimension would be
the number that corresponds to each of the 3D chess sets.

How do you know the order of subscripts, such as the subscripts in a three-dimensional table? How do you know that
the far-right subscript represents columns? You do not know that the far-right subscript represents columns. You can
make the subscripts represent anything you want. However, the standard for a two-dimensional table is to consider the
left subscript the row and the right subscript the column. By taking a two-dimensional table to a three-dimensional
table, the added subscript is almost always the first subscript to ensure that the last two represent rows and columns in a
table. By keeping the table-level subscripts as the final two subscripts, you help keep the subscripts straight.

The following statement reserves enough memory elements for a television station's shows for one week:

Dim strShows(1 To 7, 1 To 48) As String

This statement reserves seven days (the rows) of 30-minute shows (because there are 24 hours in a day, and this table
holds up to 48 30-minute shows).

As you know, every element in a table must always be the same data type. In this case, each element is a string
variable. You can initialize some of the elements with the following assignment statements:

strShows(3, 12) = "As the Hospital Turns"
strShows(1, 5) = "Guessing-Game Show"
strShows(7, 20) = "Raspberry Iced Tea Infomercial"

Reserving space for several multidimensional arrays quickly consumes memory space. The following statements
reserve a lot of space:

Public ara1(10, 20) As Single
Dim ara2(4, 5, 5) As Double
Public ara3(6, 10, 20, 30) As Integer

ara1 consumes 200 single-precision memory locations, ara2 consumes 100 double- precision memory locations, and
ara3 consumes 36,000 memory locations. As you can see, the number of elements adds up quickly. Be careful that you
don't reserve so many array elements that you run out of memory in which to store them.

By reading table data into multidimensional arrays and working with the data in the arrays instead of in database tables,
you can speed your program's running times. Anything you can do in memory is faster than reading and writing to disk
every time you access values. However, you have much more disk space than memory space. When you're working
with large files, you have to forsake the efficiency of memory for the disk capacity.

Using Tables and For Loops

As you'll see in some of the next few program examples, nested For loops are good candidates for looping through
every element of a multidimensional table. For instance, Listing 22.1 prints all six possible subscript values from a
multidimensional array in successive message boxes.

Listing 22.1 Nested loops enable you to step through tables quickly
1: For intRow = 1 To 2
2: For intCol = 1 To 3
3: MsgBox("Row: " & intRow & ", Col: " & intCol)
4: Next intCol
5: Next intRow

If you run the code in Listing 22.1, you would see the following output in the message boxes:

Row: 1, Col: 1
Row: 1, Col: 2
Row: 1, Col: 3
Row: 2, Col: 1
Row: 2, Col: 2
Row: 2, Col: 3

Instead of message boxes, you could change the code to use Print methods to print directly on the form. Print is
probably a good method to use when practicing using multidimensional array subscripts because you can place a lot of
output on a single form easily. For example, Listing 22.2 uses the Print method to print directly to a form. Figure 22.3
shows what the form would look like.

Figure 22.3. You can practice printing table values with Print so that you can see all your output on
a single form.

Listing 22.2 Nested loops provide subscripts that step through your entire table.
1: For intRow = 1 To 2
2: For intCol = 1 To 3
3: Form1.Print "Row: " & intRow & ", Col: " & intCol
4: Next intCol
5: Form1.Print
6: Next intRow

Caution

Be careful when studying Figure 22.3. Remember that the goal of Listing 22.2 is to show you how a nested For loop
provides values that can step through a table a row and column at a time. The printed values in Figure 22.3 are not
array values but rather subscripts for an array that you declare with two rows and three columns.

If you were to print the subscripts, in row order, for a two-row-by-three-column table dimensioned with the following
Dim statement, you'd see the subscript numbers shown by the nested loops in Listing 22.2.

Dim intTable(1 To 2, 1 To 3)

Notice that there are as many For...Next statements as there are subscripts in the Dim statement (two). The outside
loop represents the first subscript (the rows), and the inside loop represents the second subscript (the columns). The
nested loop is perhaps the most common way to step through a table; therefore, mastering nested loops is critical to
programming with multidimensional arrays efficiently.

Initializing Arrays

You can initialize the elements of a multidimensional array in several ways. Here are just a few:

• Assign values to the table elements
• Use InputBox to fill the elements, one at a time, from a message box
• Read the values, one at a time, from a disk or database file
• Calculate the values from other values

If you think about this list of ways to initialize tables, you'll realize that you initialize tables and all other
multidimensional arrays just as you do any other variable. This method, however, allows you to think about your data
in tabular form, which helps speed your programming and maintenance.

Most multidimensional array data comes from forms or—more often—from disk file data. Regardless of what you
actually use to store values in multidimensional arrays, nested For loops are excellent control statements for stepping

through subscripts. The following example further illustrates how nested For loops can work with multidimensional
arrays.

Suppose that a computer company sells two disk sizes: 3 1/2 inch and 5 1/4 inch. Each disk comes in one of four
capacities: single-sided, low-density; double-sided, low- density; single-sided, high-density; and double-sided, high-
density. The disk inventory is well suited for a two-dimensional table. The disks have the following retail prices:

 Single-Sided Low-
Density

Double-Sided Low-
Density

Single-Sided High-
Density

Double-Sided High-
Density

3
1/2"

$2.30 2.75 3.20 3.50

5
1/4"

$1.75 2.10 2.60 2.95

The procedure in Listing 22.3 stores the price of each disk in a table and prints the values to the form by using a nested
For loop. You can put this procedure in a standard module or event procedure to trigger its execution.

Listing 22.3 Inventory items often appear in a table
1: Private Sub disks ()
2: ' Assigns and prints diskette prices
3: Dim curDisks(1 To 2, 1 To 4) As Currency
4: Dim intRow As Integer, intCol As Integer
5: ' Assign each element the price
6: curDisks(1, 1) = 2.30 ' Row 1, Column 1
7: curDisks(1, 2) = 2.75 ' Row 1, Column 2
8: curDisks(1, 3) = 3.20 ' Row 1, Column 3
9: curDisks(1, 4) = 3.50 ' Row 1, Column 4
10: curDisks(2, 1) = 1.75 ' Row 2, Column 1
11: curDisks(2, 2) = 2.10 ' Row 2, Column 2
12: curDisks(2, 3) = 2.60 ' Row 2, Column 3
13: curDisks(2, 4) = 2.95 ' Row 2, Column 4
14: ' Print the prices in table format
15: Form1.Print
16: Form1.Print Tab(12); "Single-sided, Double-sided, ";
17: Form1.Print "Single-sided, Double-sided"
18: Form1.Print Tab(12); "Low-density Low-density ";
19: Form1.Print "High-density High-density"
20: For intRow = 1 To 2
21: If (intRow = 1) Then
22: Form1.Print "3-1/2 inch"; Tab(15);
23: Else
24: Form1.Print "5-1/4 inch"; Tab(15);
25: End If
26: For intCol = 1 To 4
27: Form1.Print curDisks(intRow, intCol); Spc(8);
28:
29: Next intCol
30: Form1.Print 'Moves the cursor to the next line
31: Next intRow

32: End Sub

This procedure produces the output shown in Figure 22.4 after you resize the window to show the entire table.
Although the table is small, the 2-by-4 multidimensional array demonstrates how your data sometimes makes a good
match for table storage. The two rows and four columns of the disk pricing data works well as a multidimensional
array. The code does seem rather long for a table that has only 8 values. Keep in mind, however, that you rarely
initialize tables as done here in lines 6 through 13. For this small example, and as an early exposure to tables, the
assignments are probably the best way to begin.

Figure 22.4. The table of disk prices appears in a table form.

Caution

In Day 10's lesson, you learned about the Array() function, which assigns a complete array a set of values in one
statement. Don't use Array() for multidimensional arrays. Array() only works for single-dimensional arrays. You
cannot initialize multidimensional arrays with the Array() function.

Using the Grid Control
The most common two-dimensional array, a table, is best presented to your users in row and column format. The grid
control offers a convenient way for you to display table data to your users. The users can navigate the table's values
using scrollbars. Therefore, the grid control does not have to be as large as the table, because the grid control
automatically displays scrollbars.

Preparing for the Grid Control

The grid control is not part of the standard toolbox window. Therefore, follow these steps to add the grid control:

1. Press Ctrl+T to open the Components dialog box.

2. Select Microsoft FlexGrid Control 6.0.

3. Click OK. The FlexGrid control (usually just called the grid control) appears in your toolbox window, as shown
in Figure 22.5.

Figure 22.5. The grid control enables you to display tabular data.

Note

Visual Basic includes several kinds of grid controls. You will see them if you scroll through the Components dialog
box. Some are bound controls that, as you learned in Day 18, "Interacting with Data," are linked to database data so that
a user can look at the underlying database values that the table displays. (The bound grid control allows only the
reading of database data.) Depending on your Visual Basic edition (Enterprise, Professional, or Learning), you'll have a
different set of available grids to choose from when you display the Components dialog box.

Understanding the Grid Control's Use

When you place the grid control on a form, you'll have to resize it before the control takes on a tabular appearance. As
you expand the size of the control, it doesn't look too much more like a table (as you can see in Figure 22.6). The
problem is that the table's default number of rows and columns are both two. As you add to the table's row and
columns, the grid control looks more like a table.

Figure 22.6. The grid control doesn't look too much more like a table when you first place it on a
form.

As you can see, one of the first tasks you must perform after adding the grid control is to expand its number of rows
and columns until the grid contains a reasonable number. Keep in mind that the grid control doesn't need to show the
same number of rows and columns as your multidimensional array, because the control displays scrollbars with which
the user can navigate through the grid's data.

Note

The grid control supports fixed rows and columns, as Figure 22.7 illustrates. You can control the number of fixed rows
and columns that appear. If you increase the number of fixed rows and columns, the shaded area increases as well.

Figure 22.7. The fixed rows and columns provide a place for labels.

Fixed rows and columns refer to the rows and columns in a grid control that do not scroll when the user clicks the
scrollbars. The fixed rows and columns provide labels that describe the data in the grid, not unlike worksheet cell row
and column numbers and names.

The fixed rows and columns are often called row and column headers.

Once you fill the grid control with data, your users can scroll through the data and select one or more cells in the grid.
Through programming, you can update or copy selected cell values to or from other cells, variables, or controls.

Note

The grid control holds all kinds of information, including text, numbers, and even pictures.

Table 22.2 contains several properties unique or important to the grid control. (The table does not describe several
properties that you already know, such as Height and Width, as well as more obscure properties.) By studying these
properties, you can learn much about how to use this control. Many of the properties relate to cell selections within the
grid control's tabular data.

Table 22.2. The grid control supports several important design-time properties.

Property Description
AllowBigSelection Enables users to select an entire row or column with a single mouse click. If set to True, this

property allows the user to click a fixed row or column header to select the entire row or column.
AllowUserResizing Determines how much control you give users to change the width and height of columns and

rows. If this property is set to flexResizeNone, the user cannot change the width or height of
the columns or rows. If it's set to flexResizeColumns, the user can change the width of
columns. If it's set to flexResizeRows, the user can change the height of the rows. If it's set to
flexResizeBoth, the user can change the width and height of the columns and rows.
Depending on the data, your user may need the ability to resize the rows and columns to read the
data in the grid control.

Cols Determines the number of columns in the grid control.
Custom Opens the grid control's Property Pages dialog box (see Figure 22.8). The dialog box enables

you to set various properties easily.
FillStyle Specifies how a cell or range of cells receives formatting. If this property is set to

flexFillSingle, the current cell is formatted. If this property is set to flexFillRepeat, all
selected cells (if any are selected) will be formatted.

FixedCols Specifies the number of fixed (nonscrolling) columns used for headers.
FixedRows Specifies the number of fixed (nonscrolling) rows used for headers.
FocusRect Determines how the user's selection of the current cell appears on the screen. If this property is

set to flexFocusNone, the current cell does not appear with special highlighting. If it's set to
flexFocusLight, a light outline appears around the current cell. If it's set to flexFocusHeavy,
the current cell appears with blue highlighting.

FormatString Contains a string that determines how a cell or selected cells are to be formatted. See the section
"Using the FormatString Property."

GridLines Specifies how the grid's nonfixed lines are to look. If this property is set to flexGridNone, no
lines separate the cells. If it's set to flexGridFlat, gray lines separate the cells from one
another. If it's set to flexGridInset, dark lines separate the cells. If it's set to
flexGridRaised, the cells appear raised in a 3D style.

Table 22.2. The grid control supports several important design-time properties.

Property Description
GridLinesFixed Specifies how the grid's fixed lines are to look. If this property is set to flexGridNone, no lines

separate the cells. If it's set to flexGridFlat, gray lines separate the cells from one another. If
it's set to flexGridInset, dark lines separate the cells. If it's set to flexGridRaised, the cells
appear raised in a 3D style.

HighLight Determines how selected cells appear. If this property is set to flexHighlightNever, the
selection of cells never appears on the screen. If it's set to flexHighlightAlways, selected cells
appear highlighted (with the background darkened). If it's set to flexHighlightWithFocus, the
highlighted cells appear only when the grid control has the focus.

RowHeightMin Specifies the minimum number of twips a row can be so that the user cannot shrink a row to
smaller than the set value.

Rows Specifies the number of rows that appear in the grid control.
SelectionMode Determines how cell selection occurs. If this property is set to flexSelectionFree, the user

can select any rectangular section of cells. If it's set to flexSelectionByRow, the selected cells
always span the entire row. If it's set to flexSelectionByColumn, the selected cells always
span the entire column.

WordWrap Determines whether or not the cell contents wrap within a cell when the user increases the width
or height of a column or row.

Note

If you set the FocusRect property to flexFocusHeavy, the cell will not stand out in a group of selected cells.

Figure 22.8. The Property Pages dialog box enables you to set common grid control properties
easily.

The grid control is unusual in that it supports several runtime properties that must be set; otherwise, the control will not
be functional. Table 22.3 contains many runtime properties, some of which your code will have to set to use the grid
control properly.

Note

Some of the formatting properties, such as CelAlignment, exist to let you control formatting at runtime. To format a
cell at designtime, use the FormatString property in Table 22.2.

Table 22.3. Your Visual Basic code must set several runtime properties.

Property Description
CellAlignment Determines the alignment of values within cells. If this property is set to flexAlignLeftTop (0), the

cell contents align in the upper-left corner. If it's set to flexAlignLeftCenter (1), the cell contents
align left and centered. In a similar manner, the other named constant values that align the cell in
other ways are flexAlignLeftBottom (2), flexAlignCenterTop (3), flexAlignCenterCenter (4),
flexAlignCenterBottom (5), flexAlignRightTop (6), flexAlignRightCenter (7),
flexAlignRightBottom (8), and flexAlignGeneral (9) to default to normal behavior of left-
centered strings and right-centered numbers.

Table 22.3. Your Visual Basic code must set several runtime properties.

Property Description
Col Sets the column number of the cell whose value you want to change. A current cell is tracked, starting

at the cell at row and column intersection 0,0. The value that you assign to the grid control's Text
property goes into the cell in the column defined by the Col value.

ColAlignment Determines the alignment of values within a specific column using the same named constants as
CelAlignment.

ColWidth Determines the width, in twips, of a column.
Row Sets the row number of the cell whose value you want to change. A current cell is tracked, starting at

the cell at row and column intersection 0,0. The value that you assign to the grid control's Text
property goes into the cell in the row defined by the Row value.

SelEndCol Specifies the column number of the selected range's far-right column.
SelEndRow Specifies the row number of the selected range's lowest row.
SelStartCol Specifies the column number of the selected range's far-left column.
Text Specifies the contents of the given cell. You can assign the current cell (made current by the Row and

Col intersection) a new value by assigning that value to the Text property.

Note

Many other designtime and runtime properties exist, but Tables 22.2 and 22.3 list the most important ones for new
users of the grid control.

Although the cell's content is set or read by the Text property, the data itself does not have to be string data. You can
assign numeric values to the Text property, and Visual Basic converts the numbers to a string before making the
assignment. In a similar manner, you can assign a cell to a numeric variable, and Visual Basic converts the number
within the text cell to a number before making the assignment. If, however, Visual Basic cannot convert the value to a
number, a runtime error will occur if you assign the value to a numeric variable.

Using the Grid Control in an Application

One of the best ways to understand the grid control is to create an application that utilizes it. Therefore, you might want
to follow along with the next several sections, which create an application that includes both multidimensional arrays
and a grid control. The application requires the grid control to manage selected cells within the control so that you can
see how to work with ranges of cells.

Setting Up the Project

Figure 22.9 shows the screen from the application that you will now create. The grid control displays sales
commissions for particular products and sales staff. The salespeople's names will appear across the row headers, and
the product names will appear down the left side of the grid.

Figure 22.9. The grid control easily enables you to manage sales commissions.

All the data is stored in a two-dimensional table and transferred to the grid control. This application does not load the
initial table from the disk or store the table to disk upon exiting. Therefore, the source of the table's values is a series of
assignment statements. In a real application, you would want to load and store the table to disk or, more likely, to a
database table somewhere. If this application included disk I/O, the project's scope would be expanded too much to
focus just on tables and the grid control. Therefore, this application keeps things simple by staying away from disk
files.

The following points highlight the use of this application:

• The scrollbars can be used to increase or decrease the sales revenue for any salesperson's commission on any
product.

• The increment or decrement amount can change via the use of the scrollbars, thus dynamically changing the
command button's caption.

• The current cell is the only cell that changes when the user increases or decreases the commission percentage,
unless the user first selects a range of cells, in which case the entire range of commissions will increase or
decrease by the given percentage.

• Most of the grid control's default property values will work for this project. As usual, Microsoft selected the
most common property values for the control's default values. You'll certainly have to set property values at
runtime (as described in the previous section), but at design time you only need to modify the name, number of
columns, and number of rows in the control.

• The number of sales people or products tracked can easily be expanded by changing the number of rows and
columns of both the table and the grid control. No visual change is necessary because of the grid control's
scrolling capabilities.

Once you create and run this application, you'll have a better feel for the grid control's use. Also, you'll be able to see
how you might adapt this simple example to use in other applications.

Create a new project and add the controls and property values listed in Table 22.4.

Note

Remember to add the grid control to your toolbox before you start working with the form. Add the control Microsoft
FlexGrid Control 6.0, as described earlier in the section "Preparing for the Grid Control."

Table 22.4. Place these controls and property values to create the sales commission form.

Property Value

Form Name frmSales

Form Caption Using the Grid Control and
Tables

Form Height 7920

Form Width 9180

Label #1 Name lblSales

Label #1 Alignment Center

Label #1 Caption Sales Commission Control Chart

Label #1 Font size 18

Label #1 Font style Bold

Label #1 Height 495

Label #1 Left 1200

Label #1 Top 1200

Table 22.4. Place these controls and property values to create the sales commission form.

Property Value

Label #1 Width 6015

Label #2 Name lblInMin

Label #2 Alignment Center

Label #2 Caption 1%

Label #2 Font Size 8

Label #2 Height 255

Label #2 Left 960

Label #2 Top 5640

Label #2 Width 375

Label #3 Name lblInMax

Label #3 Alignment Center

Label #3 Caption 15%

Label #3 Font Size 8

Label #3 Height 255

Label #3 Left 2880

Label #3 Top 5640

Label #3 Width 375

Label #4 Name lblDeMin

Label #4 Alignment Center

Label #4 Caption 1%

Label #4 Font Size 8

Label #4 Height 255

Label #4 Left 5160

Label #4 Top 5640

Label #4 Width 375

Label #5 Name lblDeMax

Label #5 Alignment Center

Table 22.4. Place these controls and property values to create the sales commission form.

Property Value

Label #5 Caption 15%

Label #5 Font Size 8

Label #5 Height 255

Label #5 Left 7080

Label #5 Top 5640

Label #5 Width 375

Grid control Name grdSales

Grid control Cols 8

Grid control FocusRect flexFocusNone

Grid control Height 3015

Grid control Left 1320

Grid control Rows 20

Grid control Top 1800

Grid control Width 5895

Horizontal scrollbar #1 Name hscIncrease

Horizontal scrollbar #1 Left 1080

Horizontal scrollbar #1 Max 15

Horizontal scrollbar #1 Min 1

Horizontal scrollbar #1 Top 5280

Horizontal scrollbar #1 Width 2055

Horizontal scrollbar #2 Name hscDecrease

Horizontal scrollbar #2 Left 5280

Horizontal scrollbar #2 Max 15

Horizontal scrollbar #2 Min 1

Horizontal scrollbar #2 Top 5280

Horizontal scrollbar #2 Width 2055

Command button #1 Name cmdIncrease

Table 22.4. Place these controls and property values to create the sales commission form.

Property Value

Command button #1 Caption &Increase by 15%

Command button #1 Height 495

Command button #1 Left 1320

Command button #1 Top 6000

Command button #1 Width 1575

Command button #2 Name cmdDecrease

Command button #2 Caption &Decrease by 15%

Command button #2 Height 495

Command button #2 Left 5520

Command button #2 Top 6000

Command button #2 Width 1575

Command button #3 Name cmdExit

Command button #3 Caption E&xit

Command button #3 Height 495

Command button #3 Left 3720

Command button #3 Top 6720

Command button #3 Width 1215

Once you place these controls and set their values, you're ready to enter the code. Remember that the original data will
reside in an array whose rows and column numbers match, by design, the number of rows and columns in the grid
control. From Table 22.4, therefore, you already know that the grid control receives its data from a two-dimensional
table with eight columns and 20 rows.

Understanding the Code

Listing 22.4 contains code that initializes the overall program values. The code is a controlling procedure because,
when the form loads, several Call statements execute other subroutine procedures. Keep in mind that much of this
procedure performs the initializing of the grid's headers with salespeople's last names across the top of the grid and
products listed down the side.

Tip

Listing 22.4 shows a good example of modular programming. When you must make a change to the program later, you
won't have to wade through several pages of code within a single procedure. Instead, the called procedures each have
one purpose. You can more easily modify a procedure's action without interfering with unrelated code.

Modular programming refers to the practice of placing code with a single purpose in a general subroutine procedure
and then calling that code from a controlling procedure.

Listing 22.4 The Form_Load() procedure initializes several values through subroutines
1: Private Sub Form_Load()
2: ' Define the justification of the grid cells and
3: ' assign cell titles to the fixed row and column
4: ' headers. Additionally, initialize the table of
5: ' values and send that table to the grid control
6: '
7: Call InitScrolls ' Initialize scrollbars
8: Call CenterCells ' Center cell alignments
9: Call SizeCells ' Specify cell widths
10: Call Titles ' Place column and row titles
11: Call FillCells ' Fill cells with values
12: End Sub

At a glance, you can determine what Form_Load() does by looking through the called routines in lines 7 through 11. If
the called code were not in separate procedures but were embedded within Form_Load(), you would have a more
difficult time finding the code you want to study or change later.

Listing 22.5 contains the code for the first three called procedures: InitScrolls(), CenterCells(), and
SizeCells(). These, as well as all the general subroutine procedures, must appear before Form_Load(), so they
reside in the module's General section of the code window.

Listing 22.5 The first three procedures that Form_Load() calls are used to set up the grid
1: Private Sub InitScrolls()
2: ' Set both scrollbars to their maximum values
3: ' Although you set these values in the Properties
4: ' window, this proc enables you to more easily change
5: ' the scrollbar maximum values if the program's
6: ' requirements change.
7: '
8: hscIncrease.Value = 15
9: hscDecrease.Value = 15
10: End Sub
11:
12: Private Sub CenterCells()
13: ' Sets the justification of the grid's cells
14: ' to a centered alignment. Be sure to center
15: ' the header rows and columns.
16: '
17: Dim Column As Integer
18: '

19: ' First center the header cells
20: For Column = 0 To 7
21: grdSales.Col = Column ' Sets current column
22: ' Center the fixed cells in this column
23: grdSales.ColAlignment(Column) = flexAlignCenterCenter
24: Next Column
25: End Sub
26:
27: Private Sub SizeCells()
28: ' Specify the width of each cell
29: Dim Column As Integer
30: For Column = 0 To 7
31: grdSales.ColWidth(Column) = 1100 ' In twips
32: Next Column
33: End Sub

The InitScrolls() procedure is not actually necessary, because you set the scrollbar maximum positions in the
Properties window when you placed the scrollbars on the form. Nevertheless, this application changes the maximum
scrollbar value at the user's request, so you can easily change the initial position of the scrollbar from code without
bothering to locate the Max property of the scrollbar if your application's initial scrollbar values are to change.

The CenterCells() procedure centers all cell values in the grid. The ColAlignment property requires a column
number to center as its index. Line 23 provides this index. Finally, the SizeCells() procedure in line 27 sets all cell
widths at 1,100 twips by stepping through the grid and applying the ColWidth property to each column (line 31).

Listing 22.6 shows the tedious code that initializes the grid. Actually, the majority of the code initializes the titles in the
grid and then fills a table with values and copies those values to the grid itself. The two-dimensional table is a go-
between storage area that's not actually required in this particular application. Nevertheless, by studying the code, you'll
see how easy it is to display table information stored in a multidimensional array with a grid.

Listing 22.6 You should initialize the grid headings and data cells
1: Private Sub Titles()
2: ' Fill in the column titles
3: ' Typically, this data would come from a database table
4: grdSales.Row = 0 'All sales people's names are in row 0
5: grdSales.Col = 1
6: grdSales.Text = "Smith"
7: grdSales.Col = 2
8: grdSales.Text = "Johnson"
9: grdSales.Col = 3
10: grdSales.Text = "Lake"
11: grdSales.Col = 4
12: grdSales.Text = "West"
13: grdSales.Col = 5
14: grdSales.Text = "Gates"
15: grdSales.Col = 6
16: grdSales.Text = "Kirk"
17: grdSales.Col = 7
18: grdSales.Text = "Taylor"
19: ' Now fill products
20: grdSales.Col = 0 'All product names are in column 0

21: grdSales.Row = 1
22: grdSales.Text = "#1 Widget"
23: grdSales.Row = 2
24: grdSales.Text = "#2 Widget"
25: grdSales.Row = 3
26: grdSales.Text = "Long tube"
27: grdSales.Row = 4
28: grdSales.Text = "Short tube"
29: grdSales.Row = 5
30: grdSales.Text = "Metal liner"
31: grdSales.Row = 5
32: grdSales.Text = "Wood liner"
33: grdSales.Row = 6
34: grdSales.Text = "Plastic liner"
35: grdSales.Row = 7
36: grdSales.Text = "Rubber liner"
37: grdSales.Row = 8
38: grdSales.Text = "Basket"
39: grdSales.Row = 9
40: grdSales.Text = "Bolt 3C"
41: grdSales.Row = 10
42: grdSales.Text = "Bolt 5A"
43: grdSales.Row = 11
44: grdSales.Text = "Hex nut 3C"
45: grdSales.Row = 12
46: grdSales.Text = "Hex nut 5A"
47: grdSales.Row = 13
48: grdSales.Text = "#12 Nail"
49: grdSales.Row = 14
50: grdSales.Text = "#15 Nail"
51: grdSales.Row = 15
52: grdSales.Text = "#16 Nail"
53: grdSales.Row = 16
54: grdSales.Text = "Eye bolt #4"
55: grdSales.Row = 17
56: grdSales.Text = "Eye bolt #6"
57: grdSales.Row = 18
58: grdSales.Text = "Eye bolt #8"
59: grdSales.Row = 19
60: grdSales.Text = "Gasket"
61: End Sub
62:
63: Private Sub FillCells()
64: ' Fill in all 160 cells with values
65: ' calculated just from the row and column
66: ' values. Although this data is meaningless,
67: ' it quickly puts data in the table and grid.
68: '
69: ' Normally, this data would come from a database.
70: '
71: ' Declare a 20-row and 7-column table that
72: ' matches the grid on the form. Keep zero-based
73: ' subscripts because the grid uses them also.
74: Dim curData(19, 7) As Currency
75: Dim Row As Integer
76: Dim Column As Integer
77: '

78: ' Fill the table with data
79: For Row = 1 To 19
80: For Column = 1 To 7
81: curData(Row, Column) = ((Row + Column) / Row)
82: Next Column
83: Next Row
84: ' Copy table contents to grid
85: For Row = 1 To 19
86: For Column = 1 To 7
87: grdSales.Row = Row
88: grdSales.Col = Column
89: grdSales.Text = Format(curData(Row, Column), "###.00")
90: Next Column
91: Next Row
92: End Sub

The huge list of assignments in lines 4 though 60 serve only to place salespeople names across the top headers and the
product names down the column headers at the left of the grid. When you work with a grid, there's little else you can do
to initialize the headers. Many times, however, this information comes from a database, and you'll load the column and
row headers from a list in a database table. For this simple application, the assignments were necessary.

Lines 79 through 83 fill the table, whose row and columns match that of the grid control, with data values. The values
are comprised of a calculation based on row and column numbers just to place different values in the various table
elements. The table acts as an intermediate storage area for the grid's values and is not necessary for this application.
Nevertheless, you can study the initialization of a table with a nested loop here. As earlier sections of this bonus lesson
explained, nested loops work well for stepping through tables and other multidimensional arrays. Of course, being that
a grid works so much like a table, lines 85 though 91 use nested loops for copying the data to the grid control.

Note

Note that line 89 uses the internal Format() function to format the data so that it's displayed in the grid displays in
dollars and cents. Later, in the section "Using the FormatString Property," you'll learn how to use a grid-based
property to set the format of cells.

The rest of the code works to control the application's reaction to the user's clicking of the command buttons and
scrollbars that appear beneath the grid. These control the various commission price increases and decreases the user
wants to implement. For example, if the commission for a particular salesperson's product is to rise or fall, the user can
select that cell and click the scrollbar to change that commission only. In addition, the Increase by 15% and Decrease
by 15% command buttons serve to implement the fixed 15 percent change of the selected commission when the user
clicks the command button. Listing 22.7 shows the code that makes these commission changes.

Listing 22.7 The commissions are affected by the user's selection of controls
1: Private Sub hscDecrease_Change()
2: ' Change the command button's Caption
3: cmdDecrease.Caption = "&Decrease by" & Str(hscDecrease.Value) & "%"
4: End Sub

5:
6: Private Sub hscIncrease_Change()
7: ' Change the command button's Caption
8: cmdIncrease.Caption = "&Increase by" & Str(hscIncrease.Value) & "%"
9: End Sub
10:
11: Private Sub cmdIncrease_Click()
12: ' Increase selected cell values by
13: ' increasing the scrollbar percentage
14: Dim SelRows As Integer
15: Dim SelCols As Integer
16: Dim SelStartRow As Integer
17: Dim SelStartCol As Integer
18: Dim RowBeg As Integer
19: Dim ColBeg As Integer
20:
21: If (grdSales.HighLight) Then ' If selected...
22: ' Save the selected cell values
23: SelStartRow = grdSales.RowSel
24: SelStartCol = grdSales.ColSel
25: RowBeg = grdSales.Row
26: ColBeg = grdSales.Col
27: ' Step through all selected cells
28: For SelRows = RowBeg To SelStartRow
29: For SelCols = ColBeg To SelStartCol
30: grdSales.Row = SelRows
31: grdSales.Col = SelCols
32: ' Increase the cell by scrollbar amount
33: grdSales.Text = grdSales.Text + (hscIncrease.Value / 100 * _
 grdSales.Text)
34: grdSales.Text = Format(grdSales.Text, "####.00")
35: Next SelCols
36: Next SelRows
37: ' Reset selection highlight
38: grdSales.Row = RowBeg
39: grdSales.Col = ColBeg
40: grdSales.RowSel = SelStartRow
41: grdSales.ColSel = SelStartCol
42: End If
43: End Sub
44:
45: Private Sub cmdDecrease_Click()
46: ' Decrease selected cell values by
47: ' decreasing the scrollbar percentage
48: Dim SelRows As Integer
49: Dim SelCols As Integer
50: Dim SelStartRow As Integer
51: Dim SelStartCol As Integer
52: Dim RowBeg As Integer
53: Dim ColBeg As Integer
54:
55: If (grdSales.HighLight) Then ' If selected...
56: ' Save the selected cell values
57: SelStartRow = grdSales.RowSel
58: SelStartCol = grdSales.ColSel
59: RowBeg = grdSales.Row
60: ColBeg = grdSales.Col

61: ' Step through all selected cells
62: For SelRows = RowBeg To SelStartRow
63: For SelCols = ColBeg To SelStartCol
64: grdSales.Row = SelRows
65: grdSales.Col = SelCols
66: ' Decrease the cell by scrollbar amount
67: grdSales.Text = grdSales.Text - (hscDecrease.Value / 100 * _
 grdSales.Text)
68: grdSales.Text = Format(grdSales.Text, "####.00")
69: Next SelCols
70: Next SelRows
71: ' Reset selection highlight
72: grdSales.Row = RowBeg
73: grdSales.Col = ColBeg
74: grdSales.RowSel = SelStartRow
75: grdSales.ColSel = SelStartCol
76: End If
77: End Sub
78:
79: Private Sub cmdExit_Click()
80: ' Terminate application
81: End
82: End Sub

The hscDecrease_Change() and hscIncrease_Change() functions serve only to change the Caption property for
either command button as the user clicks the scrollbar. The scrollbars determine the amount by which the command
button increases or decreases in value.

Although the rest of the code beginning in line 11 is rather lengthy, the two large procedures in the code,
cmdIncrease_Click() and cmdDecrease_Click(), do basically the same thing, except that one increases the value
stored in whatever cells are selected and the other decreases the values stored in the selected cells.

Note

If the user only selects a single cell before clicking a command button, only that cell will change when the command
button's Click procedure executes.

Given the similarities of the two large procedures, this analysis looks at only one, the cmdIncrease_Click()
procedure. Line 21 ensures that the user has selected at least one cell before the increase of the cell values is performed.
If no cell is selected, the procedure does nothing. Lines 23 through 26 save the rectangular area of the selected range.
This range is determined by the current cell's row and column (the cell in the upper-left corner of the selection) and the
end of the selection's row and column.

Lines 28 and 29 then use a nested For loop to step through every cell in the selection. Each cell is increased by the
value of the scrollbar. (Remember, the value of the scrollbar determines what percentage the command button
changes.) Lines 38 through 41 reset the selection, because if you ever change the grid's Row and Col values, any

selection goes away and the Row and Col values determine the current cell by replacing the selected area. Lines 40 and
41 use RowSel and ColSel to put the selection back in its original location.

Using the Application

Now that you've created the application and have added the code, you can run the program. At first, you may not see
the significance of the scrollbars and how they tie in with the command button, but once you perform these program
tasks, you'll quickly learn how the program works:

1. Click the left scrollbar to decrease its position (move its position to the left). Notice that the Caption property
of the command button beneath the scrollbar changes.

2. Click a cell to highlight it in the grid.
3. Click the right command button to see the value in that cell decrease by 15%.
4. Select a range of cells, such as the range shown in Figure 22.10.

Figure 22.10. No matter how many cells you select, you can increase or decrease the values
within that selection by clicking a button.

5. Click the left command button to change the selected cells by the value shown on the command button. Notice
that the selection remains in case you want to keep increasing the commission for a range of cells.

6. Select another range and decrease these values.
7. Click the Exit button to terminate the program.

Using the FormatString Property

Instead of using the internal Format() function to format data as you place it in a grid, you can set the format of a cell
or range of cells so that any data you subsequently place in the cell is formatted according to the format you supply.
The grid control's FormatString property requires a string value that determines the appearance of the cell's contents.
Although FormatString is slightly cryptic at first, once you master it, you'll be able to format grid data more quickly
than you could before.

Note

You can enter a FormatString value in the Custom dialog box, which appears when you click the Custom property
value of the grid control. Enter the FormatString property in the Format text box when you click the dialog box's
Style tab. In addition, you can assign the FormatString property's value directly, as this section shows.

One of the best features of FormatString is that you can use it to set row and column header titles so that you don't
have to assign values as you did in the previous section's application.

The following guidelines determine the contents of the FormatString property:

• The pipe symbol (|) separates FormatString segments from one another.
• Each segment between pipes defines a column.
• Text in each segment acts as the header values for row 0.
• Text in each segment defines the width of that grid's column.
• The character < left-justifies text in that segment, ^ centers text in that segment, and > right-justifies text in that

segment.
• Text following a semicolon (;) defines the column 0 headings that appear to the left of each row.
• The longest row heading text value determines the width of the headings for column 0.
• The number of segments determines the minimum number of columns in the grid.

Although the FormatString property defines the rows and columns, as well as the headers and their widths, you must
still size the grid control on your form window so that the user sees all the rows and columns. FormatString does not
resize the grid in any way.

The following example produces the grid shown in Figure 22.11:

Figure 22.11. Use the FormatString property to set up row and column headers.

Dim strCol As String
Dim strRow As String
' Set the grid's column headers
' The ^ symbol causes all subsequent header values
' to appear centered. The pipe symbol defines each
' column.
strCol = "^|Smith|Johnson|Lake|West|Gates|Kirk|Taylor"
' Set the grid's row headers by building a string.
' the semi-colon tells Visual Basic to define these
' values as row headers.
strRow = ";|#1 Widget|#2 Widget|Long tube|Short tube|"
strRow = strRow & "Metal liner|Wood liner|Plastic liner|"
strRow = strRow & "Rubber liner|Basket|Bolt3C|Bolt 5A|"
strRow = strRow & "Hex nut 3C|Hex nut 5A|#12 Nail|#15 Nail|"
strRow = strRow & "#16 Nail|Eye bolt #4|Eye bolt #6|"
strRow = strRow & "Eye bolt #8|Gasket"
' Format the grid by assigning the two strings
grdSales.FormatString = strCol & strRow

Notice that the grid is basically identical to the one you created in the earlier application, except that the grid in Figure
22.11 has column widths that are equal the widths of the column header.

Tip

Obviously, using FormatString eliminates many tedious lines of code from the previous application. Listing 22.6
contains multiple assignment statements to assign column and row headers. The FormatString property can take care
of the headers much more efficiently.

Storing Pictures in the Grid Control

The grid control enables you to store bitmap and icon pictures in the grid cells using the CellPicture property. To
place a picture in any cell, follow these steps:

1. Assign the Row and Col properties to the cell you want the picture to appear in.

2. Assign the ColWidth and ColHeight properties to the same width and height of the picture if you want to
control the picture size.

3. Assign the picture to the CellPicture property.

Caution

You cannot assign a picture at designtime.

Tip

If you first place your image in an image control on the form and then set the image's Visible property to False, you
can assign the image control to the cell instead of using LoadPicture() to specify the exact filename of the picture you
want to place in the cell. The image control enables you to more easily set the cell's width and height to match the
picture.

Suppose you wanted to place a picture in the upper-left cell of the grid control. This cell normally contains no header
text. The following code will place an image control's picture in that cell:

' make the upper-left hand cell current
grdSales.Row = 0

grdSales.Col = 0
' Set the cell's width and height to match the picture
grdSales.ColWidth(0) = Image1.Width
grdSales.RowHeight(0) = Image1.Height
'Assign the picture to the cell
Set grdSales.CellPicture = Image1.Picture

Notice that you must use a Set statement to assign the picture to the cell. A regular assignment statement will not
suffice for the picture, because only the picture's pathname would then be assigned to the cell instead of the image
itself. Figure 22.12 shows what this would look like with a bitmap picture of a beanie cap.

Figure 22.12. Pictures can spruce up a grid control.

Summary
This bonus lesson explained how to set up multidimensional arrays so that you can more easily manage data. The most
common multidimensional array, the two-dimensional table, appears in many kinds of situations where you must track
rows and columns of data, as you might have to manage in a price inventory system, for example. Visual Basic enables
you to track up to 60 dimensions of data, although three or four dimensions are all you normally must manage.

One of the easiest ways to present table data is with a grid control. Several kinds of grid controls exist, and you'll find
them in the Components dialog box that appears when you select Project, Components. The FlexGrid is one of the most
typical examples of a grid control. This bonus lesson explained how to set up and manage the FlexGrid control.

 Q&A
Q: How do I know what the subscripts are supposed to represent if I declare a multidimensional array

with four or five dimensions?

A: Each subscript can represent whatever you want them to represent. For example, in a two-dimensional table,
the first subscript does not have to represent rows and the second does not have to represent columns; you
can reverse them and use them the other way around. It's just the most common approach to make the far-
right subscript the columns, the subscript to the left of it the rows, and the subscript to the left of it the layers
of the table (as you would have in a cube of blocks). It is because the standard approach is to let the far-right
column represent columns, that you should follow that standard. If someone else ever maintains your code,
you help simplify the job if you've followed the standard way of using table values.

Although people do not visualize more than three dimensions well, a fourth subscript would simply keep
track of the number of three-dimensional tables you have reserved in the three right subscripts. A fifth
subscript, then, would represent the number of groups of the three-dimensional tables, and so on. If you
increase the number of dimensions more than three, your programming does not get a lot harder, but
remembering what each subscript represents can be.

Q: Will I often use a multidimensional array with more than three or four dimensions?

A: Probably rarely, if ever.

Q: If I probably won't use multidimensional arrays with more than three or four dimensions, why learn
about them?

A: Actually, by the time you understand multidimensional arrays (and by the time you see that adding another
dimensional subscript, in terms of computer storage, simply gives you additional occurrences of the array
that the other dimensions declare), you haven't added that much complexity to your understanding. Just
because you don't use multidimensional arrays past the fourth dimension very much doesn't mean you
shouldn't learn how simple it is to add a subsequent dimension. Just remember, however, that every
dimension increases the factor of the amount of memory you're using, so don't declare too big of a table with
too many elements without considering the memory of the target computer on which your application will
run. Some scientific and mathematical modeling applications do require several dimensions, so if you write
applications for technical areas, you're more likely to find a use for five or more dimensions than if you write
strictly business applications.

Q: Can I use FormatStringto add data to my grid control?

A: No, FormatString serves only to add row and column header values to your grid. You must assign the data
values that appear beneath and to the right of the grid's headers.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. Try to understand the quiz and exercise answers before
continuing to the next bonus lesson. Answers are provided in Appendix A, "Answers to Exercises."

Quiz

1: True/False. All elements in a multidimensional table's row must be the same data type, but the different rows
can be different data types.

2: Given the following multidimensional declaration, which subscript—the first, second, or third—usually
specifies the rows?

Dim sngArray(8, 9, 10)

3: Given the table of integers (called intAra) that follows, what values do the following elements represent,
assuming that an Option Base 1 statement appears in the program?

a. intAra(1, 1)
b. intAra(3, 2)
c. intAra(2, 3)

 4 1 3 5 9
 10 2 12 1 6
 25 43 2 91 8
 14 7 28 71 14

4: True/False. Visual Basic supports up to 60 dimensions.

5: True/False. You can use the Array() function to initialize a multidimensional array in one statement.

6: What kind of control works well for the display of table data?

7: What are the fixed rows and columns used for in a grid control?

8: How can you assign a table to a grid's cells?

9: True/False. To assign a picture in a cell, you can use the CellPicture property at design time, just as you do
for other controls.

10: Which is more efficient? Using FormatString or assignment statements to set up a grid's headers?

Exercises

1: Calculate the number of elements are reserved with the following statements?

Option Base 1
Dim intAra(4, 7) As Integer

2: If you were to omit the Option Base statement in the procedure's declarations module, calculate the number
of elements reserved with the following statement?

Dim intAra(4, 7) As Integer

3: Change the salesperson grid application from earlier in this lesson so that the grid's values are written back to
the table before the program ends. Although nothing is done with the table, this practice is good to show the
one-to-one relationship between grids and tables. It also provides the place where you would write such
values back to a database file if you needed to save the commission changes made by the user.

Day 23. The Windows API
This bonus lesson describes how to access internal Windows routines. Although Visual Basic can do just about
anything you need, some applications require features that Visual Basic cannot perform without tedious programming
on your part. Fortunately, you can use routines that are already available elsewhere in Windows—such as those you
write in C or C++ and store in DLLs—for your Visual Basic application.

By utilizing these Windows routines, you can extend the power of Visual Basic and make it perform some functions
that only Windows has the true authority to perform. This bonus lesson describes not only how to access these
Windows routines, it also describes many of the routines you can work with. If your application needs to manage a
window's cursor, for example, the internal routines inside Windows already manage window cursors; therefore, you
may find it easier to call one of these routines from your Visual Basic application.

Today, you learn the following:

• What the Windows API is
• Why your applications may require Windows routines not found in Visual Basic
• About dynamic link libraries (DLLs)
• How Visual Basic connects to the Windows API routines with the Declare statement
• About several new procedures available for use with API routines
• About ways to avoid problems when specifying API routines
• How to interpret and use new argument data types required by the Windows API routines
• How to create wrappers for common API routines so your Visual Basic applications will more easily access the

procedures

The Windows API
The Windows API is a collection of routines available to you, the Visual Basic programmer. In a way, these API
routines work just like Visual Basic's own internal functions. When you need to use the code in an API routine, your
Visual Basic program calls that routine. When the Windows API finishes, control returns to your program so that it can
continue.

So many Windows API routines exist that just about anything you can do from Windows, you can do from a Visual
Basic application by calling the appropriate Windows API routine. For example, you can even force a system reboot by
calling the appropriate Windows API routine.

The Windows API, or Application Programming Interface, is a set of internal Windows routines you can call from
Visual Basic.

All the Windows API routines are stored in special files called DLLs. Several thousand API routines are available for
use. These API routines appear in files stored in your Windows and Windows\System folders. When you install
Windows, the DLL files install as well; therefore, you have access to these libraries automatically.

A DLL, or dynamic link library, is a set of API-based routines available for applications written in Visual Basic and
other languages that support DLLs to use.

Most DLL files have the .DLL filename extension or the .EXE filename extension. Any program you write has access
to the Windows DLLs. These same DLLs were part of older Windows versions as well (before Windows 95), except
that these files didn't have "32" in their names, designating them as 32-bit compatible. Pre–Windows 95 versions were
16-bit compatible, meaning that data traveled through the system 16 bits (two bytes) at a time. Programming in a 32-bit
environment adds much more flexibility, speed, and efficiency over the older 16-bit environment.

Here are the three most common DLLs:

• USER32.DLL— Contains functions that control the Windows environment and the user's interface, such as
cursors, menus, and windows.

• GDI32.DLL— Contains functions that control output to the screen and other devices.
• KERNEL32.DLL— Contains functions that control the internal Windows hardware and software interface.

Most of the memory, file, and directory service routines are located in KERNEL32.DLL.

Note

The GDI32.DLL library gets its name from the graphics device interface.

Tip

Windows is an operating system of several layers, starting with the layer the user sees (the graphical user interface)
and ending with the layer closest to the hardware that controls the data flow between programs and hardware. This
lowest level of the operating system is called the kernel. Hence, the name KERNEL32.DLL for the dynamic link
library that contains the kernel-based routines.

These three files hold most of the API routines, or functions, that you'll call from your Visual Basic applications. As
you glance through your Windows and Windows\System folders, you'll see other dynamic link libraries, as well, with
names such as COMDLG.DLL, MAPI32.DLL, NETAPI32.DLL, and WINMM.DLL. As Microsoft adds features to the
operating system, new DLL files appear.

DLLs are not just part of Windows. When you add a new application to your system, that application often supplies its
own DLL. Therefore, over time, many DLL files begin to appear in your system.

Caution

DLLs give you much more power over your system than Visual Basic normally provides. When using a Windows API
function, you're working with the internals of the operating system. As always, with power comes responsibility. Visual
Basic's environment and debugger recognize normal internal Visual Basic functions. However, API functions are far
outside Visual Basic's scope. Therefore, you can cause a system to crash, losing all your work, just by specifying
improper arguments when running a Visual Basic application that calls a Windows API function.

Tip

Save your project often when calling API functions. This way, if you inadvertently call an API function that causes a
system crash, you'll not lose all your work.

Figure 23.1 shows how an API routine appears to your Visual Basic application. Notice that the API routines come
from the operating system and are completely separate from Visual Basic.

Figure 23.1. API routines reside in the operating system.

The Nature of DLLs
The term dynamic link has special implications for programmers. When a routine is said to be linked dynamically to a
program, it means that the routine, whether a subroutine or function, is not connected to the program until after the
program is compiled. The function is available at runtime only. The functions that you write in the code window are
statically linked, meaning that the functions combine with the rest of your source code when you compile the program.
The DLL files, however, do not merge with your program. Your program has runtime access to these routines, but your
program's EXE file does not contain the physical DLL routines at any time.

This difference is critical when it comes to using functions found in such places as dynamic link libraries, because
neither the library nor the functions that your application calls are ever considered to be part of your program. The API
functions never add to the size of your application's files. During program execution, these routines are loaded just long
enough to run; then, if they are no longer needed, the Windows operating system can free up their resources so that
more memory and CPU time is left for new routines that might start up.

The big advantage to such dynamic linking is not, however, its efficient use of resources. If Windows changes, the
DLLs are replaced with new DLLs. Therefore, your applications will be able to support new Windows features without
you needing to recompile every application that uses a Windows API. For example, you may recall that Windows 95
changed the look of windows. The icons in the upper-right corner of a window are different than the Windows 3.11
icons. Every Visual Basic program that calls a Windows API to display a window works in either Windows
environment. Such a program, when run in a Windows 3.11 environment, would show the old icons. The same

program, when run in a Windows 95 environment, shows the new icons, even though the program itself did not change.
Therefore, in most cases, your programs that access the Windows API require no change when you move between
Windows versions.

Note

Windows is not just one big program. Instead, Windows is actually a collection of many programs, several of which
reside in DLL files. Windows, itself, is probably the biggest user of DLL files.

Tip

Anadvantage of using DLL routines is that several executing Windows programs can access the same DLL file's
routines. In addition, all your users should have standard DLL routines. Windows is required to run a Visual Basic
application, so needed DLLs will be available.

Using the Declare Statement
Calling Windows API routines requires a special statement called Declare. Normal internal Visual Basic functions
need no Declare statement because Visual Basic understands how its own functions work and knows the arguments
required by its own functions. API routines, however, are outside of Visual Basic's entire scope, so you must use
Declare to give Visual Basic information about the API function you're calling.

The Declare statement performs the following tasks:

• Specifies where the API function is located
• Identifies arguments needed by the API function by number and data type
• Specifies whether or not the API function returns a value

The location of the Declare statement also impacts the way your Visual Basic application manages the function. Your
Declare statement's location determines how much of your application can call the Windows API function described
by the Declare statement. The Declare statement describes one of two Windows API function scopes, depending on
these two conditions:

• If you declare the Windows API routine in the form module, outside of the form module's general declaration
section (such as inside an event procedure), only the code in the form module can call the API routine. The
Declare statement must designate the API routine as a private routine with the Private keyword.

• If you declare the Windows API routine in the general declarations section of a module or form, that API
routine is available to the entire application, and the routine is said to have public scope across all the
application's modules. Use the Public keyword to indicate the public scope.

As with all procedures, a Windows API routine can either be a subroutine or function, depending on whether the
routine returns a value. The following format describes the subroutine procedure version of the Declare statement:

Declare Sub procName Lib "libName" [Alias "alias"] [([[ByVal] var1 [As _
dataType][,[ByVal] var2 [As dataType]] ... [,[ByVal] varN [As dataType])]

The Declare statement tells Visual Basic of the type of API procedure (subroutine or function), the name of the
routine, the DLL library filename the routine is stored in (such as KERNEL32.DLL), and the arguments and data type
of those arguments. If the routine is a function, the Declare statement also describes the return data type.

Note

As with most statements, the format of Declare looks foreboding, but its actual use is slightly simpler than its format
seems. However, you must still be very careful to match all arguments and required values perfectly to the API routine
you call so that the routine executes properly.

The following format describes the function procedure version of the Declare statement. Notice that the format differs
from that of a subroutine procedure only by the Function keyword and the return data type at the end of the statement:

Declare Function procName Lib "libName" [Alias "alias"] [([[ByVal] var1 _
[As dataType] _
[,[ByVal] var2 [As dataType]] ... [,[ByVal] varN [As dataType])] As _
dataType

The following statements illustrate Declare (you'll find these statements in the general module named Module1 of the
CallDlls.VBP sample project that comes with Visual Basic):

Declare Function GetWindowsDirectory Lib "kernel32" Alias
"GetWindowsDirectoryA"_
(ByVal lpBuffer As String, ByVal nSize As Long) As Long
Declare Sub GetSystemInfo Lib "kernel32" (lpSystemInfo As SystemInfo)

Notice that some DLL declarations are lengthy and some are small. Just as different internal functions require different
numbers of arguments, so do Windows DLL declarations and calls.

Caution

You must match the Windows API routine name with the exact uppercase and lowercase letters used by the original
Windows API function. These API functions are actually C routines and Visual Basic needs to use syntax that C

recognizes for the functions to operate properly from a Visual Basic application. Visual Basic will unsuccessfully
match the routine's call with the API routine if the letters differ in case or if you use a different format.

Understanding API Data Types

One of the reasons the API routines are difficult to call is that Windows uses a slightly different set of data types than
Visual Basic. Although the Windows API uses the String and Long data types, it also uses other data types such as
RECT and MSG. Therefore, getting the format exact can be difficult.

Note

Not only must your arguments match the required API argument list in number and data type, you must also pass the
arguments in the proper way—either by value or by reference. (Day 8, "The Nature of VB Programs," explains the
difference in the two methods of argument passing.) Therefore, use the ByVal keyword when needed, because without
ByVal, ByRef is assumed. Some arguments in the same API routine require different methods of passing.

The Alias keyword is used in a Declare statement to convert some string values that contain illegal characters to legal
Visual Basic equivalents. The Alias keyword also serves to convert Windows API routine names that aren't allowed,
such as _lopen (a valid Windows API name but an invalid Visual Basic procedure name) to the Visual Basic naming
standard.

You'll run across strange data types that you may not recognize. Table 23.1 describes some of these data types that
you'll run across when working with API routines. This table lists the data types that differ from Visual Basic's own
data types.

Table 23.1. Special data types used by the API routines.

Data Type Description

ANY A Windows API routine that accepts different kinds of data types will list ANY for those data types.
All ANY arguments are passed by reference, so you won't use the ByVal keyword.

ATOM Integer data. Always passed by value and described in an API routine's declaration as ByVal
argument% or ByVal argument As Integer.

BOOL Long integer data. Always passed by value and described in an API routine's declaration as ByVal
argument% or ByVal argument As Long.

CHAR Byte data. Always passed by value and described in an API routine's declaration as ByVal argument
As Byte.

COLOREF Long integer data used for specifying color values. Always passed by value and described in an API
routine's declaration as ByVal argument% or ByVal argument As Long.

Table 23.1. Special data types used by the API routines.

Data Type Description

DWORD Long integer data. Always passed by value and described in an API routine's declaration as ByVal
argument% or ByVal argument As Long.

NULL Long integer data types used for uninitialized values. Described in an API routine's declaration as
ByVal argument& and ByVal argument As Long.

LPSTR,
LPCSTR

Matches the String data type. Described in an API routine's declaration as ByVal argument$ or ByVal
argument As String.

STRUCTURE Sometimes, you'll run across a strange API data type such as RECT, MSG, and UDT. These define
complex data types that may be a collection of several other data types. Each structure-based API
routine requires a special structure, and you'll have to look at the API routine's required arguments to
know how to format them.

Remember that Table 23.1 contains only a few of the data types you'll find in the Windows API Declare statements.
Given these special API routines and their numerous arguments, how are you possibly supposed to know which to use?
The next section shows you how to use a special tool that comes with Visual Basic that lets you manage API routines.

Caution

If the API routine requires a String data type, you should pass a string that you've defined as a fixed-length string with
much padding in the string. For example, double the length of the longest string you ever expect the API routine to
return and then declare the fixed string argument with that much space before passing the string to the API routine.
(You don't need to worry about the string length if the routine does not modify the string in any way.)

Using the API Viewer

Windows contains thousands of API routines you can call. Knowing the format of even a small number of the routines
would be difficult. Therefore, Visual Basic includes a special tool called the API Viewer you can use to get help with
the format of the API routines.

The API Viewer displays API procedures and groups them together by subject so that you can locate the routines you
need to use.

The API Viewer enables you to locate API routines and arguments and then copy and paste that information into your
code window. Depending on your Visual Basic installation, you start the API Viewer in one of two ways.

Tip

The API Viewer's Copy button copies the selected declaration information to the Windows Clipboard. In addition, if
you click the API Viewer's Public or Private option before clicking Copy, the API Viewer designates the appropriate
Public or Private qualifying keyword in the Declare statement so that you don't have to change the declaration's
qualifier manually.

Some installations put the API Viewer on the Start menu. To see if you have the API Viewer on your Start menu, select
Start, Programs, Microsoft Visual Basic 6.0, Microsoft Visual Studio 6.0 Tools, API Text Viewer. If you don't locate
the API Viewer program in your Start menu, you may be able to start it from within the Visual Basic environment. To
do so, select the Add-Ins, Add-In Manager to display the Add-In Manager dialog box. Double-click the API Viewer
entry, if it exists, to add the API Viewer to your Add-Ins menu. You can start the program by selecting Add-Ins, API
Viewer.

Figure 23.2 shows the API Viewer window that appears.

Figure 23.2. The API Viewer enables you to more easily determine the format of API routines.

Caution

You may still not be able to start the API Viewer. If not, perhaps the it's not installed on your system. You will have to
start the Control Panel and select the Add/Remove Programs icon. Locate the Visual Basic entry and install the API

Viewer from the Tools entry in the list. You may have to locate your original Visual Basic installation CD-ROM to
complete the installation of the API Viewer.

Note

The API Viewer locates its underlying information from text files Apiload.txt, Mapi32.txt, and Win32api.txt that install
on your system along with the API Viewer.

Given that most of the API routines you'll be interested in are located in the Win32api.txt file, select File, Load Text
File from the API Viewer and select Win32api.txt. The API Viewer can convert the text file to an Access database
(with the .MDB filename extension) if you select Yes from the message box that appears and then choose the
Win32api.txt file (see Figure 23.3). After you convert the text file to a database, the loading menu option becomes File,
Load Database File.

Figure 23.3. The API Viewer can store its underlying information in a database for quicker access.

Notice that the top list box in the dialog box is labeled API Type. When you open this list box, you'll see these three
values:

• Constants— Lists all the named constants that the loaded Windows API file recognizes

• Declares— Lists all the declarations that appear in the loaded API file
• Types— Lists all the data types recognized by the loaded Windows API file

The Available Items list box contains all the Windows API routines for the file you loaded and the type of value you
want to see. For example, if you want to locate the Declare statement needed for the GetWindowsDirectory API
routine shown earlier, follow these steps:

1. Select Declares from the API Type list box. Numerous Declare candidates appear in the Available Items list
box.

2. You can quickly locate a specific Declare by typing the first few letters in the text box. Type getw and all
items that begin with those letters appear in the Available Items list box.

3. Scroll down to the GetWindowsDirectory entry.

4. Double-click the GetWindowsDirectory entry to display the Declare statement needed for that function, as
shown in Figure 23.4.

Figure 23.4. The API Viewer displays the Declare statement required by the statement you
select.

You can now select and copy the entire Declare statement and paste it into your code window.

Calling a Simple API Routine
Before learning more about the Windows API, you may want to see one of the API routines in action. One of the
simplest API procedures to use is the MessageBeep function. The function does one of these two actions:

• If the argument you pass to the MessageBeep() API function is positive, a beep sounds through the PC's sound
card.

• If the argument you pass to the MessageBeep() API function is negative, a beep sounds through the PC's
speaker.

Note

Sure, you can more simply use the Visual Basic Beep command to sound a beep, but this small application that you
build will offer quick insight into the process of calling API routines. Actually, many Visual Basic functions and
commands map directly to API calls, because Microsoft internally calls the needed routine when you issue the
corresponding function or command that happens to be mapped to an API routine.

Create a project with a single command button in the center of the form window. Set the command button's name to
cmdBeep and change the caption to &Beep. Double-click the command button to open a new Click event procedure.

Now, start your API Viewer (if you do not still have the API Viewer running from earlier in this lesson). Load the
win32api.txt file (or the database file, if you converted the file earlier in this lesson) and change the API Type to
Declares. In the second list box, type message, and a list of API procedures will appear in the Available Items list box.
The first function is MessageBeep. Double-click this entry to display the procedure's declaration in the Selected Items
text box.

Select the entire declaration so that you can paste the declaration into your code window. Switch back to your Visual
Basic application's code window. Insert a line before the Click event procedure so that you can paste the declaration in
the general declarations section of your code window. (You can insert a blank line by moving your cursor to the upper-
left corner of the code window and pressing Enter.)

Paste the Clipboard contents you copied from the API Viewer into your code window. Change the Public statement to
Private.

Caution

You must change the Public qualifier to Private because the function declaration is local to the form's module and is
not stored in a general declarations section.

Then, add the following code to the middle of the command button's Click event procedure:

Dim Beeper As Variant
Beeper = MessageBeep(1)

Listing 23.1 shows the whole procedure.

Listing 23.1 You can use the Windows API to sound the speaker.

1: Private Declare Function MessageBeep Lib "user32" (ByVal wType As Long) _
 As Long
2:
3: Private Sub cmdBeep_Click()
4: Dim Beeper As Variant
5: Beeper = MessageBeep(1)
6: End Sub

The Declare statement tells Visual Basic exactly how to find the MessageBeep() function. If the function were an
internal Visual Basic function, such as Abs(), Visual Basic wouldn't need a Declare statement because it would have
no trouble finding the function. The MessageBeep() function, however, is completely outside of the Visual Basic
environment. Therefore, the Declare statement tells Visual Basic exactly how to execute the function and how to pass
values. In addition, the Declare statement tells Visual Basic that the function resides in the USER32.DLL file.

Notice that MessageBeep() is a function and not a subroutine procedure. Therefore, MessageBeep() returns a value,
and the value is a Long data type. Your application does not need to do anything with this return value, however. The
Variant variable named Beeper simply stores the return value instead of leaving it hanging at the return of the function.

When you run the program, the command button appears in the middle of the form. If you click the command button,
you'll hear a beep from your sound card. If you don't hear the beep, you can change the argument to -1 so that the
sound comes from your PC's speaker. Even without a sound card or with your sound card's speakers turned off, the
PC's internal speaker will still sound.

Note

As with the Beep statement, many Visual Basic statements duplicate Windows API routines. That is fortunate, because
you don't have to call nearly as many API routines as you would otherwise have to call. In addition, many hundreds of
Windows API routines exist that you'll never need because they don't perform useful tasks for an application program.

Calling a Different API
You can create another simple application to test the calling of a Windows API routine. Consider Listing 23.2, which
sends to a label the kind of disk drive found.

Listing 23.2 Using the Windows API to learn more about a disk drive from inside your application.
1: Private Declare Function GetDriveType Lib "kernel32.dll" Alias _
 "GetDriveTypeA"(ByVal nDrive As String) As Long
2:
3: Private Sub cmdDrive_Click()
4: Dim lngDriveType As Long
5:
6: ' Pass the drive name that you are interested in
7: ' to the GetDriveType() function
8: lngType = GetDriveType("c:\")
9: '
10: ' Use the return value to determine
11: ' the kind of drive tested
12: Select Case lngType

13: Case 2
14: txtDrive.Text = "Removable drive"
15: Case 3
16: txtDrive.Text = "Fixed hard disk"
17: Case 4
18: txtDrive.Text = "Remote (network) drive"
19: Case Else
20: txtDrive.Text = "Unknown"
21: End Select
22: End Sub

If you want to enter and test the code in Listing 23.2, locate the GetDriveType() declaration in the API Viewer and
copy the declaration to your Clipboard. Replace the Declare statement in the code window with the copied text and
then change the Public keyword to Private. Fill in the rest of the code window to match Listing 23.2.

Next, add a command button named cmdDrive to the bottom of the form window and then add a text box control
named txtDrive to the top of the form. You can adjust the font and size of these controls if you wish, but doing so is
not critical for this simple example. Change line 8 to another drive, such as the disk drive, if you want to test for
another type of drive. Run the program to see the drive description message appear, as shown in Figure 23.5.

Figure 23.5. The API routine returned information about your disk drive.

Locating the Windows Folder
Sometimes, when writing programs that access system files or that store files in the Windows directory, Visual Basic
programmers use the Windows API routines to locate the Windows folder (the directory where Windows is installed).
Other folders you might want to locate are the System and Temp folders. Windows API routines exist to give you both
sets of information. You might, for instance, want to store temporary files used by your application in your user's Temp
folder. (The term folder is synonymous with directory.)

Caution

Always delete files you store in the Temp folder during your application's execution. Many users routinely delete files
that appear in Temp that are more than a day or two old to clean it out and retrieve needed disk space. You don't want
your application to be one of those applications that stores old files in Temp without deleting them; otherwise, your
users will not favor your program for long. Also, for those users who do not routinely clean their Temp folders (most of
them fail to clean the Temp folder and many don't even know the folder exists), you don't want to store temporary files
in the folder and leave them there. You'll waste disk space, and your users won't even know why they have less disk
space every time one of your applications finishes.

The following steps describe how to create a small application that gives you practice in retrieving Windows folder
information:

1. Create a new application.

2. Place the controls from Table 23.2 on the form. Figure 23.6 shows the form window that you'll create using the
values in Table 23.2.

Figure 23.6. This form window will display the user's Windows directory folder information.

3. Double-click the form to produce the Form_Load() event procedure. Insert a few blank lines before the
Form_Load() procedure so that you can include the Declare statements that will produce the three directories.

4. Start the API Viewer if you closed it in the previous section. Open the Win32api text or database file.

5. Select the Declares entry from the API Type list box.

6. Locate the GetWindowsDirectory declaration entry in the Available Items list box and double-click the entry
to display the declaration for the GetWindowsDirectory() routine.

7. Copy the GetWindowsDirectory() function from the API Viewer and paste it at the top of your code window.

8. Change the Public keyword to Private because the declaration resides in your form module, not in a general
code module.

9. Repeat steps 6 through 8 for the GetSystemDirectory() and GetTempPath() function declarations.

10. Enter the rest of the coded needed as described in Listing 23.3.

11. Run the application to see successful retrieval of the directory information. Figure 23.7 shows the resulting
execution on one machine.

Figure 23.7. The directory information will change depending on the user's machine's setup.

Table 23.2. Place these controls on your application's form to practice locating Windows folders.

Control Property Property Value

Form Name frmFolder

Form Caption Directory Info

Form Height 4500

Form Width 5790

Label Name lblTitle

Label #1 Alignment 2-Center

Label #1 BorderStyle 1-Fixed Single

Label #1 Caption Windows Directory Information

Label #1 Font Size 14

Label #1 Font Style Bold

Label #1 Height 855

Table 23.2. Place these controls on your application's form to practice locating Windows folders.

Control Property Property Value

Label #1 Left 1080

Label #1 Top 360

Label #1 Width 3375

Label #2 Name lblWD

Label #2 Alignment 1-Right Justify

Label #2 Caption Windows Directory:

Label #2 Height 255

Label #2 Left 720

Label #2 Top 1680

Label #2 Width 1455

Label #3 Name lblSD

Label #3 Alignment 1-Right Justify

Label #3 Caption System Directory:

Label #3 Height 255

Label #3 Left 720

Label #3 Top 2280

Label #3 Width 1455

Label #4 Name lblTD

Label #4 Alignment 1-Right Justify

Label #4 Caption Temp Directory:

Label #4 Height 255

Label #4 Left 720

Label #4 Top 2880

Label #4 Width 1455

Label #5 Name lblWinD

Label #5 Alignment 0-Left Justify

Label #5 BorderStyle 1-Fixed Single

Table 23.2. Place these controls on your application's form to practice locating Windows folders.

Control Property Property Value

Label #5 Height 255

Label #5 Left 2400

Label #5 Top 1680

Label #5 Width 2295

Label #6 Name lblWinS

Label #6 Alignment 0-Left Justify

Label #6 BorderStyle 1-Fixed Single

Label #6 Height 255

Label #6 Left 2400

Label #6 Top 2280

Label #6 Width 2295

Label #7 Name lblWinT

Label #7 Alignment 0-Left Justify

Label #7 BorderStyle 1-Fixed Single

Label #7 Height 255

Label #7 Left 2400

Label #7 Top 2880

Label #7 Width 2295

Command button Name cmdExit

Command button Caption E&xit

Command button Left 2040

Command button Top 3480

Command button Width 1215

Listing 23.3 The API functions that retrieve folder information require slightly more work than earlier
API routines that you saw.
1: Private Declare Function GetWindowsDirectory Lib "kernel32" Alias _
 "GetWindowsDirectoryA" (ByVal lpBuffer As String, ByVal nSize As Long) _
 As Long

2: Private Declare Function GetSystemDirectory Lib "kernel32" Alias _
 "GetSystemDirectoryA"
 (ByVal lpBuffer As String, ByVal nSize As Long) _
 As Long
3: Private Declare Function GetTempPath Lib "kernel32" Alias _
 "GetTempPathA"_
 (ByVal nBufferLength As Long, ByVal lpBuffer As String) As Long
4: Private Sub Form_Load()
5: ' Initialize the system folder labels when the form loads
6: ' Declare a fixed-length string long enough to hold information
7: Dim strFolder As String * 255
8: Dim intLength As Integer
9:
10: '
11: ' Get the Windows directory information
12: intLength = GetWindowsDirectory(strFolder, 255)
13: lblWinD.Caption = Left(strFolder, intLength)
14: '
15: ' Get the System directory information
16: intLength = GetSystemDirectory(strFolder, 255)
17: lblWinS.Caption = Left(strFolder, intLength)
18: '
19: ' Get the Temp directory information
20: intLength = GetTempPath(255, strFolder)
21: lblWinT.Caption = Left(strFolder, intLength)
22: End Sub
23:
24: Private Sub cmdExit_Click()
25: End
26: End Sub

The code you must use to retrieve the folder names is interesting because it takes more work than previous API-based
code you've seen. These routines do retrieve the needed folder information, but you must pick off that information from
a long string that the functions return.

Line 7 reserves space for a fixed-length string that is 255 characters. Although systems will not require nearly that
much string space for the folders, more space is better than not enough space. Line 8 then declares an integer variable
that will be used as each function's return value. That return value, stored in intLength (as done in line 12), will
contain the number of valid characters of that 255-character string that contains the folder path information. Different
computers will return longer or shorter paths, depending on where the folders are stored. Therefore, the 255-character
string gives your application plenty of room to hold any PC's path to these folders, except in the extremely rare that the
path to one of these directories is longer than 255 characters.

When line 12 gets the folder, notice that the GetWindowsDirectory() API function requires both the string to store the
pathname in as well as the length of that string. Therefore, GetWindowsDirectory() will not attempt to store more
than 255 characters in the string named strFolder.

Once the function returns, line 13 then picks off its left portion, which contains the pathname information. The API
function's return value determines how many characters from the string hold the actual path. The characters in the 255-

character fixed string that appear to the right of the path contain meaningless information, so you don't want to display
that data in the label.

Line 20 shows one anomaly that you'll often find with the API routines: Even though the GetTempPath() function is
extremely similar to the GetWindowsDirectory() and GetTempPath() functions, the string and integer arguments are
reversed in GetTempPath() from their positions in the other two functions. Pay close attention to the Declare
statements when you work with system API routines so that you don't inadvertently confuse arguments.

Note

The uniqueness of these three functions shown in this application are not, it turns out, all that unique. Many of the
Windows API routines require such manipulation before and after the function call. Sometimes, similar functions
reverse their arguments (as is done here with the GetTempPath() function and the other two API functions called). The
beauty of Visual Basic's own internal functions is that they offer more uniformity, they mate perfectly with Visual
Basic's built-in data types, and they do not pose the danger that the Windows API, if used incorrectly, can produce
(such as an unexpected system reboot).

Summary
This bonus lesson explained how to use the API routines that come with Windows. Windows is, itself, just a collection
of dynamic link libraries that contain thousands of routines you can access from a Visual Basic program. Although
you'll not use many of the available API procedures, many of them do come in handy when you need to work with
system information or perform a system-related function, such as the reading of the user's system Registry or rebooting
the user's PC.

Mastering the Windows API takes time, and many programmers never learn all the API procedures—many procedures
are necessary for proper operating system flow but do nothing for applications run by users. Nevertheless, by having
access to these Windows API procedures (both subroutine and function procedures), you can tap into a rich assortment
of procedures that return and manage the user's system.

Using the Windows API is somewhat tedious. Fortunately, Visual Basic includes a tool called the API Viewer. You can
use it to view every possible Windows API routine on your system and grab the procedures'declaration statements,
which you can paste directly into your own code. Once you paste a declaration into your Visual Basic application
(using a Declare statement), you can call the Windows API from your program. At runtime, Windows will make the
procedure available to your running program.

Q&A
Q: Why do the Windows API routine declarations and calling procedures seem so complex?

A: The complexity comes from the connection between your Visual Basic application and the routine itself.
Remember that the API routines were not written with Visual Basic in mind. The original API routines were
designed and written to be called by the C language, which uses a slightly different set of data types than
Visual Basic and calls routines differently as well. The declaration is Visual Basic's way of understanding
these routines that lie outside of its environment.

Q: What are some other examples of Windows API routines that I might want to look for?

A: The routines are too numerous to mention. Nevertheless, the following list, although far from exhaustive,
gives you a starting point for knowing what is available to you:

• Retrieving System Registry values
• Determining free and used system resources, such as memory and disk space
• Accessing the current Windows version
• Working with a window
• Low-level graphics
• Managing values in an INI file (INI files were used by pre–Windows 95 versions to store system

values and are still in use by some Windows programs)

Sometimes, locating a routine is guesswork. Generally, however, if you find an API routine that you think
you want to use, you should locate that routine in Visual Basic's online Help to see if the routine does what
you need. You cannot always tell what an API routine does from its name. For example, to retrieve and save
a value from an INI file, you use the GetSetting() and SaveSetting() functions.

Q: How can I find out which Windows API routines are available?

A: Several sources are available, including your Visual Basic Online Help system, Microsoft's Web site, and the
following excellent titles:

• Visual Basic 6 Unleashed
• Dan Appleman's Visual Basic 5 Programmer's Guide to the Win32 API

Q: Is there any way to make the API routines easier to use?

A: If you find yourself using one or more of the Windows API routines often, you can make these routines
somewhat easier to use. Instead of starting the API Viewer each time your application needs to use an API
routine and pasting the Declare statement and calling the routine, you can add common API routines you
frequently use to a standard code module with the .BAS filename extension. The module will hold all the
Declare statements for each API routine you think you'll use. You can also write a Visual Basic function or
subroutine procedure that calls the API routine. Use an argument list for the Visual Basic procedure that
matches, in data type, the arguments of the API routine. Such a Visual Basic procedure is called a wrapper
procedure, because you've wrapped Visual Basic's calling conventions and argument data types around a
nonstandard Windows API procedure.

Subsequently, when a Visual Basic application requires one or more of these routines, you need to add that
API-based code module to your application, and your application then only needs to make a call to the Visual
Basic wrapper you've placed in the code module to execute the API routine. In other words, to your
application, the Windows API is called and returned from just like all the other Visual Basic procedures you
write. Once you debug your Visual Basic library of API routines, you'll have a safer way of calling the API
procedures you need the most.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
provide you with experience in using what you've learned. Answers are provided in Appendix A, "Answers to
Exercises."

Quiz

1: What does API stand for?

2: Given Visual Basic's rich collection of internal functions, why would you ever want to call a Windows API
routine?

3: Why do the DLLs your applications use not add to the size of those Visual Basic applications?

4: Why have the names of the standard DLLs changed over time as Windows has changed?

5: What tool lets you more easily view the API routine formats?

6: Which statement declares Windows API routines?

7: True/False. The Windows API routines have a uniform appearance and calling mechanism.

8: What does the Declare statement do?

9: Which qualifier, Public or Private, is required for Windows API procedures that you declare inside a form
module?

10: What is the purpose of a wrapper procedure?

Exercise

Q: Which file, GDI32.DLL or KERNEL32.DLL, contains the GetSystemTime API function? How can you
determine this for any API routine you run across?

Week 3 In Review
Congratulations, you have completed the most important 21 days of your Visual Basic programming career! You now
understand virtually every area of the Visual Basic system. You have the ability to produce just about any Visual Basic
program that you'll ever want to code.

All you need now is more practice.

Through this tutorial's daily lessons and Bonus Projects, you learned what the days of a Visual Basic programmer are
like. Visual Basic programming is richly rewarding. Of course, programming jobs are in high demand in this high-tech
world, but satisfaction from programming comes from more than just an income. When programming with Visual
Basic, you not only have the power to create any Windows application needed, but you'll have fun doing so. Most
importantly, Visual Basic never forgets its roots so Visual Basic will be there to help you debug your programs, add
flair to the programs you've written, and create compiled executables that you can distribute so that others will benefit
from the job you did.

Your Week's Worth
In this week, you have mastered the following:

• Form templates— Why reinvent the wheel? Use form templates to simply the adding of standard forms to your
applications (Day 15).

• Creating your own form templates— Although Visual Basic supplies several form templates, you'll create
your own as well and add these new form templates to the collection that Visual Basic supplies (Day 15).

• Application Wizard form templates— Although the Application Wizard can add form templates to your
projects, you still have to modify the code and customize the form templates to conform to your application's
requirements (Day 15).

• OLE control— Object linking and embedding is a concept that has been around almost as long as Windows
has been in existence. Although other tools, such as ActiveX, have taken over the spotlight, many programmers
still work with the OLE control to embed objects in their applications (Day 16).

• Objects— Although some programming purists would cringe upon hearing that Visual Basic is an object-
oriented language, Visual Basic does support many object-like programming constructs (Day 16).

• Pre-defined objects— Visual Basic defines several objects for you, such as the Screen, Printer, and App
objects. As your application runs, you can use these pre-defined objects to learn more about the application's
environment (Day 16).

• Outside objects— You have insight into the requirements to access objects outside Visual Basic's scope, such
as Excel worksheet values, from within your Visual Basic program.

• Object collections— Object collections let you work with several object items as a single group (Day 16).
• ActiveX controls— An ActiveX control can operate on many levels, from a new Visual Basic Toolbox window

control to an Internet Web page program (Day 17).
• Creating your own ActiveX controls— You are not limited by the ActiveX controls that come with Visual

Basic or those you get from others, because you can write your own ActiveX controls and use those controls in
future projects that you build (Day 17).

• Data control— By adding the Data control to your application, you ensure that your user can not only access a
database file but even navigate through the file and make changes along the way (Day 18).

• Programming datasets— After learning some simple concepts, you understand what it takes to manage
complete database applications through a Visual Basic interface (Day 18).

• Internet access— Add a browser to your applications (Day 19).
• Internet programming— Control Internet processes through your Visual Basic application (Day 19).
• Adding Help— Give your users the access they need for help by installing a complete Help database inside

your application (Day 20).
• Help options— Visual Basic offers the choice of several means for adding help to your applications (Day 20).
• ToolTip help— On a small scale, ToolTips can benefit a user who uses your application's toolbars and controls

(Day 20).

• Debugging code— Visual Basic's interactive debugger makes testing for and eliminating program bugs
painless (Day 21).

• Application compiles— Before you distribute your applications, you'll want to compile the code so that your
code cannot be easily viewed or changed and so that your applications run faster (Day 21).

• Code distribution— You can make it easy or you can make it hard on your users. Use Visual Basic's tools for
packaging your application into a distributable, installable, bulletproof application (Day 21).

Appendix A. Answers to Exercises

Day 1, "Welcome to Visual Basic"

Day 2, "Working with Visual Basic"

Day 3, "Managing Controls"

Day 4, "Creating Menus"

Day 5, "Analyzing VB Data"

Day 6, "Controlling Programs"

Day 7, "Advanced Keyboard and Screen Support"

Day 8, "The Nature of VB Programs"

Day 9, "The Dialog Box Control"

Day 10, "Adding Power with the Mouse and Controls"

Day 11, "Working with Forms"

Day 12, "Interact with Files"

Day 13, "Printing VB Output"

Day 14, "Introducing VB Graphics and Multimedia"

Day 15, "Using Form Templates"

Day 16, "Objects and Visual Basic"

Day 17, "ActiveX Controls"

Day 18, "Interacting with Data"

Day 19, "Adding Internet Access"

Day 20, "Providing Help"

Day 21, "Distributing Your Applications"

Day 22, "Multidimensional Arrays"

Day 23, "The Windows API"

Day 1, "Welcome to Visual Basic"
Quiz Answers

1: What language did Microsoft use as the basis for Visual Basic?

A: BASIC is the language Visual Basic is based on.

2: Why is Visual Basic suitable for both beginners and advanced programmers?

A: Visual Basic is visual and uses a simple BASIC-like programming language, yet Visual Basic enables
you to create powerful Windows programs.

3: Which is more important to newcomers to Visual Basic: the programming language or the visual
interface?

A: Visual Basic's visual nature is more important than its programming language in many ways. The visual
interface provides your program's character and interacts with the user. The programming language
works behind the scenes to connect the visual elements.

4: What's the difference between a form window and the application window?

A: A form window can be the application's window, but an application can also contain several form
windows. The form window is the window your user is looking at when the user runs your program.

5: What do the terms bug and debug mean?

A: A bug is any kind of error in a program, and debug refers to the process of removing program bugs.

6: Which runs faster: a program written in an interpreted language or a program written in a compiled
language?

A: A program written in a compiled language runs much faster than one written in an interpreted language.

7: Which is easier to debug: a program written in an interpreted language or one written in a compiled
language?

A: A program written in an interpreted language is easier to debug than one written in a compiled language.

8: What is the difference between a splash screen and a Tip of the Day screen?

A: A Splash screen always looks the same and appears every time a program begins. A Tip of the Day
screen is different on different days, and the user can control whether the screen continues to appear.

9: What's the difference between a control and a control property value?

A: A control is an element, such as a text label, command button, or option button, on a form. A control

property value helps distinguish one control from another.

10: True/False. Controls hold code that makes them respond to the user's input

A: False. Controls do not hold code. Most controls are visual objects on the form window with which the
user interacts. The code is stored separately (in something called a module), as you'll see throughout the
next 20 lessons.

Exercise Answer

Q: Use the Application wizard to create an application that includes an Internet browser window and a
splash screen in addition to the other options you selected today when you created your first project.
Run the application to see how the Internet access works. If you don't have Internet access, you will get
an error when you open the browser window, but create the project anyway for the practice

A: Run the Application wizard and select Yes when the wizard asks if you want to add Internet access to
the application. If you have Internet access, select View, Web Browser when you run the program, and a
web browser will open from which you can access the Internet.

Day 2, "Working with Visual Basic"
Quiz Answers

1: What is the difference between the toolbox and the toolbar?

A: The toolbar gives you quick, one-button access to common commands and menu options. The toolbox is
a collection of controls that you can place on your form.

2: What is the name of the subscription-based online service Microsoft offers for programmers?

A: MSDN is Microsoft's subscription-based online service.

3: True/False. The Form window holds one form at a time

A: False; the Form window holds as many forms as the application requires, although only one form can be
selected at any one time.

4: What happens when you click a toolbox control?

A: The mouse cursor changes to a crosshair when you move the mouse over the form so that you can draw
the control on your Form window.

5: What happens when you double-click a toolbox control?

A: Visual Basic places the control in the center of the Form window so that you can then move and resize
the control.

6: True/False. You set control properties from the Toolbox window

A: False. You set control properties from the Properties window (you can also set properties in code).

7: How does Visual Basic determine which control properties appear in the Properties window?

A: The Properties window displays the properties for the selected object.

8: What does an ellipsis indicate on a Properties window value?

A: An ellipsis, as on the Font property, indicates that a dialog box will appear after you click the ellipsis so
that you can specify multiple values for that property .

9: What is the name of the property that specifies the command button's title?

A: The command button's Caption property determines the title that appears on the button .

10: Why should you change the control names from their default values?

A: The default names are cryptic. When you rename the controls to a more descriptive name, especially
when you add a prefix to the control name, you can better tell the purpose for a control from its name
alone, which is useful when you are working with numerous controls in a project.

Exercise Answer

Q: Load the application you created today so that you can modify it. Add color to the application by
making the form's background blue. In addition, place an extra command button, labeled Exit, on the
form and add an appropriate Name caption for the control. Add the following line inside the new
procedure that appears in the Code window, which is related to the command button

A: To add a blue background, click the form's BackColor property. (The property description for the
selected property at the bottom of the Properties window lets you know that the BackColor property
controls the background color.) A drop-down list box appears. When you open the list box, a tabbed
dialog box appears. The Palette tab offers numerous colors from which you can choose to set the form's
background, and the System tab offers more conventional Windows colors. Click the Palette tab and
select a blue color .

Add a command button somewhere on the form, perhaps in the lower-right hand corner of the Form
window. Change its Name property to cmdExit. Change its Caption property to Exit. To add the one
line of code required, double-click the command button and type End in the center of the procedure that
appears. When you run the program, you'll see the blue background and the new command button. After
you display the graphic image, click the Exit command button to terminate the program.

Day 3, "Managing Controls"

Quiz Answers
1: What is an accelerator key?

A: An accelerator key is a shortcut key on a menu option or control that lets the user
select that control with a keystroke, such as Alt+R.

2: True/False. Properties support multiple events

A: False. Controls support events.

3: Why would you assign the Cancel event to a command button?

A: The Cancel event enables the user to select the command button by pressing Esc .

4: How do you know which control contains the focus?

A: The control in focus is outlined by a dashed line.

5: How does the user move the focus from control to control?

A: The user presses Tab and Shift+Tab (and sometimes the arrow keys, depending on the
application) to move the focus from control to control.

6: What property determines the focus order?

A: The TabIndex property determines focus order .

7: Is LoadPicture () a subroutine, function, or event procedure (you may have to guess at this)?

A: You know that LoadPicture () is some kind of procedure because of the parentheses.
LoadPicture () was the procedure that displayed the happy face image in yesterday's
image control. LoadPicture () is a function, but it's a special function that is
internal to the Visual Basic programming language. You don't write the code for
LoadPicture () because the code already exists inside Visual Basic. These internal
functions save you time because you don't have to write common code that you use
over and over. You'll learn all about such internal functions in Day 5, "Analyzing
VB Data."

8: True/False. Visual Basic automatically generates the first and last lines for the Click event procedure
when you double-click a control inside the Form window editing area

A: False. Visual Basic often generates a Click event procedure, but not always. Visual
Basic guesses at the most common event procedure for the control you double-click.
In some cases, such as a text box control, Visual Basic generates a Change event
procedure's first and last line inside the Code window .

9: True/False. You can trigger a user event, such as DblClick, from Visual Basic code

A: True.

10: What is the purpose for the PasswordChar property?

A: The PasswordChar property lets you hide a user's input when sensitive information
is requested that you want to keep private from someone who may be looking over the
user's shoulder during data entry .

Exercise Answers
1: Write the first line for a form's Load event procedure. The form's name is frmMyApp.

A: 1: Private Sub frmMyApp_Load ()

2: Bug Buster: Why can't the following be an event procedure?

A: Lines 1 and 5 indicate that the procedure is a function, and event procedures must
be subroutines. Replace Function with Sub to correct the problem .

3: Create an application with three multiline text boxes. Make the text boxes tall enough to display three or
four lines of text. Give the first one a vertical scrollbar, the second a horizontal scrollbar, and the third
one both kinds of scrollbars. In all three text boxes, supply the default text Type here. In addition to the
text boxes, include an Exit command button, so the user can press Alt+X to terminate the program

A: The three text boxes must have different Style properties set for the three
different scrollbars. You'll supply the default text in the Text property when you
write the program. You won't be able to specify multiple lines in the Text
property, so just put a short word or phrase for the default text .

Be sure to use E&xit for the command button's Caption property so that the user can use an accelerator
key to end the program.

Day 4, "Creating Menus"
Quiz Answers

1: What do you call the dialog box that helps in your creation of menus?

A: The Menu Editor helps you create menus.

2: True/False. Menu options are controls

A: True.

3: Which event do all menu options support?

A: Menu options generate the Click event only .

4: What is the term shortcut key usually reserved for?

A: A shortcut key is a command that triggers a menu option without the user needing to display the menu
first.

5: How do shortcut keys relate to menu usage?

A: Users can select menu options quickly by using shortcut keys.

6: What events do menu options generate if the user uses a shortcut key to access the menu options?

A: Shortcut keys mimic mouse clicks on the menu, so they generate Click events .

7: True/False. The Menu Editor helps you design your menus and create Click event procedure code for
the menu options

A: False. The Menu Editor helps only with a menu's design, not the code behind the menu.

8: What's the purpose of the Checked menu option?

A: The Checked option lets you display a check mark to the left of a menu option.

9: True/False. More than one menu option can be checked at once

A: True. Multiple menu options might be checked, but you can control how many are checked with code if
you need to.

10: In Listing 4.1, what are lines such as 57, 58, and 59 used for?

A: These lines are remarks and offer program description information, in plain language, to those who
maintain the program. The first Bonus Project, "Controls, Properties, and Events," that appeared before
today's lesson explains what remarks are and how to use them .

Exercise Answers

1: Describe the difference between entering a menu bar option and a drop-down menu option within the
Menu Editor

A: The Menu Editor contains a set of arrow buttons. When you click the right arrow to produce an ellipsis,
the Menu Editor will use the option there at the ellipsis as a drop-down menu option.

2: Bug Buster: Manuel the menu master is having trouble with his menus because the check mark does not
go away from a menu option when the user selects a different checked option. Can you give Manuel
some general advice? (You don't have to write any code yet.)

A: Manuel needs to understand that he is responsible for unchecking a menu option, within the code,
before a check mark goes away. Checked menu options don't have to be mutually exclusive on a menu
as they were in today's lesson, so the programmer must specify the exact behavior of the check marks.

3: Add shortcut keys to every menu option in the menu application that you created today. Make sure that
no two menu options have the same shortcut keys.menu barsMenu application

A: Open the Code window and click each drop-down menu option in the lower half of the window. Select a
shortcut key from the list provided in the Menu Editor. When you run the program again, the shortcut
keys will appear next to their corresponding menu options. Test a shortcut key by typing the shortcut
key without first displaying the menu that the shortcut key goes to.

Day 5, "Analyzing VB Data"
Quiz Answers

1: What kind of code goes in the declarations section of a program?

A: Data declaration code goes in the declarations section of a program.

2: What can you do if two or more procedures need access to another procedure's local variable?

A: You can share local variables between two or more procedures; you'll learn how to do that as you learn
more about the Visual Basic language in these 21 days.

3: True/False. A literal's value never changes

A: True.

4: True/False. A variable's value never changes

A: False. A variable can hold different values as the program executes.

5: Why does Visual Basic support two kinds of division operators?

A: One division operator performs regular, floating-point division, whereas the other performs integer
division.

6: What is an overloaded operator?

A: An overloaded operator is an operator that performs two different operations depending on its context in
the program.

7: Which operator is preferred for concatenating string expressions?

A: The ampersand is preferred because the plus sign is more commonly used (and understood) as an
addition operator.

8: Which data type holds any other data type?

A: The Variant data type can hold any other data type .

9: True/False. The variable prefixes are required in variable names

A: False. Although Visual Basic does not require the prefixes, you should use them to help document your
code.

10: What two ways can you use to ensure that Visual Basic doesn't allow for undeclared variables?

A: You can put an Option Explicit statement at the beginning of a declarations section or check the
appropriate option in the Options dialog box. The dialog box acts globally, whereas the Option
Explicit statement ensures only that its own code module's variables are declared .

Exercise Answers

1: What do you think Visual Basic will do with the following variable declaration statement?

A: If you said that Visual Basic would issue an error for the middle variable abc, that's a good guess but
incorrect. Remember that Visual Basic assumes that all declared variables are of the Variant data type
unless you specify otherwise. Therefore, Visual Basic will declare abc as the variable with the Variant
data type .

2: Bug Buster: Sally is having difficulty calculating a correct average using the following expression. Can
you help her?

A: Visual Basic is computing the division before the addition, but for a true average, Sally must first total
the grades as done here:

sngAvg = (sngGrade1 + sngGrade2 + sngGrade3) / 3

3: What is the result of each of the following formulas?

A: 1. 5
2. 6
3. 5
4. 5
5. 7

4: Write assignment statements that convert each of the following formulas to their Visual Basic
equivalents

A: 1. a = (3 + 3) / (4 + 4)
2. x = (a – b) * (a – 2) ^ 2
3. f = a ^ (1/2) / b ^ (1/2)

5: The program from the first Bonus Project, Controls, Properties, and Events, included the following
procedure

A: The ampersands concatenate the string literals so that Visual Basic treats them as one continuous literal

as the line is continued.

Day 6, "Controlling Programs"
Quiz Answers

1: What logical operator returns a True result if either expression is True?

A: The Or operator returns a True result if either value is true .

2: What is the difference between a conditional operator and a logical operator?

A: A conditional operator compares two values. A logical operator combines conditional expressions.

3: What is a loop?

A: A loop is one or more statements that can execute more than once.

4: Describe the following assignment statement's action

A: The integer variable will, after the assignment, hold 10 less than it did before the assignment.

5: How many times does the following code execute the Beep statement?

A: The loop never executes because intN is equal to zero at the top of the loop .

6: Why should Exit For be part of an If statement instead of appearing by itself in the body of a For loop?

A: If Exit For appears without being part of an If statement, the For loop always executes only once
because the Exit For terminates the loop the first time through the loop .

7: True/False. Both blocks of an If...Else might execute

A: False. Only one block of an If…Else statement ever executes. The If block executes if the condition is
true, and the Else executes if the condition is false .

8: True/False. A For loop may never execute, depending on the start and ending values

A: True. If the ending value is already greater than the starting value when the For loop first begins, the
loop does not execute at all, but the program flow continues at the statement following the For.

9: Why would you nest a For loop?

A: Nest loops when you want to execute a loop more than once.

10: What is the difference between a decision statement and a looping statement?

A: A decision statement may or may not execute its body of code once and only once depending on the

decision's result. A looping statement may execute its body of code many times.

Exercise Answers

1: Write an If statement that compares three numbers for equality

A: If (a = b) And (b = c) Then ' The If's body would follow

2: Bug Buster: Larry is not able to loop. What, if anything, is wrong with Larry's code that follows?

A: Larry's loop never ends because the controlling variable never changes in the body of the loop, so the
loop has no way to exit.

3: True/False. The clock in a football game counts down 15 minutes to zero. It does this four times. Think
through the four iterations, and describe the kind of Visual Basic equivalent statements such an event
imitates

A: The clock in a football game perfectly mimics a nested For loop. Consider the following code :

1: For Qtr = 1 to 4
2: For Minutes = 15 to 0 Step -1
3: ' Ball in play
4: Next Minutes
5: Next Qtr

The inner loop counts down from 15 to zero four times, just as the minutes do in a football game, before
the quarter increments to two. As long as the quarter variable (Qtr) has yet to reach zero, the minutes
keep counting down again.

4: Visual Basic lets you combine each Select Case format in a single Select Case statement. Therefore, you
can use a regular matching Case combined with a conditional Case combined with a range Case.
Rewrite the nested payroll example shown earlier in today's lesson as a Select Case that utilizes at least
two kinds of Case bodies for the three payroll possibilities

A: The following code uses all three kinds of Case statements inside one Select Case:

1: Select Case intHours
2: Case 1 To 40
3: curOverTime = 0.0
4: Case 41 To 49
5: curOverTime = (intHours - 40) * 1.5 * sngRate
6: Case Is >= 50

7: curOverTime = ((intHours - 50) * 2 + (10 * 1.5)) * sngRate
8: End Select

Day 7, "Advanced Keyboard and Screen Support"
Quiz Answers

1: What is the difference between an argument and an internal function?

A: An internal function uses an argument value that you send to it and returns a new value based on that
argument.

2: True/False. You can specify the default button on a message box

A: True.

3: What is an equivalent keyword for the empty string literal, ""?

A: Empty is the keyword equivalent to an empty string.

4: True/False. Tables 7.1, 7.2, and 7.3 describe three different arguments that you can use in MsgBox()
functions

A: False. Actually, the tables all describe one argument, the MsgBox() function's second argument referred
to in today's lesson with the intStyle placeholder .

5: What does Visual Basic use in the title bar of message and input boxes when you don't specify a title
argument?

A: Visual Basic uses the application's name for the title if you don't specify a window title.

6: What's the primary difference between a check box and an option button?

A: The user can select as many check boxes as necessary but the user can select at most one option button
on a form or frame at any one time.

7: True/False. You can display a set of option buttons on a form without any being selected

A: True—if you assign all their values to False when the form first loads (such as in the Form_Load()
event procedure) .

8: Which property value determines if a check box is selected or not?

A: A Value property of 1 or 0 indicates that a check box is checked or unchecked .

9: Which property value determines if an option button is selected or not?

A: A Value property of True or False indicates that an option button is selected or not .

10: Why is a frame sometimes necessary when placing option buttons on a form?

A: If you want to place groups of option buttons on a form so that the user can select one option button
from any group at the same time, you must place the groups on a frame.

Exercise Answers

1: Describe how your code can determine if the user entered an input box value (or perhaps accepted the
default value you supplied) or clicked the Cancel button?

A: Check to see if the InputBox() function returns an empty string. You can test against the empty string
literal, "". If the function returns anything other than a match against "", the return value is the user's
valid answer .

2: Write the MsgBox() function needed to produce the message box shown in Figure 7.10

A: Use the following statement to produce the message box shown:

strAns = MsgBox("You are out of paper", vbExclamation + _
vbDefaultButton2 +
 vbAbortRetryIgnore, "For Printer")

3: Write a command button event procedure that asks the user for a city, then for a state name, in two
separate input boxes. Then, concatenate the names after placing a comma and space between them and
display the merged city and state string in a message box

A: The following event procedure merges the user's city and state and displays the merged string in a
message box:

1: Private Sub cmdGetLocation_Click()
2: ' Get the user's city and state in 2 separate input boxes.
3: ' Concatenate them together.
4: ' Display the merged string.
5: Dim strCity As String
6: Dim strState As String
7: Dim strBoth As String
8: ' Placeholder for MsgBox() return
9: Dim intAnswer As Integer
10:
11: ' Ask user for city and state
12: strCity = InputBox("What is your city?", "Get city")
13: strState = InputBox("What is your state?", "Get state")
14:
15: ' Concatenate the strings
16: strBoth = strCity & ", " & strState
17:

18: ' Display the merged string
19: intAnswer = MsgBox("You live in " & strBoth, "Location")
20: End Sub

Note

Notice that line 9 declares a placeholder integer variable for the MsgBox() function. The user's selection
of OK or Cancel really doesn't matter when line 19 displays the message but you still must provide a
place for the return value to go.

4: Write an application with a long form that contains five option buttons that simulate radio buttons
across the top of the form. Label each of the buttons with your city's top five radio stations. Create an
event procedure for each option button that displays the type o music or talk that station plays. Display
this information in a message box. internal/intrinsic functionszfunctions

A: Your option button procedures will all be Click event procedures because Click is the event procedure
that triggers when the user clicks any of the option buttons. You do not have to concern yourself with
clearing one option button when the user selects another because Visual Basic takes care of that .

Day 8, "The Nature of VB Programs"
Quiz Answers

1: Which variable—scope-local, module-level, or public—has the broadest scope?

A: Public variables have the broadest scope.

2: Which variable—scope-local, module-level, or public—has the narrowest scope?

A: Local variables have the narrowest scope.

3: True/False. The keyword ByRef is optional

A: True. All arguments are passed by reference unless you specify ByVal.

4: How many values can a subroutine procedure return?

A: Subroutine procedures cannot return values.

5: Name two functions that act as shortcuts to the If statement

A: IIf() and Choose() as shortcuts to the If statement.

6: What happens if the first argument of Choose() is less than 1?

A: Choose() returns Null if its first argument is less than 1.

7: What does Abs() do?

A: Abs() returns the absolute value of its argument.

8: What's stored in the variable named strS in each of the following statements?

A: a. 74135- b. 12 2 pm (the answer depends on the day and time the statement executes) c. 12345.67

9: Without looking at an ASCII table, what does intN hold after the following assignment statement
completes?

A: intN will hold 192.

10: What's the difference between the Now function and the Time function?

A: Now returns both the date and time where Time returns only the time.

Exercise Answers

1: Rewrite Listing 8.1 so that SalesTax() is a function procedure that returns the computed sales tax to the
calling procedure. Have the calling procedure, GetTotal(), use a MsgBox() function to print the sales tax
computed by SalesTax().

A: The code that follows contains the SalesTax() function .

[View full width]

1: Private Sub GetTotal()
2: ' This procedure collects totals from a form
3: ' and sends the grand total and a discount
4: ' percentage to a sales tax procedure
5: Dim curTotal As Currency
6: Dim sngDisc As Single ' Special tax discount
7: '
8: ' Collect the totals from the form's text boxes
9: curTotal = txtSale1.Text + txtSale2.Text + txtSale3.txt
10: '
11: ' Send the total to a sales tax procedure
12: intMsg = MsgBox("The sales tax is " & SalesTax(curTotal, _ sngDisc))
13: End Sub
14:
15: Public Function SalesTax(curTotal As Currency, sngRateDisc As _ Single) As
Currency
16: ' Compute sales tax and deduct percentage discount
17: Dim curSalesTax As Currency
18: '
19: ' This code appears in the lesson as a subrouutine
20: ' The following computes a tax based
21: ' on 3% plus a millage of 1/2 percent
22: curSalesTax = (curTotal * .03) + (curTotal * .005)
23: '
24: ' Now, deduct percentage discount
25: curSalesTax = curSalesTax - (sngRateDisc * curTotal)
26: '
27: ' Set up the return value
28: SalesTax = curSalesTax
29: '
30: ' Procedures automatically return to their
31: ' calling procedure when finished
32: End Function

2: Rewrite the following If statement as an IIf() function

A: The following IIf() function does the same work as the If statement :

strTitle = IIf(intTotal > 1000, "Good job!", "Didn't meet goal")

3: Rewrite the following If statement as a Choose() function

A: The following Choose() function does the same work as the If statement :

Choose(ID, intBonus = 50, intBonus = 75, intBonus = 100)

4: What values are assigned in these statements?

A: intN holds –6, intO holds –5, and intP holds –6.

Day 9, "The Dialog Box Control"
Quiz Answers

1: What must you do to the Toolbox window before you can place a Common Dialog Box control onto the
form?

A: You must add the control to your Toolbox window from the Project, Components menu option.

2: Name the specific dialog boxes that the Common Dialog Box control displays

A: The Common Dialog Box control displays the Color selection, File Open, File Save, Font selection,
Print, and Windows Help dialog boxes.

3: What purpose does the Common Dialog Box control serve?

A: The Common Dialog Box control produces one of six standard dialog boxes.

4: Why can't you adjust the size of the Common Dialog Box control on the form?

A: The form's Common Dialog Box control is there just for placement and not for looks because the
Common Dialog Box control does not show up on the running application. The Common Dialog Box
control appears only when the user triggers one of the Common Dialog Box control methods that
displays the dialog box in the middle of the screen.

5: True/False. The Open dialog box doesn't really open any file

A: True.

6: What role does the Filter property play in the file-related dialog boxes?

A: The Filter property determines which file types display in the File-related dialog boxes .

7: What does the Flags property do?

A: The Flags property sets up a common dialog box before you display the dialog box with a method .

8: True/False. You must set a Flags value or Visual Basic won't display the Fonts dialog box

A: True.

9: True/False. You must set a Flags value or Visual Basic won't display the Print dialog box

A: False. The Print dialog box requires no preset Flags values, although you'll almost always assign values
to Flags, such as the DialogTitle property, before displaying the dialog box .

10: True/False. The Show method displays a Common Dialog Box control

A: False; you must further qualify the method, such as ShowFont and ShowPrinter.

Exercise Answers

1: Change the code in Listing 9.2 to handle the Cancel command button selection. Make sure that the code
changes no properties if the user clicks Cancel

A: The following code sets up the Font dialog box with error-handling for the Cancel command button
click:

1: ' Assumes CancelError is True
2: On Error Goto dbErrHandler
3: ' Set the Font Flags property.
4: CdbFont.Flags = cdlCFBoth Or cdlCFEffects
5: CdbFont.ShowFont ' Display the Font DB
6: ' Set a label's properties to the
7: ' user's selected font information
8: LblMessage.Font.Name = CdbFont.FontName
9: LblMessage.Font.Size = CdbFont.FontSize
10: LblMessage.Font.Bold = CdbFont.FontBold
11: LblMessage.Font.Italic = CdbFont.FontItalic
12: LblMessage.Font.Underline = CdbFont.FontUnderline
13: LblMessage.FontStrikethru = CdbFont.FontStrikethru
14: LblMessage.ForeColor = CdbFont.Color
15: Exit Sub ' Don't fall through
16:
17: dbErrHandler:
18: ' User clicked the Cancel button
19: Exit Sub ' Don't change the font

2: Write a procedure that produces the File Open dialog box shown in Figure 9.10. Use the same *.txt filter
shown in the figure. Add code to ignore the dialog box settings if the user clicks the Cancel button

A: The following code produces the Print dialog box shown in Figure 9.10 :

1: Private Sub mnuFileOpen_Click ()
2: ' Assumes CancelError is True
3: On Error Goto dbErrHandler
4: ' Determine what appears in
5: ' the Files of type text box
6: cdbFile.Filter = "Text Files (*.txt) | *.txt"
7: ' Specify default filter
8: cdbFile.FilterIndex = 1
9: cdbFile.DialogTitle = "Open"
10: ' Display the Open dialog box.

11: cdbFile.ShowOpen
12:
13: '**********************************
14: ' You must place code here or call *
15: ' a procedure to open the file *
16: ' selected by the user *
17: '**********************************
18: Exit Sub ' Don't fall through
19:
20: dbErrHandler:
21: ' User clicked the Cancel button
22: Exit Sub ' Don't open a file
23: End Sub

Day 10, "Adding Power with the Mouse and Controls"
Quiz Answers

1: Which mouse events respond to specific mouse buttons? Which mouse events respond to either mouse
button?

A: The MouseDown event responds to specific mouse buttons and lets you know which button the user
clicked through the arguments the events pass to their procedures. The Click, DblClick, and
MouseUp events don't keep track of which button the user clicked to generate them .

2: How can you determine the button clicked when a MouseDown event occurs?

A: Check the intButton argument to determine the button clicked.

3: How can you change the icon that appears during a drag operation?

A: Select the icon's path in the control's DragIcon property value .

4: How can you set up an event procedure to respond to a time interval greater than 65 seconds (the
approximate limit for the timer control)?

A: Ignore some timer events that occur and respond only when a certain amount of time has passed.

5: How do you initialize a list control?

A: You can initialize the control at design time by putting items in the List property, or you can set them
at runtime (the more common method) by adding them with the AddItem method .

6: How does a program determine which item the user has selected?

A: The list control's Value property determines which index item the user has selected .

7: Name two ways to remove all the items from a list control

A: You can remove the items one at a time using the RemoveItem method, or you can use the Clear
method to remove all the items at once .

8: When using a combo box control that lets users enter new values, why must you offer at least one
additional focus control on the form?

A: When the focus moves, the triggered event procedure can then add the new item to the list.

9: How can you ensure that a list control's list holds sorted values no matter how many items are added or
removed from the list at runtime?

A: Set the Sorted property to True.

10: How many elements are reserved by the following Dim statement?

A: Twenty-three elements are reserved by the statement.

Exercise Answers

1: Write a program that lists members of your family in a list box. Include enough so that the list box
requires scrollbars. Keep the list sorted at all times

A: You can create a form with a list box control and initialize it with the following code in the
Form_Load() event procedure :

Private Sub Form_Load()
 lstFamily.AddItem ("Martha")
 lstFamily.AddItem ("William")
 lstFamily.AddItem ("Clyde")
 lstFamily.AddItem ("Larry")
 lstFamily.AddItem ("Sandy")
 lstFamily.AddItem ("Pauline")
 lstFamily.AddItem ("Paul")
 lstFamily.AddItem ("Eddie")
 lstFamily.AddItem ("Carlton")
 lstFamily.AddItem ("Charlie")
 lstFamily.AddItem ("Robert")
End Sub

2: Run the sample Visual Basic project Listcmbo, which comes with Visual Basic. The application
provides a database containing computer book publishers. Click the option button labeled Use Standard
Combo Box and then click to open the State field. Click the option button labeled Use Standard List
Box and then click to open the State field again. You'll quickly see how the two kinds of lists differ

A: No answer is necessary for this exercise.

3: Modify the application you wrote in Exercise 1 so that all three kinds of combo boxes appear on the
form and display the same data. When one combo box changes (when the user enters a new value in the
list), reflect that change in the other combo boxes

A: Once you add the three combo boxes, you must write a Change event procedure for each one. When one
combo box changes, you have to assign the item at the value index (the selected item just added) to the
end of the other combo box lists by using the AddItem method and putting the item at the ListCount
index of those controls .

Day 11, "Working with Forms"
Quiz Answers

1: How can the Resize event help you keep your form's controls centered?

A: When the Resize event occurs, you can center your controls within the new form's size measurements .

2: What does the ScaleMode property control?

A: The ScaleMode property determines which unit of measurement subsequent Print methods use for the
CurrentX and CurrentY coordinate location .

3: What is the value of the first subscript when working with predefined object collections?

A: The first subscript is 0.

4: True/False. An SDI application cannot support multiple forms

A: False. SDI applications can support multiple forms, but not when each form window holds a different
data set.

5: What is the difference between an SDI and MDI application?

A: An MDI application may have multiple form windows with different sets of data.

6: Where do toolbars most often appear on a form?

A: Toolbars most often appear across the top of forms.

7: Which control stores the toolbar's icons?

A: The image list control holds the toolbar's icons.

8: Why does the location of the image list control make no difference when you use the control along with
a coolbar?

A: The image list control does nothing but hold the icons for the coolbar control. The image list control
will not appear on the form at runtime, so its location does not matter.

9: What's the difference between Spc() and Tab()?

A: Spc() inserts a fixed number of spaces on a line of output, and Tab() sends the text cursor to a specific
column.

10: How do you use Print to output a blank line?

A: Use the Print method but don't place anything to the right of the method to print .

Exercise Answers

1: Load these controls onto your toolbox window: Toolbar, Coolbar, and ImageList

A: No answer or help is necessary for this exercise. If you can locate the control, you've added the control
properly from the Project, Components menu option.

2: Write the output from the following two statements

A: The output of the two Print methods appear next to each other due to the trailing semicolon at the end
of the first Print method :

Line 1Line 2

3: Run the Application Wizard to generate an Explorer-style application; then run the application's shell to
see the result

A: No answer is necessary for this practice exercise.

4: Write the code that outputs the numbers 1 to 100 on a form. Separate the numbers with one space. Don't
use any controls for the output. Trigger the output in the form's Click event procedure

A: In the Click event procedure, you should have a For statement that looks something like this :

For intCtr = 1 To 100
 Form1.Print intCtr; " ";
Next intCtr

5: Write a procedure that computes and prints the total number of controls in all forms within the current
application

A: The following code counts the number of controls in all forms within an application:

'Set the count to zero before you count
intCount = 0
'Step through each form
For intCtr = 1 to Forms.Count

 ' Add the number of controls in each form
 intCount = intCount + Forms(intCtr).Count
Next intCtr

Day 12, "Interact with Files"
Quiz Answers

1: How many open files can you close with one Close statement?

A: You can close all open files with one Close statement .

2: What function returns the next unused file number?

A: The FreeFile() function returns the next unused file number .

3: What happens if you open a file for sequential output access and the file already exists?

A: Visual Basic overwrites a file, if one exists, that you attempt to open for sequential output.

4: What happens if you open a file for sequential append access and the file already exists?

A: Visual Basic adds to the end of the sequential file at the next file output statement.

5: What type of file does the following statement open?

A: The statement opens a sequential file and lets subsequent output statements write to the end of the file.

6: Why do random Open statements need to know the record length of their data?

A: Random files must be able to calculate the location of any given record number; therefore, the records
must be of uniform length for the calculation to work.

7: Why should you specify the absolute length of strings within a user-defined data type if you're going to
read and write those strings to a random file?

A: The fixed-length strings allows for fixed-length records, whereas variable-length strings would produce
records of different lengths.

8: What Visual Basic statement defines a new data type?

A: The Type statement defines new data types .

9: True/False. The following code declares a new user-defined variable named CustRec:

A: False. The statement defines a new data type but declares no variables of that type.

10: What is the difference between the Dir() function with an argument and the Dir() function without an
argument?

A: Dir(), with an argument, returns the first file found that matches your wildcard characters. Dir(),
without an argument, returns the next file in the folder that matches your wildcard characters.

Exercise Answers

1: Bug Buster: Frannie has file problems. She gets an error when she runs an application with the
following statement. Can you explain to her the most likely reason an error occurs? (Assume that the
directory named Bills exists and resides in the root directory C.)

A: Frannie probably is attempting to remove the Bills folder while it contains files. The RmDir command
refuses to remove folders that contain files .

2: Write a procedure that creates a sequential file that holds the following information: name, age, and
favorite color. Fill this file with five records (each record should contain one name, one age, and one
color). Use three For loops to write this information to the file. Tip: You should initialize three arrays,
one for each kind of value you're writing

A: The following procedure fills the arrays in lines 10 through 14 and writes the arrays to the open disk file
in lines 21 through 23:

1: Private Sub output ()
2: Dim strNames(5) As String
3: Dim intAges(5) As Integer
4: Dim strColors(5) As String
5:
6: Dim intCtr As Integer ' Loop counter
7: Dim intFNum As Integer ' File number
8:
9: ' Get array info
10: For intCtr = 0 To 4
11: strNames(intCtr) = InputBox("What is next name?", "Get _
 names")
12: intAges(intCtr) = InputBox("What is next age?", "Get ages")
13: strColors(intCtr) = InputBox("What is next color?", "Get _
 colors")
14: Next intCtr
15:
16: intFNum = FreeFile
17:
18: ' Write output
19: ' Change the path if you want
20: Open "C:\Stuff.txt" For Output As #intFNum
21: For intCtr = 0 To 4
22: Write #intFNum, strNames(intCtr), intAges(intCtr), _
 strColors(intCtr)
23: Next intCtr
24:
25: Close #intFNum

26: End Sub

3: Create a dialog box that mimics the File Open dialog box. Use only the drive, directory, and file
selection lists as well as OK and Cancel command buttons. Write code so that an application that uses
this dialog box will change the directory or file lists whenever a user selects a different drive or
directory. (Although you'll use the standard common dialog box control for your applications, this
exercise helps show you how the file controls relate to one another.)

A: Create a dialog box similar to the one in Figure 12.1. For each of the three file-related list boxes, you
need to write an event procedure that updates the other two. The event that triggers the event procedure
depends on the control. The directory list box supports a Change event, so in that control's Change event
procedure, you must also change the files displayed, because the directory will now be different. Here's
an example :

Private Sub Direct_Change()
 ' The user changed the directory list box
 filFile.Path = dirList.Path ' Change the file control
 '
 ' Ensure that only one file is selected
 If (filFile.ListCount > 0) Then
 ' Select the first file from list
 filFile.ListIndex = 0
 End If
End Sub

When the user selects a different drive, you must change the path to that drive (which, in turn, will
trigger the previous event procedure), like this:

Private Sub Drive_Change()
 ' Sets the default path to the drive
 dirList.Path = drvList.Drive
End Sub

Day 13, "Printing VB Output"
Quiz Answers

1: How can your application determine the number of printers installed on the system?

A: Reference the value in Printers.Count-1 to determine the number of printers on the system .

2: True/False. The following declaration declares two variables

A: True.

3: Which property determines the measurement scale of the Printer object's properties?

A: The ScaleMode property determines the measurement Visual Basic uses .

4: How can you force printing to begin on a new page?

A: Use the NewPage method to send printed output to a new page .

5: Which form of If tests objects for specific data types?

A: The Is TypeOf statement tests objects for data types .

6: True/False. You can pass objects, not just variables, to procedures

A: True.

7: True/False. KillDoc cancels all printed output, including Printer.Print commands and form PrintForm
methods

A: False. KillDoc cancels only the application's printed output .

8: What shortcut reference can you use for the current form?

A: Use Me as a shortcut reference to the current form .

9: At what resolution does a PrintForm method usually print?

A: PrintForm uses the screen's resolution for output.

10: What value should you assign to the AutoRedraw property before you print forms?

A: Set the AutoRedraw property to True before you print forms .

Exercise Answers

1: Create a line of code that writes your name beginning in column 32 on the printer

A: The following line writes Printing Peter to the printer starting at column 32:

Printer.Print Tab(32); "Printing Peter"

2: Bug Buster: Patty the printer programmer is having trouble getting her reports to page properly. She
learned how to program in BASIC years ago but has recently begun working in Visual Basic writing
Windows applications. In the past, Patty assumed, correctly, that a normal page has exactly 66 lines of
text in a text-based programming environment. Therefore, Patty would increment an integer counter
variable every time she printed a line or blank line of text. When the counter got to 66, she would be at
the top of the next page in her report. Now that Patty moved to Windows, her logic no longer works.
Why do Patty's reports no longer have exactly 66 lines per page?

A: Patty needs to realize that Windows supports various fonts and font sizes so her calculations for page
length (determining when a page fills up) has to take into account the size of the fonts she uses.

3: Change Listing 13.2, which searches for a color printer, by adding a Boolean variable that is set to True
if and only if a color printer is found. As the code now operates, the default printer remains the same if
no color printer is found. The new Boolean variable will inform subsequent code whether the loop has
properly found a color printer. Make the code a function that returns a Boolean value

A: The following code completes Listing 13.2 :

1: Public Function IsColor() As Boolean
2: Dim blnIsColor As Boolean
3: Dim prnPrntr As Printer
4: '
5: ' Assume no color printer is found yet
6: blnIsColor = False
7: '
8: ' Look through all the printers
9: For Each prnPrntr In Printers
10: If prnPrntr.ColorMode = vbPRCMColor Then
11: ' Set color printer as system default.
12: Set Printer = prnPrntr
13: blnIsColor = True
14: Exit For ' Don't look further
15: End If
16: Next ' Step through all of them if needed
17: '
18: ' blnIsColor will still be false if no color
19: ' printer is present and true if one is present
20: ' Set the function's return value accordingly
21: IsColor = blnIsColor

22: End Function

Day 14, "Introducing VB Graphics and Multimedia"
Quiz Answers

1: What control draws circles on the form?

A: The shape control draws circles.

2: What method draws squares on the form?

A: The shape control draws squares (and rectangles).

3: Which of the following methods is used for drawing boxes?

A: The PSet and Line methods draw boxes on the form .

4: True/False. The line and shape controls produce graphics that support properties but not events

A: True.

5: What Line method option adds a solid interior to boxes?

A: The B option adds a solid interior to boxes .

6: Why doesn't Visual Basic enable every button when you first place the multimedia control on a form?

A: Not all buttons are required by all multimedia control devices.

7: What does the Mode property do?

A: Returns the state of the multimedia control's device.

8: How can you make the multimedia control device status update more frequently?

A: Decrease the value in the UpdateInterval property to increase the frequency that the multimedia
control device updates .

9: Why do you need to supply a picture box control for video clips?

A: The picture box control holds the video's output.

10: How does the multimedia control know which picture box to send the video to?

A: Your code must set the Windows device context to the picture box control so that the multimedia
control will know where to send its video output.

Exercise Answers

1: Add Fill Color and Border Color drop-down list boxes to Figure 14.5's application you created in
today's lesson. You can now control not only the control's shape and fill pattern, but also its interior and
border colors by selecting from the list boxes at the bottom of the form. Figure 14.14 shows what your
form should look like after you add the two list boxes

A: The Code window to support the extra list boxes should contain code that works like the following:

1: Private Sub Form_Load()
2: ' Initialize the shape drop-down list box
3: lstShape.AddItem "0 - Rectangle"
4: lstShape.AddItem "1 - Square"
5: lstShape.AddItem "2 - Oval"
6: lstShape.AddItem "3 - Circle"
7: lstShape.AddItem "4 - Rounded Rectangle"
8: lstShape.AddItem "5 - Rounded Square"
9:
10: ' Initialize the FillStyle pattern drop-down list box
11: lstPattern.AddItem "0 - Solid"
12: lstPattern.AddItem "1 - Transparent"
13: lstPattern.AddItem "2 - Horizontal Line"
14: lstPattern.AddItem "3 - Vertical Line"
15: lstPattern.AddItem "4 - Upward Diagonal"
16: lstPattern.AddItem "5 - Downward Diagonal"
17: lstPattern.AddItem "6 - Cross"
18: lstPattern.AddItem "7 - Diagonal Cross"
19:
20: ' Initialize the FillColor pattern drop-down list box
21: ' (not all colors represented)
22: lstFillColor.AddItem "Black"
23: lstFillColor.AddItem "White"
24: lstFillColor.AddItem "Blue"
25: lstFillColor.AddItem "Red"
26: lstFillColor.AddItem "Green"
27: lstFillColor.AddItem "Yellow"
28:
29: ' Initialize the BorderColor drop-down list box
30: lstBorderColor.AddItem "Black"
31: lstBorderColor.AddItem "White"
32: lstBorderColor.AddItem "Blue"
33: lstBorderColor.AddItem "Red"
34: lstBorderColor.AddItem "Green"
35: lstBorderColor.AddItem "Yellow"
36:
37: ' Set the first value of each list as default
38: lstShape.ListIndex = 0
39: lstPattern.ListIndex = 0
40: lstFillColor.ListIndex = 0
41: lstBorderColor.ListIndex = 0
42: End Sub
43:
44: Private Sub lstPattern_Click()
45: ' Change the pattern according to the selection

46: shpSample.FillStyle = lstPattern.ListIndex
47: End Sub
48:
49: Private Sub lstShape_Click()
50: ' Change the shape according to the selection
51: shpSample.Shape = lstShape.ListIndex
52: End Sub
53:
54: Private Sub lstFillColor_Click()
55: ' Change the fill color according to the selection
56: Select Case lstFillColor.ListIndex
57: Case 0:
58: shpSample.FillColor = vbBlack
59: Case 1:
60: shpSample.FillColor = vbWhite
61: Case 2:
62: shpSample.FillColor = vbBlue
63: Case 3:
64: shpSample.FillColor = vbRed
65: Case 4:
66: shpSample.FillColor = vbGreen
67: Case 5:
68: shpSample.FillColor = vbYellow
69: End Select
70: End Sub
71:
72: Private Sub lstBorderColor_Click()
73: ' Change the border color according to the selection
74: Select Case lstBorderColor.ListIndex
75: Case 0:
76: shpSample.BorderColor = vbBlack
77: Case 1:
78: shpSample.BorderColor = vbWhite
79: Case 2:
80: shpSample.BorderColor = vbBlue
81: Case 3:
82: shpSample.BorderColor = vbRed
83: Case 4:
84: shpSample.BorderColor = vbGreen
85: Case 5:
86: shpSample.BorderColor = vbYellow
87: End Select
88: End Sub
89:
90: Private Sub mnuFileExit_Click()
91: End
92: End Sub

2: Practice drawing lines and circles with the drawing methods on a picture box control. As you can see,
the picture box control accepts the same graphics methods the form does

A: No answer is necessary for this practice exercise.

3: Change this lesson's wave player so that it displays a File Open dialog box that asks the user to select a
wave file to play

A: You must use the common dialog box control to set up the File Open dialog box. Add a File, Open
menu option to allow for the display of the dialog box. Be sure to set the filter to WAV files only. Once
the user selects the file, that filename should be assigned to the Filename property and then the audio
clip can be played .

Day 15, "Using Form Templates"
Quiz Answers

1: What is the purpose of the template forms?

A: Form templates enable you to add standard forms to your applications and to speed up your program
development.

2: Describe two ways to add template forms to applications

A: You can add form templates from within the Application Wizard, from the Project, Add dialog box, and
by right-clicking the Project window and selecting Add, Form from the pop-up menu.

3: Describe the code needed to connect the About dialog box to your project

A: Simply apply the Show method to the About box's form when the user selects Help, About from your
application's menu .

4: True/False. You must write the code to display system information if a user clicks the About dialog
box's System Info command button

A: False. The About box already contains the necessary code for displaying the System Information dialog
box.

5: What's the difference between a splash screen and your regular form?

A: A splash screen should stay onscreen for a limited period of time during the program's startup.

6: Would you consider the Tip of the Day dialog box to be a splash screen?

A: The Tip of the Day dialog box stays onscreen as long as the user wants it to, whereas the splash screen
appears only briefly as an introduction. In addition, the Tip of the Day screen keeps displaying
additional tips as the user clicks the Next Tip button. The user can also turn off the Tip of the Day
screen so that it does not appear the next time the application begins. On the other hand, the Splash
screen always appears when the application starts.

7: What's the purpose of the SaveSetting command?

A: The SaveSettings entry, when used in conjunction with a Tip of the Day dialog box, specifies whether
or not the user wants to see a Tip of the Day screen.

8: What does ODBC stand for and what is its purpose?

A: ODBC stands for Open Database Connectivity. It provides a standard way to access databases from
different computer systems.

9: What must you do in the Properties dialog box before your application can properly display a splash
screen or a Tip of the Day dialog box?

A: You must make the Tip of the Day dialog box or the splash screen the startup form.

10: Describe the format of the tip file required by the Tip of the Day dialog box

A: The tip file is a text file that you create with a text editor such as Notepad. The file contains one line for
each tip. You must store the tip file in the same folder as the application that uses it.

Exercise Answers

1: Follow the recommendation described earlier in the Login dialog box section that turns the Login dialog
box's code into a better set of routines. Replace the global variable with local variables

A: The chapter's text describes how to make this change.

2: Create an application that displays a different PC tip every time the application starts. (You can modify
the tip file described in today's lesson.) Add a menu option to the regular form to make the tips appear
again at startup. Hint: Check out the chkLoadTipsAtStartup_Click() procedure and use the SaveSetting
command to reset the tips. Although you haven't mastered SaveSetting, you have all the tools you need
to complete this project quickly

A: No answer is necessary for this project. The most complicated requirement is creating the set of tips in
Notepad.

Day 16, "Objects and Visual Basic"
Quiz Answers

1: What is the difference between linking and embedding?

A: When you link an OLE object, the object stays with its parent application. When you embed an OLE
object, your application gets a copy of the object. If an embedded object is modified within the parent
application, your application will not know about the change.

2: Which kind of OLE technique, linking or embedding, do you think consumes the most disk space?

A: Embedding takes the most disk space because a copy of the object must appear with your application.

3: True/False. Visual Basic automatically saves your users'changes to the OLE embedded object

A: False. You must write code that saves and loads any changes to the OLE object.

4: Which method saves an OLE object to a disk file?

A: The SaveToFile method saves objects to disk .

5: Which method loads an OLE object from a disk file?

A: The ReadFromFile method loads objects from disk .

6: Name two ways to test for an object's class

A: The If TypeOf statement and the TypeOf() function test for object classes .

7: True/False. You must pass system objects if you need to access them in multiple procedures

A: False. System objects are global already, so you don't ever pass them between procedures.

8: Name three kinds of items that often appear in the Members list in the Object Browser

A: Functions, named constants, internal functions, procedures, and classes often appear in the Members
list.

9: What happens if you group the Members list in the Object Browser?

A: Visual Basic groups all members and classes by their purpose instead of alphabetically when you group
the Members list.

10: True/False. The Object Browser won't search for objects you've created

A: False. One of the Object Browser's most rewarding features is its capability to locate your own
application's objects.

Exercise Answers

1: Why is With…End With probably a bad idea here?

A: The With clause saves no programming effort when only two properties are being set .

2: Write a simple application that contains one OLE control. Embed a Windows Paint object in the control.
Add a menu option for saving pictures and one for loading pictures. When you run the application,
double-click the control and draw a picture. Save the drawing, exit the application, and then restart the
application. Load the saved drawing to make sure your application's save and load procedures are
accurate

A: Follow this lesson's instructions for adding a WordPad object to an application (but add the Paint object
instead). You must use the save and load OLE data code listings shown in this lesson to save and load
your drawings. Although this exercise requires little in the way of an answer, by performing this
exercise, you'll gather experience using OLE objects inside other applications.

Day 17, "ActiveX Controls"
Quiz Answers

1: What does automation mean?

A: Automation is the process of borrowing another application's functionality to create that application's
data object.

2: What happens if your application uses CreateObject() for a Word document and Word is already
running?

A: Another instance of Word will start and many system resources will be eaten up by the two redundant
processes.

3: Why can't you directly assign applications to object variables?

A: You cannot store applications in variables, so you must create a reference to an application through the
Set command .

4: What is the purpose of the system object's Err.Number?

A: If you trap an error with the On Error statement, you can determine the error that occurred by testing
the Err.Number value .

5: What are the three ways to create ActiveX controls?

A: You can create ActiveX controls by subclassing simple controls, by subclassing aggregate controls, and
by creating user-drawn controls.

6: Which method of ActiveX control creation is the easiest to use?

A: The simplest ActiveX control to create is one you subclass as a simple control.

7: True/False. When you subclass a control, the new ActiveX control borrows properties, events, and
methods from the parent

A: True.

8: What are enumeration blocks used for?

A: Enumeration blocks are used to define enumerated constant lists.

9: What extension does Visual Basic use for compiled ActiveX controls?

A: Visual Basic uses the .OCX extension for ActiveX controls you create.

10: Which two procedures do ActiveX control properties require?

A: ActiveX controls require at least a Get and a Let procedure so that you can assign and read property
values .

Exercise Answers

1: Use the Components dialog box to search your disk for ActiveX controls. You'll probably find some
that aren't in the Windows folder. For example, if you're a member of Microsoft Network's online
service, you'll find several ActiveX controls in the Microsoft Network folder

A: No answer is necessary.

2: Change the ActiveX control and the application that you created at the end of this lesson. Modify the
AsIs enumerated value so that it reads AsEntered. Change the ActiveX control so that, if a program
changes the text from AsEntered to either Uppercase or Lowercase, the control remembers the text as it
appeared before the conversion. Rewrite the final application in this lesson to add a sixth command
button that reads As Entered. When the user clicks this command button, the text should revert back to
its previous form

A: You must first declare a variable that will hold the original text. You then can save the text in the
variable before converting the text to uppercase or lowercase. You could create a public variable that
retains its value when the procedure that converts the case terminates. The variable could hold the
original contents of the text box.

Given that local variables are better than public variables, the public variable option leaves a lot to be
desired. Although there are several ways to save the original text box value, perhaps the simplest would
be to place a hidden text box on the form (keep the text box's Enabled property True but its Visible
property False). As soon as the user enters text in the ActiveX control, the ActiveX control's Text
property should be saved in the hidden text box's Text property. When the user clicks the As Entered
command button, the ActiveX control's Text property needs to be assigned the hidden text box's text
value. Hint: Be sure to update the hidden text box's Text property every time the user types a new value
in the ActiveX control (as you would do in the Change event procedure).

Day 18, "Interacting with Data"
Quiz Answers

1: What tool does Visual Basic supply that lets you edit and look at database files?

A: The Visual Data Manager lets you analyze databases.

2: What is the difference between a file and a table?

A: A table is a data file located inside a database.

3: True/False. As you add records to a table, the number of columns in the table grows as well

A: False. The number of columns does not grow unless you expand the fields in your database.

4: True/False. A table is a subset of a recordset

A: True. A table is one form of a recordset.

5: What is a bound control?

A: A bound control is a control bound to a database control, such as the data control, that displays records
as the user steps through the database.

6: What are the differences between a recordset, a dynaset, and a snapshot?

A: A recordset is a collection of records, including (but not limited to) the records in a table. A dynaset is a
collection of records that differs from the default order, perhaps a set of records that meet a specific
criteria. The dynaset changes as the database changes. A snapshot is a dynaset from a specific location
in time. In other words, a snapshot is a recordset that does not change but that contains certain records
with database values as they appeared at the time the snapshot was created.

7: Name two advantages of ADO over the data control

A: The ADO is quicker, more powerful, and more flexible than the data control.

8: What do the EOF and BOF values determine?

A: EOF determines the end of a table, and BOF represents the beginning of a table.

9: What's the difference between a Master view and a Detail view?

A: A Master view is one record, and a Detail view is a set of records that go with the master record. A one-
to-many relationship exists in the Master/Detail view; for example, one vendor may have sold multiple
products to your company over time.

10: What tool does Visual Basic offer that generates database forms directly from your database structure?

A: The Visual Basic Application Wizard will generate forms directly from your database table structure.

Exercise Answers

1: Change the database access application you created (shown in Figure 18.6) so that it displays all the
fields from the Customer table. Your form should mimic the form shown in Figure 18.7. (Be sure to add
the descriptive labels so the user knows what each column contains.)

A: Don't add additional data controls to the form. You only need to add additional text box controls and
link them to the data control already there. Set the DataSource property in each text box control to the
data control and set the DataField property in each text box control to its corresponding column (field)
in the table .

2: Use the Application Wizard to generate a Master/Detail view of the BIBLIO.MDB database that
presents the author's name in the Master view and all his or her books'ISBNs in the Detail view

A: To form a one-to-many relationship, you must select two tables that have at least one field in common.
When you select the Master/Detail form type, the next window gives you the chance to select the table
you want to use for the master record source. Select the Authors table from the list and send the Author
field to the right list so that only the author's name appears for the Master view side of the form. After
you click Next, the Detail Source Record window appears. From it you can select the Title Author table.
Send the ISBN field to the right list and click Next to display the window shown in Figure A.1.
Highlight both the fields named Au_ID (the only common field) to connect the records. When you run
the application, the author's name will appear at the top of the form, and the ISBNs for each book the
author wrote will follow in the lower section of the form .

Figure A.1. You must tell the wizard how to link the two sets of fields.

Day 19, "Adding Internet Access"
Quiz Answers

1: What does the Web-browsing application you generate with Visual Basic's Application Wizard do with
the URL you supply?

A: The generated application's Web browser will display the Web page at the URL you supply when the
application's user logs onto the Internet.

2: True/False. Your application's end users must use the Internet Explorer Web browser before your Visual
Basic Web-browsing control will work

A: False. Your applications will contain an embedded Web browser that the user can use no matter what
Web browser your users have installed on their system.

3: True/False. You must use the Internet Explorer Web browser before your Visual Basic Web-browsing
control will work

A: True. You must have the Internet Explorer 4 Web browser installed on your system to use Visual
Basic's full Web programming features. This browser comes with Visual Basic (if you do not have it
already installed). You do not have to make Internet Explorer your default Web browser, but it is the
browser that Visual Basic requires for development.

4: What is encapsulation?

A: Encapsulation, in its most elementary form, refers to the packaging together of code and properties so
that an object carries with it its own behaviors and descriptions.

5: Which online service do some of the Visual Basic controls support?

A: Some of the Visual Basic 6 controls provide direct access to the Microsoft Network online service. Of
course, if your end users do not have access to Microsoft Network, the controls will not allow the user
to log onto the Microsoft Network.

6: What's the difference between an intranet and the Internet?

A: An intranet is an internal Internet-like connection made between networked computers.

7: What's the difference between an ActiveX document and a regular Visual Basic application?

A: An ActiveX document is a Web page that contains a full-featured Visual Basic application.

8: What does Java do?

A: Java is a C++-like programming language that enables its authors to write small programs, called
applets, that travel the Web pages and execute on an end user's PC when the he or she views the applet's

Web page.

9: Which scripting language works with HTML to load and execute ActiveX documents?

A: The VBScript language works with HTML to load ActiveX documents.

10: How can you convert existing applications into an ActiveX document?

A: Use the ActiveX Document Migration Wizard to convert existing applications into ActiveX documents.

Exercise Answers

1: If you have Microsoft Office Professional, you can use the Office Binder to hold ActiveX documents!
Try it using the calculator's ActiveX document you created in today's lesson

A: After converting an application to an ActiveX document, you can add that ActiveX document to the
Office Binder application. The Office Binder is nothing more than an ActiveX control container. Until
you learn how to compile to EXE files in Day 21's lesson, you'll have to experiment with the Office
shortcut bar while keeping Visual Basic running. After converting to an ActiveX document, start the
Office Binder program, display the Section menu, and click Add to display the Add Selection dialog
box. Locate and double-click your ActiveX document, and the document will appear on your Office
Binder collection of tools. Therefore, in an Office project, you could integrate non-Office applications
in a project alongside Office documents to complement an entire presentation of programs .

2: Select an application that contains multiple forms, such as the sample project named Controls. Convert
that application to an ActiveX document

A: With the multiple forms, the Migration Wizard will have to create several ActiveX documents. You
must test each one individually by start your Web browser and selecting File, Open for each ActiveX
document created from each form in the project.

Day 20, "Providing Help"
Quiz Answers

1: What file format must you use to create an online Help file?

A: You must use RTF (Rich Text Format) files for the Help text and an HPJ project file, unless you use
HTML help in which case your Help file ends in the extension CHM.

2: How can hypertext jumps improve a Help system?

A: The user can move from Help topic to Help topic without returning to an index.

3: Which custom footnote symbol creates pop-up Help definitions for underlined Help page text?

A: The K footnote label is used to connect Help to underlined topics .

4: What are some of the features of the Help project file?

A: The Help project file identifies the Help file, Help page context IDs, and the Help engine's title bar text.
The Help compiler uses the project file during the Help file's compilation.

5: After you compile a Help file, how can you attach such a file to an application so that the Help file
appears when a user presses F1?

A: Use the Project Properties dialog box to attach Help to the F1 key.

6: How do you connect context-sensitive Help to the Help file topics?

A: Use context ID values to target specific Help topics to context-sensitive Help objects.

7: True/False. The context-sensitive Help uses the textual context IDs in your Help file

A: False. The context-sensitive IDs use the numeric Help context IDs.

8: What's the difference between the What's This? Help and ToolTips?

A: The ToolTips pop up when the user rests the mouse cursor over an item, and the What's This? Help
appears only when requested from the Help menu or from the user's click of the What's This? title bar
button.

9: How can you add the What's This? button on forms?

A: Set the form's WhatsThisButton property to True to turn on the What's This? button on a form's title
bar .

10: True/False. You can offer What's This? Help for forms as well as for objects on the form. (Hint: Check
the form's properties.)

A: True.

Exercise Answer

1: Add What's This? Help to every object in MDI Notepad. This task might seem tedious (and it is
somewhat), but you'll quickly get the hang of working with What's This? Help, context IDs, and Help
pages

A: Expand on this lesson's example. Adding the other Help topics will be simple. Follow these guidelines:
1. Make sure that each object's ToolTips property has a value. 2. Create a context-sensitive Help
message for each object on the form. 3. Assign context ID values in the project file for each Help topic.
4. Compile the Help file.

Day 21, "Distributing Your Applications"
Quiz Answers

1: What is a syntax error?

A: A syntax error is a mistake in spelling or a language misuse.

2: What's the difference between a syntax error and a logic error?

A: The computer catches syntax errors but people must catch logic errors.

3: True/False. Some runtime errors can cause the running program to stop executing

A: True.

4: True/False. Some syntax errors can cause the running program to stop executing

A: False. If an application has a syntax error, Visual Basic will not let the application execute until you fix
the bug.

5: How can you analyze variables during a program's execution?

A: The Visual Basic debugger lets you halt a program at any point by placing breakpoints in the code. You
then can rest your mouse cursor over a variable to read its runtime value or place that variable in the
Watch window.

6: How can the single-step mode help you debug a program?

A: By executing a program one line at a time, you can analyze variable and control values at your pace as
well as check your logic and the program flow.

7: True/False. You can change the values of variables and controls during the execution of an application

A: True. You can place assignment statements inside the Immediate window.

8: Which runs faster: a compiled program or a Visual Basic program that you run from inside the Visual
Basic environment?

A: A compiled Visual Basic program runs much faster than one you run from inside the Visual Basic
environment.

9: What tools does Visual Basic provide that let you create an installation routine for your application?

A: The Package and Deployment Wizard creates installation routines for your applications.

10: What happens if your installation routine is larger than a disk can hold, but you need to offer your

application on disks?

A: The Package and Deployment Wizard can create a multiple-disk installation set of files.

Exercise Answers

1: What kind of error does the following statement contain?

A: The statement includes a syntax error because Therefore replaces Then in the If statement's first line .

2: True/False. The following sentence contains two kinds of errors (this one takes some thought)

A: True. Not only does the sentence have a syntax error due to the misspelling, but the sentence also has a
logic error. Instead of two errors, the sentence only has one error. Therefore, the sentence's logic is
incorrect!

Day 22, "Multidimensional Arrays"
Quiz Answers

1: True/False. All elements in a multidimensional table's row must be the same data type, but the different
rows can be different data types.

A: False. All elements in every row and column of an array with any number of subscripts must be the
same data type.

2: Given the following multidimensional declaration, which subscript—the first, second, or third—usually
specifies the rows?

A: The second subscript (9) generally determines the number of rows in the multidimensional array.

3: Given the table of integers (called intAra) that follows, what values do the following elements represent,
assuming that an Option Base 1 statement appears in the program?

A: 1. 4
2. 43
3. 12

4: True/False. Visual Basic supports up to 60 dimensions.

A: True.

5: True/False. You can use the Array() function to initialize a multidimensional array in one statement.

A: False. Array() works only for one-dimensional arrays .

6: What kind of control works well for the display of table data?

A: The grid control displays table data effectively.

7: What are the fixed rows and columns used for in a grid control?

A: The fixed rows and columns act as title cells in the grid.

8: How can you assign a table to a grid's cells?

A: You should use a nested loop to assign the elements of a table to a grid.

9: True/False. To assign a picture in a cell, you can use the CellPicture property at design time, just as you
do for other controls.

A: False. You must assign the CellPicture property at runtime using the LoadPicture() internal
function or assign an image control to the cell's CellPicture property .

10: Which is more efficient? Using FormatString or assignment statements to set up a grid's headers?

A: FormatString is easier to use and is more efficient than assignment statements for setting up a grid's
header titles.

Exercise Answers

1: Calculate the number of elements are reserved with the following statements?

A: Twenty-eight elements are reserved.

2: If you were to omit the Option Base statement in the procedure's declarations module, calculate the
number of elements reserved with the following statement?

A: Thirty elements are reserved (remember the zero subscript).

3: Change the salesperson grid application from earlier in this lesson so that the grid's values are written
back to the table before the program ends. Although nothing is done with the table, this practice is good
to show the one-to-one relationship between grids and tables. It also provides the place where you
would write such values back to a database file if you needed to save the commission changes made by
the user.

A: Perhaps the best place to store the grid values in the table is in the cmdExit_Click() procedure, as
shown here :

Private Sub cmdExit_Click()
 ' Terminate application and save values
 Dim curData(19, 7) As Currency
 ' Fill the table from the grid data
 For Row = 1 To 19
 For Column = 1 To 7
 grdSales.Row = Row
 grdSales.Col = Column
 curData(Row, Column) = grdSales(Row, Column)
 Next Column
 Next Row
 ' Quit the program
 End
End Sub

Day 23, "The Windows API"
Quiz Answers

1: What does API stand for?

A: API stands for Application Programming Interface.

2: Given Visual Basic's rich collection of internal functions, why would you ever want to call a Windows
API routine?

A: Although Visual Basic includes many functions, it does not do everything. For example, Visual Basic
does not include a function that reboots your system. The Windows API routines provide system-level
functions you can access from your Visual Basic application.

3: Why do the DLLs your applications use not add to the size of those Visual Basic applications?

A: DLLs are dynamically linked to your application at runtime, not at compilation time. This means that
the resources for the DLLs are not set aside by the operating system for the full execution of your
program.

4: Why have the names of the standard DLLs changed over time as Windows has changed?

A: When Windows 95 moved to a 32-bit operating environment, the names of the standard DLL files
changed as well. To distinguish the new files from the old, Microsoft added "32" to the name (for
example, GDI32.DLL) .

5: What tool lets you more easily view the API routine formats?

A: The API Viewer is a tool you can add to your Visual Basic environment (through the Add-Ins menu)
that lets you select from lists of API routines and view the declarations for those routines. You then can
copy and paste those declarations into your own applications.

6: Which statement declares Windows API routines?

A: The Declare statement declares Windows API routines .

7: True/False. The Windows API routines have a uniform appearance and calling mechanism

A: False. Virtually nothing about the Windows API routines are standard. Even among families of similar
routines, the argument lists can differ greatly as well as the return data types for the function-based
routines.

8: What does the Declare statement do?

A: The Declare statement informs Visual Basic of the external Windows API routine's location and

argument list. Visual Basic does not recognize such external routines because it includes its own set of
internal functions, which are different from the Windows set of procedures. The Declare statement
enables Visual Basic to locate and properly connect to the Windows API routine you need to call from
your application .

9: Which qualifier, Public or Private, is required for Windows API procedures that you declare inside a
form module?

A: Use the Private qualifier when declaring Windows API routines from inside a form module .

10: What is the purpose of a wrapper procedure?

A: A wrapper is Visual Basic code you place around a Windows API call. Such wrappers can appear in a
general Visual Basic code module that you write and maintain for subsequent applications that require
API routines. Instead of requiring the API Viewer and looking up exact argument data types and
requirements, you only need to call the Visual Basic procedures that you've placed around the API
routines. Debugging will be easier, and you'll complete applications that require API Windows routines
faster.

Exercise Answer

Q: Which file, GDI32.DLL or KERNEL32.DLL, contains the GetSystemTime API function? How can you
determine this for any API routine you run across?

A: The KERNEL32.DLL file contains the GetSystemTime() function. You can tell by selecting the
GetSystemTime() function from the API Viewer and looking at the argument that names the file that
contains the function .

Appendix B. Operator Precedence
Table B.1 lists the operator preference order. The table includes the operators grouped by their type of operation.

Table B.1. Visual Basic's order of operators.

Arithmetic Comparison Logical

Exponentiation (^) Equality (=) Not

Negation (–) Inequality (<>) And

Multiplication and division (*, /) Less than (<) Or

Table B.1. Visual Basic's order of operators.

Arithmetic Comparison Logical

Integer division (\) Greater than (>) Xor

Modulus arithmetic (Mod) Less than or equal to (<=) Eqv

Addition and subtraction (+, –) Greater than or equal to (>=) Imp

String concatenation (&) Like, Is

Appendix C. ASCII Table
Dec Hex Binary ASCII

X10 X16 X2 Character

000 00 0000 0000 null

001 01 0000 0001

002 02 0000 0010

003 03 0000 0011

004 04 0000 0100

005 05 0000 0101

006 06 0000 0110

007 07 0000 0111
008 08 0000 1000

009 09 0000 1001
010 0A 0000 1010

011 0B 0000 1011
012 0C 0000 1100

Dec Hex Binary ASCII

X10 X16 X2 Character

013 0D 0000 1101

014 0E 0000 1110

015 0F 0000 1111

016 10 0001 0000
017 11 0001 0001
018 12 0001 0010

019 13 0001 0011

020 14 0001 0100 ¶

021 15 0001 0101 §

022 16 0001 0110 _

023 17 0001 0111

024 18 0001 1000

025 19 0001 1001

026 1A 0001 1010
027 1B 0001 1011
028 1C 0001 1100
029 1D 0000 1101
030 1E 0001 1110
031 1F 0001 1111
032 20 0010 0000 space

033 21 0010 0001 !

034 22 0010 0010 "

035 23 0010 0011 #

036 24 0010 0100 $

Dec Hex Binary ASCII

X10 X16 X2 Character

037 25 0010 0101 %

038 26 0010 0110 &

039 27 0010 0111 '

040 28 0010 1000 (

041 29 0010 1001)

042 2A 0010 1010 *

043 2B 0010 1011 +

044 2C 0010 1100 '

045 2D 0010 1101 -

046 2E 0010 1110 .

047 2F 0010 1111 /

048 30 0011 0000 0

049 31 0011 0001 1

050 32 0011 0010 2

051 33 0011 0011 3

052 34 0011 0100 4

053 35 0011 0101 5

054 36 0011 0110 6

055 37 0011 0111 7

056 38 0011 1000 8

057 39 0011 1001 9

058 3A 0011 1010 :

059 3B 0011 1011 ;

060 3C 0011 1100 <

061 3D 0011 1101 =

062 3E 0011 1110 >

063 3F 0011 1111 ?

064 40 0100 0000 @

Dec Hex Binary ASCII

X10 X16 X2 Character

065 41 0100 0001 A

066 42 0100 0010 B

067 43 0100 0011 C

068 44 0100 0100 D

069 45 0100 0101 E

070 46 0100 0110 F

071 47 0100 0111 G

072 48 0100 1000 H

073 49 0100 1001 I

074 4A 0100 1010 J

075 4B 0100 1011 K

076 4C 0100 1100 L

077 4D 0100 1101 M

078 4E 0100 1110 N

079 4F 0100 1111 O

080 50 0101 0000 P

081 51 0101 0001 Q

082 52 0101 0010 R

083 53 0101 0011 S

084 54 0101 0100 T

085 55 0101 0101 U

086 56 0101 0110 V

087 57 0101 0111 W

088 58 0101 1000 X

089 59 0101 1001 Y

090 5A 0101 1010 Z

091 5B 0101 1011 [

092 5C 0101 1100 \

Dec Hex Binary ASCII

X10 X16 X2 Character

093 5D 0101 1101]

094 5E 0101 1110 ^

095 5F 0101 1111 –

096 60 0110 0000 `

097 61 0110 0001 a

098 62 0110 0010 b

099 63 0110 0011 c

100 64 0110 0100 d

8101 65 0110 0101 e

102 66 0110 0110 f

103 67 0110 0111 g

104 68 0110 1000 h

105 69 0110 1001 i

106 6A 0110 1010 j

107 6B 0110 1011 k

108 6C 0110 1100 l

109 6D 0110 1101 m

110 6E 0110 1110 n

111 6F 0110 1111 o

112 70 0111 0000 p

113 71 0111 0001 q

114 72 0111 0010 r

115 73 0111 0011 s

116 74 0111 0100 t

117 75 0111 0101 u

118 76 0111 0110 v

119 77 0111 0111 w

120 78 0111 1000 x

Dec Hex Binary ASCII

X10 X16 X2 Character

121 79 0111 1001 y

122 7A 0111 1010 z

123 7B 0111 1011 {

124 7C 0111 1100 |

125 7D 0111 1101 }

126 7E 0111 1110 ~

127 7F 0111 1111 δ

128 80 1000 0000 Ç

129 81 1000 0001 ü

130 82 1000 0010 é

131 83 1000 0011 â

132 84 1000 0100 ä

133 85 1000 0101 à

134 86 1000 0110 å

135 87 1000 0111 ç

136 88 1000 1000 ê

137 89 1000 1001 ë

138 8A 1000 1010 è

139 8B 1000 1011 ï

140 8C 1000 1100 î

141 8D 1000 1101 ì

142 8E 1000 1110 Ä

143 8F 1000 1111 Å

144 90 1001 0000 É

145 91 1001 0001 æ

146 92 1001 0010 æ

147 93 1001 0011 ô

148 94 1001 0100 ö

Dec Hex Binary ASCII

X10 X16 X2 Character

149 95 1001 0101 ò

150 96 1001 0110 û

151 97 1001 0111 ù

152 98 1001 1000 ÿ

153 99 1001 1001 Ö

154 9A 1001 1010 Ü

155 9B 1001 1011 ¢

156 9C 1001 1100 £

157 9D 1001 1101 ¥

158 9E 1001 1110

159 9F 1001 1111 f

160 A0 1010 0000 á

161 A1 1010 0001 í

162 A2 1010 0010 ó

163 A3 1010 0011 ú

164 A4 1010 0100 ñ

165 A5 1010 0101 Ñ

166 A6 1010 0110 ª

167 A7 1010 0111 º

168 A8 1010 1000 º

169 A9 1010 1001 ¿

170 AA 1010 1010
171 AB 1010 1011
172 AC 1010 1100 ½

173 AD 1010 1101 ¼

174 AE 1010 1110 ¡

175 AF 1010 1111 «

176 B0 1011 0000 »

Dec Hex Binary ASCII

X10 X16 X2 Character

177 B1 1011 0001

178 B2 1011 0010

179 B3 1011 0011
180 B4 1011 0100
181 B5 1011 0101
182 B6 1011 0110
183 B7 1011 0111
184 B8 1011 1000
185 B9 1011 1001
186 BA 1011 1010
187 BB 1011 1011
188 BC 1011 1100
189 BD 1011 1101
190 BE 1011 1110
191 BF 1011 1111
192 C0 1100 0000
193 C1 1100 0001
194 C2 1100 0010
195 C3 1100 0011
196 C4 1100 0100
197 C5 1100 0101
198 C6 1100 0110 +

199 C7 1100 0111
200 C8 1100 1000
201 C9 1100 1001
202 CA 1100 1010
203 CB 1100 1011

Dec Hex Binary ASCII

X10 X16 X2 Character

204 CC 1100 1100
205 CD 1100 1101

206 CE 1100 1110 =

207 CF 1100 1111
208 D0 1101 0000
209 D1 1101 0001
210 D2 1101 0010
211 D3 1101 0011
212 D4 1101 0100
213 D5 1101 0101
214 D6 1101 0110
215 D7 1101 0111
216 D8 1101 1000
217 D9 1101 1001

218 DA 1101 1010
219 DB 1101 1011
220 DC 1101 1100
221 DD 1101 1101
222 DE 1101 1110
223 DF 1101 1111
224 E0 1110 0000
225 E1 1110 0001 α

226 E2 1110 0010 β

227 E3 1110 0011 Γ

228 E4 1110 0100 π

229 E5 1110 0101 Σ

Dec Hex Binary ASCII

X10 X16 X2 Character

230 E6 1110 0110 σ

231 E7 1110 0111 µ

232 E8 1110 1000 γ

233 E9 1110 1001
234 EA 1110 1010 θ

235 EB 1110 1011 Ω

236 EC 1110 1100 δ

237 ED 1110 1101
238 EE 1110 1110 ø

239 EF 1110 1111
240 F0 1110 0000
241 F1 1111 0001
242 F2 1111 0010 ±

243 F3 1111 0011
244 F4 1111 0100
245 F5 1111 0101

246 F6 1111 0110

247 F7 1111 0111 ÷

248 F8 1111 1000
249 F9 1111 1001 °

250 FA 1111 1010 •

251 FB 1111 1011
252 FC 1111 1100
253 FD 1111 1101 n

254 FE 1111 1110 2

255 FF 1111 1111

THE END

Day 8. The Nature of VB Programs
Today's lesson shows you how to understand complex Visual Basic applications that contain multiple modules and
procedures that need to share data between each other. When writing extensive applications, you must be able to share
data between procedures and modules by declaring the variables appropriately and by writing procedures in such a way
that other procedures can access them.

Not only will you write many procedures of your own, but you'll use Visual Basic's internal functions to perform
common analysis and data-manipulation of strings, numbers, and other kinds of data. Today's lesson describes all the
Visual Basic internal functions you'll need to work within most situations.

Today, you learn the following:

• Proper program structure
• How general procedures eliminate duplicate code
• About variable scope
• To set up argument lists
• Numeric functions
• Data analysis functions
• String manipulation functions
• Date and time functions

		2004-09-30T17:22:31-0600
	Lilmeanman
	I am approving this document

